Corrigendum to: Weak Arithmetics and Kripke Models

Morteza Moniri

Institute for Studies in Theoretical Physics and Mathematics P.O. Box 19395-5746, Tehran, Iran

And: Department of Mathematics, Shahid Beheshti University, Tehran, Iran. email: ezmoniri@ipm.ir

Abstract

We give a corrected proof of the main result in the paper mentioned in the title.

2000 Mathematics Subject Classification: 03F30, 03F55, 03H15.

Key words: Fragments of Heyting Arithmetic, Kripke models, Induction, LNP.

By $W \neg \neg LNP$, we mean the scheme $\forall \overline{y} \neg \neg (\exists x \varphi(x, \overline{y}) \rightarrow \exists x (\varphi(x, \overline{y}) \land \forall z < x \neg \varphi(z, \overline{y})))$. In [M], it is observed that $i\Pi_1 \equiv W \neg \neg l\Pi_1 \equiv W \neg \neg l \neg \Pi_1$. Here, $i\Pi_1$ is defined as $I\Pi_1$ but over intuitionistic logic. Also, $W \neg \neg l\Pi_1$ is the intuitionistic theory obtained by adding the scheme $W \neg \neg LNP$ for Π_1 formulas, to the intuitionistic version of $I\Delta_0$ (i.e. $i\Delta_0$). The theory $W \neg \neg l \neg \Pi_1$ is the intuitionistic theory obtained by adding the scheme $W \neg \neg LNP$ for negated Π_1 formulas to $i\Delta_0$. The above result was proved using a Lemma concerning Kripke models of the mentioned theories (Proposition 1.2 in [M]). The proof of this Lemma is not correct. Here, using the same idea, we give a more direct proof for the above mentioned equivalences. I should also note that Corollary 1.6 (ii) in [M], based on the mentioned Proposition, is wrong. One can construct a Kripke model of $i\Pi_1$ with a path such that the union of the worlds in it does not satisfy $I\Pi_1$. To see this, let M be a model of $I\Delta_0$ which is not a model of $I\Pi_1$ but is embeddable in a model $M' \models I\Pi_1$, see [W, Lemma 9 for existence of such models. Now let \mathcal{K} be the Kripke model which is obtained by putting a world M' over each M in an ω -chain consisting of M's. This Kripke model clearly forces $i\Pi_1$ since double negation of any instance of induction on a Π_1 -formula is forced in its root and is equivalent (in \mathcal{K}) to the same instance, see [W, Lemma 10] and [MM, Lemma 4.4].

We first recall the following Fact mentioned in [M].

Fact 1.1 Suppose $\mathcal{K} \Vdash i\Delta_0$ and $\alpha \in K$.

(i) $\alpha \Vdash \text{PEM}_{\Delta_0}$.

- (ii) If $\varphi \in \Sigma_1$ is a L_{α} -sentence then: $\alpha \Vdash \varphi \Leftrightarrow M_{\alpha} \vDash \varphi$.
- (iii) If $\psi \in \Pi_1$ is a L_{α} -sentence then: $\alpha \Vdash \psi \Leftrightarrow \forall \beta \geq \alpha M_{\beta} \vDash \psi$.

Proposition 1.2 If a fragment $i\Gamma$ of HA is m-closed under the negative translation and $I\Gamma \vdash L\Gamma$, then for any formula $\varphi(x, \overline{y}) \in \Gamma$, $i\Gamma \vdash \forall \overline{y} \neg \neg (\exists x \varphi(x, \overline{y}) \rightarrow \exists x (\varphi(x, \overline{y}) \land \forall z < x \neg \varphi(z, \overline{y})))$.

Proof The second proof in [TD, p.131] for $HA \vdash W \neg \neg LNP$ actually proves the Proposition. For details see [MM]. \square

Note that by the above Proposition, $i\Pi_1 \vdash W \neg \neg l\Pi_1$. Also, using $i\Pi_1 \equiv i \neg \Pi_1$ (see [W, Cor. 6]) and 1.2, we get $i\Pi_1 \vdash W \neg \neg l \neg \Pi_1$.

Proposition 1.3 $W \neg \neg l \neg \Pi_1 \vdash i\Pi_1$.

Proof Assume $\mathcal{K} \Vdash W \neg \neg l \neg \Pi_1$. Let $\alpha \in \mathcal{K}$ does not force $I_x \varphi(x, \overline{y})$, for some Π_1 -formula φ . Therefore, by Fact 1.1, there will exist a node $\gamma \geqslant \alpha$ with $a, \overline{b} \in M_{\gamma}$ (\overline{b} of the same arity as \overline{y}), such that

- (i) $\gamma \Vdash \varphi(0, \overline{b}) \land \neg \varphi(a, \overline{b}),$
- (ii) $\gamma \Vdash \forall x (\varphi(x, \overline{b}) \to \varphi(x+1, \overline{b})).$

By $\mathcal{K} \Vdash W \neg \neg l \neg \Pi_1$, we get $\gamma \Vdash \neg \neg \exists x (\neg \varphi(x, \overline{b}) \land \forall z < x \varphi(z, \overline{b}))$. Therefore, for some $\delta \geq \gamma$ and some (necessarily nonzero) $d \in M_{\delta}$, $\delta \Vdash \neg \varphi(d, \overline{b}) \land (\forall z < d) \varphi(z, \overline{b})$. This is a contradiction to the fact that γ (and therefore, δ) forces $\forall x (\varphi(x, \overline{b}) \rightarrow \varphi(x + 1, \overline{b}))$. \square

Proposition 1.4 $W \neg \neg l\Pi_1 \vdash i \neg \Pi_1$.

Proof Let α be a node of a Kripke model $\mathcal{K} \Vdash W \neg \neg l\Pi_1$, $\varphi(x, \overline{y})$ negation of a Π_1 -formula, and $\overline{a} \in M_{\alpha}$ of the same arity as \overline{y} . To prove $\alpha \Vdash I_x \varphi(x, \overline{a})$, assume without loss of generality that $\alpha \Vdash \varphi(0, \overline{a})$. It is enough to show that for every $\beta \geq \alpha$, there exists $\delta \geq \beta$ such that, $\delta \Vdash I_x \varphi(x, \overline{a})$, since in $i\Delta_0$ we have $\neg \neg I_x \varphi(x, \overline{a}) \vdash I_x \varphi(x, \overline{a})$. Fix $\beta \geq \alpha$. If $\beta \Vdash \forall x \varphi(x, \overline{a})$, then we may take $\delta = \beta$. Otherwise, by $\beta \Vdash W \neg \neg l\Pi_1$, one can see that there will exist $\gamma \geq \beta$ such that $\gamma \Vdash \neg \varphi(d, \overline{a}) \land (\forall z < d) \varphi(z, \overline{a})$ for some non-zero $d \in M_{\gamma}$. Clearly, such a node δ has the desired property. \square

Corollary 1.5 $i\Pi_1 \equiv W \neg \neg l\Pi_1 \equiv W \neg \neg l \neg \Pi_1$.

Acknowledgment

This research was in part supported by a grant from IPM (No. 82030115).

References

- [MM] Morteza Moniri and Mojtaba Moniri, Some Weak Fragments of HA and Certain Closure Properties, J. Symbolic Logic, 67 (2002) 91-103.
 - [M] Morteza Moniri, Weak Arithmetics and Kripke Models, Math. Logic Quart, 48

 $(2002)\ 157-160.$

- [TD] A. S. Troelstra and D. van Dalen, Constructivism in Mathematics, vol. 1, North-Holland, Amsterdam, 1988.
- [W] K. F. Wehmeier, Fragments of HA Based on Σ_1 -Induction, Arch. Math. Logic, 37 (1997), 37-49.