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Abstract

Biologists increasingly report anthropogenic disruptions at both organism and
ecosystem levels, suggesting that these disruptions are a fundamental, qualitative
component of the Anthropocene. Nonetheless, the notion of disruption has yet to
be theorized as such in biology. To progress in that regard, we work on a particular
case. Relatively minor temperature changes impact plant-pollinator synchrony, dis-
rupting mutualistic interaction networks. Understanding this phenomenon requires
a specific rationale since models describing them use both historical and systemic
reasoning. Specifically, history justifies that the system is initially in a very narrow
part of the possibility space where it is viable, and the disruption randomizes this
configuration. Building on this rationale, we develop a mathematical schema in-
spired by Boltzmann’s entropy and apply it to this situation. Then, we propose an
initial definition of disruption in ecology: when a specific historical outcome con-
tributes to a system’s viability, a disruption randomizes this outcome, decreasing
viability.

Keywords: disruption, historicity, plant-pollinator networks, entropy, philos-
ophy of science, closure of constraints
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1

https://montevil.org


4 Analytic scheme and applications 10
4.1 Overall rationale . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
4.2 Introducing a conceptual and mathematical framework . . . . . . . . . 11

4.2.1 The plant-pollinator model . . . . . . . . . . . . . . . . . . . . . 12
4.2.2 Analysis building on Boltzmann’s schema . . . . . . . . . . . . . 12

4.3 Effects of phenology changes . . . . . . . . . . . . . . . . . . . . . . . . 15
4.4 Changes of network structure over time . . . . . . . . . . . . . . . . . . 18

5 Conclusion 21

6 Acknowledgments 23

7 Statements & Declarations 23
7.1 Funding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
7.2 Competing Interests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
7.3 Ethics approval . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
7.4 Consent to participate . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
7.5 Consent for publication . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
7.6 Availability of data and material . . . . . . . . . . . . . . . . . . . . . . 24
7.7 Code availability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
7.8 Authors’ contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

A Models 24
A.1 Overview of the model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
A.2 Generation of phenologies . . . . . . . . . . . . . . . . . . . . . . . . . . 24
A.3 Viability tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
A.4 Sampling of microscopic possibility space . . . . . . . . . . . . . . . . . 25

A.4.1 Maximum entropy . . . . . . . . . . . . . . . . . . . . . . . . . . 25
A.4.2 Realistic entropy increase . . . . . . . . . . . . . . . . . . . . . . 25
A.4.3 Systematic exploration of possibility space . . . . . . . . . . . . . 26

1 Introduction

A strategy to analyze human activities’ impact is to exhibit the sustained decline of sev-
eral quantities, such as freshwater supplies per individual or forest area. This rationale
is at the core of the “warning to humanity” cosigned by more than sixteen thousand
scientists (Ripple et al., 2017). Similarly, ecologists focus on decreasing species num-
bers and declining populations (Leclère et al., 2020). However, this rationale needs to
be complemented to understand many anthropogenic effects, and we feel the need for
synthetic concepts to address the anthropogenic disorganizations of the living.

Scientists frequently use the notion of disruption to account for the direct and indi-
rect detrimental consequences of human activities on the living. Many articles describe,
for example, disruptions of trophic networks (food webs) (Martinson & Fagan, 2014),
disruptions caused by climate change (Memmott et al., 2007), and endocrine disruptors
(Colborn et al., 1993). However, this notion has not yet been the subject of a systematic
conceptualization or theoretical investigation.

By contrast, the concept of disruption as a strategy of economic innovation was
theorized in the ’90s. In this sense, disruptions are new strategies that transform a
market or activity structure, typically with digital technologies (Dru, 1996; Christensen
et al., 2015). For example, digital platforms gathering “independent” drivers compete
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with taxis by bypassing the organization and regulations for both taxi and employed
drivers (Dudley et al., 2017). In response, the philosopher Bernard Stiegler describes
disruption at the level of human societies, arguing that today’s technological innovations
are faster than societies’ ability to incorporate them by sciences, politics, customs,
and laws. Then, societies cannot domesticate their technological productions, leading
to widespread toxic consequences for both human and non-human living beings. For
him, societies enter an era called “the disruption” where the problems generated by
technological changes appear faster than they can be addressed (Stiegler, 2019). In this
paper, we will focus on what we may call elementary disruptions in biology, that is,
disruptions taking place at the level of a specific phenomenon. There is a link between
the two concepts in that the pace of elementary disruptions can be such that living
beings cannot overcome them by adaptations, leading to extinctions and a decline in
biodiversity — we will not address this link further in this paper.

Nevertheless, the term disruption in biology is older than in economics and phi-
losophy. For example, scientists describe the disruptions of mutualisms at least since
the 80’s (Bond & Slingsby, 1984). The increasing use of the word “disruption” seems
associated with environmental issues, as shown by the example of endocrine disruptors
(chemicals disrupting hormone actions, Colborn & Clement, 1991; Gore et al., 2015).
Moreover, its use grows steadily in ecology (fig. 1).
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Figure 1: Occurrences of the term “disruption” and derivatives in ecology publications
from 1950 to 2019. The curve represents the ratio of papers mentioning disruption
or derivatives (disrupt, disrupts and disrupted) and ecology over papers mentioning
ecology in the JSTOR database, in the fields of Ecology & Evolutionary Biology and
Environmental Science.

In this context, it is critical to conceptualize and theorize the notion of disruption in
biology. The disruptions described in biology concern a level of organization (organism,
ecosystems, ...), and its destabilization by a specific cause (a chemical, climate change,
...) via specific interactions (the regulation of morphogenesis, the synchrony between
populations of a community, ...). Moreover, a concept of biological disruptions should
be distinct from existing concepts and have theoretical specificity. Notably, it should
be distinct from the familiar concept of perturbation coming from physics and its root
in specific mathematical methods — chiefly small perturbations around equilibrium.
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The latter concept is relevant to ecology and biology in general, where it raises specific
questions (Arnoldi et al., 2016); however, disruptions should have a distinct rationale.
Moreover, this concept should be relevant in diverse situations, thus possess some gener-
ality, and accordingly contribute to explaining why disruptions are seemingly pervasive
in the current biosphere.

In English, to disrupt means “to break or burst asunder; to break in pieces, shatter;
to separate forcibly” and stems from the Latin verb disrumpere (Wikipedia contributors,
2020). Then, let us investigate what is shattered. Both organisms and ecosystems are
composed of parts whose relations enable the whole to last over time, a property that we
call organization (Nunes-Neto et al., 2014; Montévil & Mossio, 2015; Mossio et al., 2016).
Disruption is then a loss of organization, the loss or impairment of the contribution of
one or several parts to an organism’s or an ecosystem’s ability to last over time. In
a sense, it would be the opposite of the process of niche emergence described in Gatti
et al. (2018).

Moreover, such organizations have two analytically distinct dimensions: first, they
form coherent, self-sustaining systems, and second, they result from evolutionary his-
tory. That is to say; they are addressed scientifically by causal relations (systems) and
by a reference to their past (history) (Montévil & Mossio, 2020). Let us emphasize that
the dimension of history enters biology with the theory of evolution; it does not play
a role in the main theories of physics, where the objects are determined by their state
at a given time and ahistorical “laws”. We contend that a concept of disruption has to
integrate both of these dimensions.

This article initiates a theoretical and conceptual work on anthropogenic biological
disruptions by studying a specific phenomenon that ecologists often call disruptions. We
start with this case because there are mathematical models that we can build on, and,
accordingly, it is relatively more straightforward than, for example, endocrine disruptors
where development enters into the picture (Colborn et al., 1993).

Let us describe the situation of interest. Outside the equatorial zone, seasons put a
steady rhythm in climates. These seasonal variations constrain living beings and their
activities so that specific biological responses appeared in evolution. Many biological
events, such as blooms, hatching, and migrations, occur at specific times of the year.
The study of periodic events in the living world associated with seasonality is called
phenology. Ecologists often call disruption the desynchronization in an ecosystem when
they break down relations between populations so that climate change disrupts commu-
nities via phenological changes (Memmott et al., 2007; Ovaskainen et al., 2013; Burkle
et al., 2013b; Kudo & Cooper, 2019). These desynchronizations, also called pheno-
logical mismatch, lead to the decrease or disappearance of some interactions between
populations for a part of the year. The impacted interactions can lead to difficulties in
foraging, which is even more detrimental when associated with reproduction, for exam-
ple, when birds’ eggs hatch before their prey (Both et al., 2006). They can also affect
the capacity of flowering plants to reproduce sexually when the relation with pollinators
is impacted (Handley & Tronstad, 2023). They are considered a “well-established” im-
pact of climate change on ecosystems by the Intergovernmental Science-Policy Platform
on Biodiversity and Ecosystem Services (IPBES, 2019b,a). Most research focuses on
describing the mechanisms of phenological mismatch (Gérard et al., 2020); however, in
this article, we focus on the community level, where disruptions occur. We argue that
the rationale for understanding these disruptions is particular. We build on a simple
model of plant-pollinator interactions to develop a mathematical framework to specify
it and make explicit the difference between the concept of perturbation and the more
generic concept of disturbance.
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We analyze the epistemological underpinnings of models of these phenomena, that is,
how models are constructed and interpreted to generate knowledge. We also emphasize
that they have remarkable characteristics in that regard when compared with models
in physics. Our overarching thesis is that understanding these disruptions requires si-
multaneously analyzing i) the relations in a system and ii) the evolutionary history that
originates the synchronization of biological activities. Building on this case, we propose
a formal framework that leads to new questions on the disruption of ecosystems and
methods to address them. In this framework, the complete ecosystem is entirely viable
only in a narrow part of the possibility space, and it is there due to its history. Disrup-
tions push the system away from this part; several species disappear, and, accordingly,
parts of the possibility space vanish. We also use this framework and a set of empirical
ecological networks to investigate whether the last decades impacted network proper-
ties. Last, we introduce a first conceptual definition of biological disruptions that may
apply beyond our formal framework.

2 Materials and Methods

2.1 Epistemology

Here, epistemology is the critical study of how scientific knowledge is constructed. A
part of this article analyzes the modeling methodology and, specifically, the hypothesis
required for models to explain the intended phenomenon. To this end, we also use meth-
ods of comparative epistemology for modeling in physics versus biology. Specifically, we
focus on the singularity of models of disruptions of ecological networks due to changes
in phenology by contrast with the usual way to analyze models. We also discuss the
concept of randomness as it is important to our theoretical construction.

2.2 Data

We used plant-pollinator networks from the Web of Life database (www.web-of-life.
es) and limited ourselves to their topological properties. When analyzing historical
trends, we used at most two networks by study to limit its weight. Since we are inter-
ested in the time series, we consulted the original works to find data collection times.
We estimated it to be two years before publications when we could not access the
reference work or when this information was not in the reference work. Besides, we
excluded networks without a reference publication. The 69 networks used are described
in supplementary materials.

Since phenological data combined with local interaction networks are extremely
limited, we used the statistics of the data of Burkle et al. (2013a) to generate simulated
phenological properties of populations with the method described in appendix A.2.

2.3 Models and analysis

New models and the corresponding analysis have been implemented in R and Rcpp;
details are in section 4, in appendix A, and the code is published (Code: Montévil,
2020a).

Moreover, we use two common indicators of network topologies to analyze network
changes due to disruptions. We used the combined Nestedness metric based on the
Overlap and Decreasing Fill (cNODF) measure implemented in R (Song et al., 2017,
2018). We also computed network temperatures with the bipartite package (Rodŕıguez-
Gironés & Santamaŕıa, 2006; Dormann et al., 2008).
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Null models were provided by the function r2dtable of the stats package, meaning
that the marginal totals are kept constant.

2.4 Statistical analysis

Cran R was used for statistical analysis. We performed mean comparisons with the
base Wilcoxon rank test or a t-test (mentioned explicitly). Statistical regressions were
performed with the robust regression function of the robustbase package (Maechler
et al., 2020), that is to say the MM-estimation method, which is more robust to outliers
than traditional least square regression (Koller & Stahel, 2011). We mainly performed
regression to assess historical trends in the networks available in theWeb of Life database
over time and also considered the effect of latitude. The underlying hypothesis is that
the more recent networks have already been subjected to disruptions and should have
a distinct structure.

3 Conceptual analysis of ecosystem disruption due to phe-
nological mismatch

3.1 A paradigmatic model

Climate change impacts phenologies, that is, the timing of seasonal activities; these
disruptions are relevant economically, socially, and for conservation biology (Morellato
et al., 2016; Stevenson et al., 2015). If activity periods shifted coherently, typically by
starting activities earlier in spring, then possible interactions would not change. How-
ever, living beings use diverse seasonal clues (Zeitgeber), such as air or soil temperature,
snow coverage, or photoperiod (Visser et al., 2010). This diversity leads to a diversity of
responses to climate change. The diversity of phenological responses leads to changes in
possible interactions, and the latter can destabilize populations and ecosystems (Robbirt
et al., 2014; Rafferty et al., 2015; Renner & Zohner, 2018).

For example, figure 2 represents the phenological data of Burkle et al. (2013a). Over-
all, the changes lean towards activities taking place earlier, and this trend is statistically
significant in the case of plants (p=0.008, t-test) and not for pollinators (p=0.24). An
extensive study of European pollinators found that pollinators start their flight earlier
on average, that the shifts correlate with phylogeny, but also emphasize the diversity in
changes (Duchenne et al., 2020). One could hypothesize that interacting species shift
coherently due to underlying adaptions, thus preserving interactions. In Burkle et al.
(2013a) data, there is a slight correlation between interacting species; however, it is
not significant (R = 0.095, p = 0.11). Therefore, these data are consistent with the
hypothesis that phenology changes are, at least for the most part, random with respect
to interactions. They may be seen as deterministic when considering specific physiolo-
gies; however, they can be treated statistically due to the lack of significant correlations
between the phenology shift of interacting species.

Let us expand on this point. Here, we describe the situation as a randomization with
respect to interactions in a similar way to the concept that mutations are random with
respect to fitness (Mayr, 1961). As mentioned before, the shifts of individual populations
can be analyzed in detail to unravel their determinants; however, these shifts, or at least
a significant component of them, are not biased to maintain interactions. This notion
is compatible with the average of the shift leading to earlier activities of plants and
pollinators: this average is not a contribution to this randomization, and crucially, it
does not change possible interactions. Interactions are changed when interacting species
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Figure 2: Shift of plant flowering and start of bees activity in 120 years. These graphs
compare Robertson’s data, collected in the late 1800s, and recent data, collected at the
same location in Illinois, USA (Burkle et al., 2013a). 0 means no phenological changes;
a negative change means that activity starts earlier in spring, and a positive one means
that activity starts later. We emphasize that the phenological changes are diverse,
leading to a change in possible interactions.

do not change in the same way, which is why a disruption occurs. We will return to the
randomization concept that we find helpful in this situation.

To work out our concept of disruption, let us analyze a relatively simple model in
detail. Memmott et al. (2007) modeled the disruption of plant-pollinator interactions
in an ecosystem. Each plant species has a flowering period, and each pollinator has
a period of activity. Their durations are considered fixed; however, climate change
alters their starting time. The outcome is periods where interactions are disrupted, for
example, periods where pollinators cannot feed (fig. 3). Plant-pollinator interactions
stem from empirical data, specifically Robertson’s data collected in Illinois at the end
of the 1800s, before the significant onset of anthropogenic climate change.

Pollinator
Plant

Plant
Plant

Time of the year Time of the year

Figure 3: Phenological change in possible interaction between a pollinator and plants
due to climate, after Memmott et al. (2007). Left: original situation. Right: situation
after the change. For pollinators, the period represented is the period of activity, for the
plants it is the period of flowering. In the case represented, every plant is pollinated;
however, the pollinator has two periods without plants to pollinate after the change.

In this model, many pollinators are vulnerable to climate change. The ability to
feed is disrupted in 17 to 50 % of pollinators, depending on the scenario. Specialists are
particularly vulnerable because the random changes can lead to mismatches that other
plants do not compensate for. Recent observations confirm this point (Maglianesi et al.,
2020). The authors do not consider that these disruptions always lead to extinction;
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however, they argue that they weaken the populations’ ability to maintain themselves
even in less damaging cases.

Let us now expand on the theoretical rationale of the model. The model is simple;
it only includes the activity periods of plants and pollinators and a fixed interaction
network. Modelers assume that all plants and pollinators are initially in a viable config-
uration. However, viable configurations for the entire ecosystem are rare among possible
activity periods because all populations need to be viable, and pollinators, especially
specialists, are vulnerable to shifts in phenology. It follows that this initial configura-
tion is in a narrow part of the possible configurations, as also shown by our model and
simulation. The underlying history of these ecosystems explains this particular initial
configuration.

After a period of climate change and the subsequent diverse phenological shifts, a
significant number of pollinators and some plants are no longer in a viable configuration.
Here, the particular initial situation was transformed into a more random or “arbitrary”
situation (with respect to viability and evolutionary history). Thus, in this model,
disruption appears as the dissipation of history outcomes that impact the viability of
the ecosystem’s diversity (fig. 4).

History
Coevolution

Systemic
Viability

Loss of viability

Disruption
Seasonal

cues
Altered 

seasonal cues

Figure 4: Schematic of the disruption of Plant-Pollinators interactions. Evolutionary
history explains the presence of a specific configuration associated with the system’s
viability. Disruption randomizes this configuration, leading to a loss of viability. The
dashed arrow represents the role of viability on evolutionary time scales.

In this work, the notion of disruption builds on a specific logic. In a nutshell,
this disruption model builds on two pillars: initial conditions that are specific results
of evolution and interaction networks that show that the randomization of activity
periods by climate change leads to a situation that is not viable for many populations.
In other words, climate change and the subsequent change in phenologies push the
system outside the small specific zone where all populations are viable in favor of a
more generic situation, where fewer interactions are possible because the change is
random with respect to interactions.

3.2 Epistemological analysis

The above logic may seem unremarkable; however, we argue that it instantiates a fun-
damental departure from the reasoning on mathematical models coming from physics
(see also Montévil, 2020b). Here, we argue that reasoning on history enters the picture
in a precise, non-trivial mathematical manner.

To show this, we contrast classical reasoning and the one in our model of interest. In
general, when analyzing a system with a mathematical model, three kinds of theoretical
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entities are required:

1. the structure of the relations between the system’s components, such as the adja-
cency matrix of interactions in the example above, or more generally, equations;

2. the state that is a point in the space of possible states, the former changing due
to the above relations;

3. the value of some variables, which we call here external variables, such as initial
conditions or parameters. The latter are required for the model to predict state
changes; however, the model does not determine their values.

There is a fundamental epistemological rule in such models. Either the values of
external variables do not genuinely matter for a specific phenomenon to occur, or, on
the opposite, they do matter. However, then they require a supplementary explanation
that the model does not give.

Let us illustrate this rule. A ball dropped in a bowl always ends immobile at
the bottom. Similarly, free fall follows the same qualitative trajectory irrespective of
initial conditions. In both cases, the equations describing interactions are sufficient to
explain the qualitative outcome because it is the same irrespective of external variables’
values. By contrast, studying a printer contributes little to understanding how a specific
printed text, such as this article, came to be. Here, the value of external variables, the
printer input, is critical. The same applies to the specific DNA sequence of a living
being: the DNA molecule may very well have been constructed by the enzymes involved
in replication; however, the study of the generic replication process is insufficient to
understand how this specific molecule came to be.

In general, the structure of the relations is sufficient to explain a phenomenon if
and only if the external variable’s generic values lead to this phenomenon (Montévil,
2019), that is to say, if external variables chosen randomly will lead to this phenomenon
except possibly in rare cases. In the opposite situation, specific values of the external
variables are required for the phenomenon to occur, and we need to understand how
these specific values came to be in the first place.

Two debates illustrate that physicists acknowledge this question as fundamental.
In cosmology, simulations show that a complex universe is possible only for a limited
set of parameter values, where the parameters are the fundamental physics constants
(Friederich, 2018). As illustrated above, physicists have to justify why these specific
values came to be. Otherwise, some physicists provocatively revert Laplace’s statement
to emphasize their predicament: without a solution, they would need to hypothesize
that God has chosen the parameters’ “good” values. A possible explanation is that
universes with all possible parameter values exist, and we exist in a universe with pa-
rameters compatible with our existence — a weak anthropic principle. This example
shows that specific values for an external variable constitute a significant concern for
physicists, begging for ontologically heavy answers — God or multiple universes. An-
other related debate in physics pertains to entropy. Following the second principle of
thermodynamics, entropy can only increase in an isolated system. Accordingly, the uni-
verse’s entropy is assumed to increase over time, and the universe’s initial entropy must
have been lower than today. Since higher entropy means a more generic situation, the
universe’s initial state was a non-generic situation that requires an explanation (Rovelli,
2019).

In biology, there is a diversity of modeling situations where relations are insufficient
to explain the intended phenomenon, and, instead, specific values of external variables
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play a critical role (Lesne & Victor, 2006; Mora & Bialek, 2011; Montévil, 2020b). Bio-
physicists argue that evolutionary history justifies these specific values. For example, a
chromatin model leads to functional configuration only for specific values of the param-
eters, the equality of activation energy of two otherwise independent molecules (Lesne
& Victor, 2006). The authors acknowledge the difficulty and explicitly argue that these
molecules’ “coevolution” justifies the models’ parameters’ specific values. The paradig-
matic model of plant-pollinator network disruption discussed above builds on a similar
rationale, where natural history plays a fundamental role when analyzing the model.

Understanding disruptions with this rationale implies that they are distinct from
the concept of the perturbation of a system as defined in the mathematical methods
inherited from physics — a field where history is not a fundamental theoretical concept.
A perturbation is typically a small change in the state of a system used to analyze a
situation’s stability. For example, a population considered at equilibrium will return to
its size if some individuals are added or removed (the perturbation). Attractors, used
to analyze dynamics, are precisely defined as invariant by such small perturbations;
they are generic outcomes. By contrast, in Memmott’s model, the specific values of
external parameters do not stem from the model, but their specificity and evolutionary
justification play a central explanatory role. Evolutionary history is not a fundamental
concept in physics; thus, it is foreign to classical perturbation analysis stemming from
physics. Accordingly, disruption is an original concept with practical consequences for
mathematical modeling.

A possible objection would be that we can recover a generic understanding of the
situation by coupling the ecological model with an evolutionary model without appealing
to specific values of parameters and initial conditions. We agree that such models can be
produced; however, this approach has two caveats. First, the models will typically not
generate the specific ecosystems observed since evolutionary models typically include
a significant amount of randomness. Second, and more importantly, the models will
come with many hypotheses that will be more or less justifiable and specific, whereas
the reasoning above remains the same irrespective of evolutionary details: it has greater
generality. Of course, the two perspectives can complement each other well for a better
understanding of the phenomenon.

In a nutshell, in the model of Memmott et al. (2007), disruption stems from the
loss of specific values for external variables, the initial conditions. The underlying
history justifies the initial situation’s specificity. Climate change seems to randomize
phenologies, and this randomness disrupts many of the initial interactions. In other
words, why would disruptions take place? Because evolution leads to situations that
are viable for only a small part of the possibility space, and the cause of the disruption
pushes the system toward a more generic, less viable situation because it is random with
respect to viability. We need now to define this process rigorously — provided that the
phenology change for a given species may be seen as deterministic due to its specific
physiology.

4 Analytic scheme and applications

4.1 Overall rationale

To build on this epistemological discussion, let us introduce a specific analysis method
with the simplest model possible. Our analysis builds on the notion that viability is
limited to a very small part of the possibility space.

We assume that, in the initial state, all populations are viable. Then climate change
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randomizes this state, leading to a more generic configuration, albeit one where not
all populations are viable. Then, we draw the consequences of this new situation:
some populations disappear. The remaining populations are again in a small part of
the remaining possibility space because they are viable in this new context (the same
conditions apply as before, albeit with the reduced ecosystem and the new activity
periods). In a nutshell, we model disruptions in three steps: the specific initial state
where all populations are viable; its randomization where the state is more generic than
before, but not all populations are viable; and, last, the final configuration corresponds
again to a narrow part of the remaining possibility space.

To conceptualize the randomness introduced by climate change, we build on Boltz-
mann’s concept of entropy (Montévil, 2021). In this sense, our work is related to earlier
theoretical approaches to ecology that build on entropy and information theory. For
example, Ulanowicz (2009, 2019) emphasize a window of viability considering the ratio
between constraints (information) and randomness at the level of ecosystems’ quanti-
tative interactions.

In our work, the viability zone is not a window but a slit in the space of activity
periods — with viability conditions given by interaction networks. Moreover, we do
not use the information theory but Boltzmann’s schema – in particular, the latter
does not require a probabilistic framework (Goldstein et al., 2020). Boltzmann starts
with the notion that there are two observation levels to describe the same situation:
microstates and macrostates. The basic idea is that some macrostates correspond to
an overwhelmingly higher number of microstates than others. Then, if a system is
displaced randomly among the microstates, it tends towards these macrostates and
will rarely meet the others. Then, a macrostate’s entropy is just a measure of the
corresponding number of microstates, and a system will tend spontaneously towards
the highest entropy. We emphasize here that this rationale does not require a specific
hypothesis on how the microstates change; the underlying process may be deterministic
or probabilistic. As noted above, depending on the question we aim to address, it is
unnecessary to describe all the situation’s details (Ulanowicz, 1997; Harte & Newman,
2014). In other words, the Boltzmann schema enables us to discuss how generic or, on
the contrary, how special a given microscopic situation is with respect to the properties
defining the macrostates.

Even though we use part of Boltzmann’s reasoning, we do not work with physics’s
entropy. Instead, we use Boltzmann’s schema to analyze ecosystems’ structure and
changes concerning populations’ activity periods. Furthermore, our approach has an-
other specificity. Typically, entropy is used to single out the most generic situation
compatible with constraints and assert that the system will be in this state. In our
case, instead, viability is limited to a very narrow part of the possibility space; random-
ization due to climate change leads to a more generic configuration; however, the latter
is unstable, and the final state is again in a narrow part of the possibility space. In a
nutshell, equilibrium thermodynamics goes from more or less generic states to the most
generic states, whereas our ecosystems go from specific states to specific states (here,
in the sense of a small part of the microspace).

4.2 Introducing a conceptual and mathematical framework

We aim to provide the simplest model to illustrate the rationale we are proposing; there-
fore, we greatly simplify assumptions. Figure 5 summarizes notations and a schemati-
zation of the rationale developed in this section.
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4.2.1 The plant-pollinator model

The state of our system is the activity periods for each species of plants and pollinators.
The start of each species’ activity period defines a vector noted x. x is a vector of n
quantities, where n is the number of species in the ecosystem. For simplicity, we assume
that the activity durations do not change over time, following Memmott et al. (2007).
We also assume that all individuals of populations start their activity simultaneously
to simplify the model. Then, x determines the system’s state. Initially, x is compatible
with all species’ survival; however, some populations cannot sustain themselves when
the activity periods change. We aim to analyze how random changes of x disrupt the
ecosystem.

We use empirical networks from theWeb of Life database and generate initial activity
periods based on the data of Burkle et al. (2013b) and the method of Memmott et al.
(2007). We define a simple model of viability. Plants survive if they are pollinated at
least once by one pollinator species. Pollinators need to feed during their entire activity
period with the tolerance defined by the parameter R, for robustness. Specifically,
a pollinator is viable when the proportion of its activity period without a plant to
pollinate is smaller than R. Agency, a, is the probability that a pollinator will feed on
a new plant that is flowering if it has no plant to feed on. This crude description does
not estimate the specific properties of the species that constrain these changes, such as
plant and pollinator morphology; nevertheless, it provides a straightforward account of
the observed emergence of new interactions (Burkle et al., 2013b), conceptualized as
a simple form of enablement (Longo et al., 2012). More details on the model are in
appendix A.

4.2.2 Analysis building on Boltzmann’s schema

To study plant-pollinator networks and their disruption, we posit that the microstate
sensu Boltzmann is x, that is, the start of each species’ activity period (a vector of n
quantities). By contrast with physics, this vector’s dimension can change because species
can appear or migrate, or disappear from the ecosystem. Here, we will only cover the
latter case as a consequence of disruptions. It follows that when the microstate changes
from the initial xi to the final xf , that is, when activity periods change in the ecosystem,
the underlying “microscopic” space of possibility changes: the activity periods of species
that disappeared are no longer relevant. This point has several ramifications.

First, we must carefully distinguish the initial state space analysis and the final state
space. We systematically indicate the space by exponent i, for initial, and f , for final.
For example, xif is the final microstate in the initial space. The activity periods may
have changed; however, the consequences of the changes are not applied yet. Intuitively,
some plants flower but cannot reproduce, and some pollinators hatch but are not viable
in the ecosystem. By contrast, xff is this microstate in the final space, where species

that are not viable have disappeared.1

Second, we define the macrostates, an operation called coarse-graining. Since vi-
ability is critical to understanding the system, we define the coarse-graining with it.
In the initial space, we define the macrostate corresponding to the activity periods xi

by the number of species d that are not viable for this state and interaction network.2

Then, ωi
d is the number of microstates corresponding to situations where d species are

1Since we are considering only disappearances, xf
f is a projection of xi

f on the final microspace.
2A finer-grained model would define macrostates by the number of plants and the number of polli-

nators, or even the individual species that are not viable in the ecosystem.
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0

n−d Specificity per capita

Figure 5: Changes in activity periods and their consequences. The initial activity pe-
riods, xii correspond to a situation where all species are viable, macrostate 0. When
x changes to xif , it leads to macrostate 1, where one species is not viable, and when

it changes to xif ′ it leads to macrostate 4. In the final situation, non-viable species

disappear, and all remaining species are viable in the state xff and xf
′

f , resp.; however,
the possibility space has changed, and there are fewer microscopic and macroscopic
possibilities than initially (because there are fewer species). The representation of the
microstate space corresponding to the different macrostate is indicative; the microstate
size difference is far larger in a quantitative model than in this schematic representation
(fig. 6). We also represented schematically the fact that going further away from xii
leads overall to more disappearances. However, a specific microstate region needs to
be targeted to obtain more disappearance than for maximum entropy, including the
extinction of the complete ecosystem (fig. 6).

not viable. For example, when all species are viable for the activity periods x, we are
in the initial macrostate 0, corresponding to ωi

0 microstates. On the other hand, when
x leads to one species not being viable, we are in initial macrostate 1, corresponding
to ωi

1 configurations. Figure 6 represents the macrostates resulting from the random,
equiprobable choice of microstates and the estimated corresponding number of configu-
rations ωi

d. Last, when xif corresponds to an initial macrostate d ≥ 1, species disappear
in the final situation (n decreases). All populations that survived are compatible with

the new activity periods; therefore, xff corresponds to the macrostate 0 in the final
space.

Third, since the space of possible microstates changes, we make its contribution
explicit by the quantity Ωi and Ωf , the total number of possible configurations in the
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Figure 6: Number of non-viable species for random activity times. In other words,
coarse-graining of microstates by the number of non-viable species. For each macrostate
d, a macrostate area is proportional to the number of corresponding microstates. We
sampled the possible activity periods, i.e., the microscopic possibilities, by randomly
choosing 107 states x. We use the network published by Kato & Miura (1996), 64
plants and 196 pollinators (260 total), with parameters R = 0 and a = 0. Overall, we
observe that most microscopic states correspond to the disappearance of many species,
220 on average, that is to say, 84% (with a standard deviation of 2.5%). This result
exemplifies that activity periods leading to all species’ viability are in a very narrow part
of the microscopic possibility space — such a state was not found by random sampling.
Similarly, all species’ disappearance required exploring a specific part of this possibility
space and was not met randomly.

initial and final space, respectively. The complete space of possibility for n species is
[1, 365]n, thus Ωi = 365n and Ωf = 365n−d = 365nf . Then, we define the specificity :

Ŝi
d = logΩi − logωi

d (1)

= − log
ωi
d

Ωi
(2)

The first term is a straightforward measure of the ecosystem biodiversity — here, it
is proportional to the number of species in the ecosystem. The second term is analogous
to (the opposite of) Boltzmann entropy: the higher the entropy, the more generic or the
more random the system’s state is. Now, the second equality means that Ŝi

d measures
how specific the macrostate d is among all possible macrostates (for activity periods
and viability). If Ω did not change, the specificity would be the opposite of entropy up
to a constant; however, Ω changes. Figure 5 summarizes the interplay between initial
and final microstates and macrostates schematically.

Here, disruption is a two steps process (Fig. 5). First, the activity periods xi change,
but the consequences of these changes do not apply yet; that is to say, we remain in
the initial space. This step is critical to analyze the properties of the initial space.
Second, we draw the consequences of this change; some populations may disappear and,
accordingly, part of the possibility space vanishes. Crucially, only the initial macrostate
0 is compatible with sustaining the entire possibility space Ωi. All other microstates
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are not genuine possibilities for this ecosystem; they are pre-possibilities as defined by
Montévil (2019): states that are well-defined but cannot sustain themselves in the given
context. This two-step process describes an elementary disruption of a plant-pollinator
ecosystem by phenological changes.

4.3 Effects of phenology changes

The space of possible activity periods is too large for an exhaustive exploration; there-
fore, we sample the possibilities in growing regions around the initial microscopic state
xii. To sample states corresponding to the complete or near-complete extinction of the
ecosystem, we use the same approach; however, instead of xii, we start from the situa-
tion with a shift of activity period of half a year between plants and pollinators. With
this method, we estimate ωi

d, the number of microstates corresponding to the different
macrostates d.

After a change in microstate, the specificity in the initial space, Ŝi
d, describes how

specific or, on the opposite, how generic or random the new microstate is. When speci-
ficity reaches its minimum, 0, activity periods are entirely random. Figure 7A illustrates
this quantity as a function of d. Specificity is the highest for macrostate 0, where all
populations are viable. With increasing d, specificity decreases to a minimum corre-
sponding to maximum entropy. Let us recall that maximum entropy is also obtained
by randomly choosing a microstate, without focusing on the neighborhood of xii, as il-
lustrated in figure 6. Above d value corresponding to maximum entropy, the specificity
increases again: specific regions have to be ”targeted” to entail more species’ disap-
pearance than maximum entropy macrostates. Ultimately, all species’ disappearance is
difficult to reach because generalists have relatively high survival chances, and, more
critically, the conditions for all species to disappear after a single change is stringent.

There is a striking and distinct effect of the parameters. With R = 0.2, macrostates
with few disappearances (low d) are far less specific than for R = 0, while the dis-
appearances at maximum entropy are similar. By contrast, a impacts the maximum
entropy configurations, a = 0.1 leads to less disappearance at maximum entropy than
with a = 0.

After deriving the consequences of a microstate change, the ecosystem includes only
the viable species for the new activity periods; that is, the new ecosystem is compatible
with the new activity periods. However, even when the new microstate has been chosen
entirely randomly, the ecosystem does not become viable for any other random states,
only for this new one and others close to it. Figure 7D represents the equivalent diameter
of the macrostate 0 in the final space, and we observe that this diameter does not
reach the maximum of 365. This graph represents how robust the final situation is
for a new change, and the only fully robust configuration is the one where all species
disappeared — it is the only configuration that further phenological changes will not
impact. Our framework differs from reasoning on entropy in physics, where maximum
entropy configurations are stable (in isolated systems). The entropy function describes
part of the ecosystem organization: activity periods and their influence on its ability to
sustain itself. Maximum entropy leads to extinctions, and the corresponding selection
process leads to a new configuration that is no longer at maximum entropy. Note that we
call the disappearance of incompatible populations a selection process even though it is
distinct from the selection of variants in a population in the usual schema of population
genetics. The reason is that, in these ecosystems, the survival criterion applies to a
diversity of populations. Since it removes the incompatible ones, it leads to a more
specific configuration, for example, from maximum randomness in the initial space to a
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Figure 7: Specificity of the different macrostates (species lost). The network stems from
Kato & Miura (1996) and has 64 plants and 196 pollinators. A: the initial specificity
Ŝi
d, the higher the specificity, the less random and the more vulnerable to disruption

the macrostate is. The maximum for this quantity is log Ωi, and is independent of
d. When R = 0 and for d = 0, specificity is close to the maximum possible. B:
specificity of xff , that is log Ω

f − logωf
0 , as a function of the macrostate of origin. This

quantity describes how vulnerable to randomness the new situation is. The maximum,
Ωf , decreases linearly with the macrostate of origin, d, because d is the number of
species that disappear in the process. C: similar to A, but we represent the equivalent
diameter in the microscopic space in days; that is how large in days the volume of
the corresponding microstates would be if they were a sphere in the microspace. Here,
maximum specificity corresponds to a small diameter, while the maximum diameter,
365 days, corresponds to the minimum specificity and maximum entropy. D: equivalent
diameter of wf

0 as a function of the initial macrostate d, that is, the diameter in days
of the macrostate 0 in the final space. This graph represents the robustness of the final
situation. The important point is that these diameters do not reach 365 days: the system
is only adapted to the new microstate and remains vulnerable to other disruptions.

relatively specific configuration in the final space.
Now, the specificity change is also an interesting quantity. First the total specificity

change, from xii to the final situation xff , that is, Ŝ
f
0 − Ŝi

0, is always negative (fig. 8A,E).
It corresponds primarily to the simplification of the ecosystem due to population disap-
pearances and is close to Ŝf

0 represented in fig. 7B. The specificity per capita change is
also interesting because it compensates for the shrinking species number. Nevertheless,
this quantity remains also negative (fig. 8B,F) because the remaining populations are
more robust than the initial ones — the more vulnerable species tendentially disappear
first.

Total specificity is the specificity change from the initial macrostate 0 to the final
macrostate 0; however, we also consider the specificity change from macrostate d to the
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Figure 8: Specificity change after a disruption. Top: web published by Small (1976)
with 13 plants and 35 pollinators. Bottom: web of Kato & Miura (1996) with 64 plants

and 196 pollinators. A,E: Total specificity change, that is Ŝf
0 − Ŝi

0. The change is always
negative; that is, the disruption decreases specificity. Moreover, species disappearance
entails a linear loss of specificity, so the decrease is close to linear. The major difference
due to R stems from its effect on initial specificity (figure 7A). B,F: Specificity per

species change, that is
Ŝf
0

nf
− Ŝi

0
ni
. This quantity is also negative; however, the shrink of

the possibility space no longer contributes directly. C,G: specificity change due only to
applying the viability criteria, that is Ŝf

0 − Ŝi
d. It is positive, meaning that specificity

increases in the process of selection of viable populations. D,H same quantity with
equivalent random webs. Random networks exhibit a flatter response than the original
ones.
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final one, Ŝf
0 − Ŝi

d. This quantity corresponds only to the selection process entailed by
xf , the new activity periods. This specificity change is positive, except for a very high d
(fig. 8C,G). There are two reasons for this increase in specificity. First, the non-viable
populations can be in many configurations, thus reducing the initial specificity. At the
same time, the final macrostate requires all species to be viable, leading to a more
constrained macrostate. Second, going from the initial to the final space is a selection
process for a given microstate, leading to a specific set of surviving species. It is not
always the same species that disappear from the macrostate d, and the final macrostate
0 corresponds to the viability of this set of interacting species. As a result, only a part of
the microstates corresponding to d will remain in the final macrostate 0. There are two
reasons for the very high d leading to decreased specificity. The initial macrostates have
a high specificity — they are macrostates where the number of species that disappear
is higher than for a random state. Second, the final microstate has a low specificity
because many species have disappeared.

Last, when comparing the curve of specificity changes of empirical networks with
the ones of networks stemming from a null model (fig. 8D, H), we can see that specific
patterns are less pronounced and that the response is flattened. Analyzing the reason
for these patterns goes beyond the scope of this article. However, we hypothesize that
it may be related to structural properties such as nestedness.

In a nutshell, our framework enables us to analyze randomness, defined as a change
independent of viability at the microstate level, its impact on an ecosystem’s popu-
lation’s viability, and the ability of robustness and resilience to counteract it. First,
complete randomness, i.e., maximum entropy, does not destroy an ecosystem entirely.
It only leads to a situation adapted to the new phenologies with severely reduced bio-
diversity. Second, specificity has decreased in the resulting situation; that is, the state
becomes more generic. This property is not only a result of the decrease of the ecosys-
tem biodiversity; it also stems from a decrease of specificity per capita, probably due to
the selection of more robust species with respect to phenology changes (generalist pol-
linators and plants, plants with longer activity periods, etc.). By contrast, the change
from a macrostate d to the final situation increases specificity because it is a selection
process with respect to a given set of activity periods. Last, real networks show differ-
ent patterns from random networks. This result suggests that our approach captures
specific network properties that have been shaped by evolution.

4.4 Changes of network structure over time

We also investigate whether climate change leads to changes in interaction networks
that our framework can identify. To this end, we used a set of networks that biologists
have collected over the years and several indicators to describe them, some standard
and others based on our framework. However, joint phenology and interaction data
are scarce for a given locality, and combining data from different origins will introduce
noise in our framework. Therefore, we generated phenology data by simulations (see
appendix A.2).

First, we consider a property of plant-pollinator networks commonly discussed in the
literature: nestedness. In nested networks, specialist pollinators interact with general-
ist plants and vice versa. The theoretical limitation of nestedness is that it is a purely
structural property; it does not directly derive from network viability and historical con-
struction, even though it is related to them in some models. Its relevance is therefore
debated (Burgos et al., 2007; Payrató-Borràs et al., 2019). Statistical temperature is a
randomness measure by contrast with a nested network, ranging from 0, perfect nested-
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Figure 9: Change of network properties over time. Every point represents a network of
the Web of Life database. A: Network temperature, an indicator opposite to nestedness,
over time increases by robust regression (p = 0.049). B: cNODF, a nestedness indicator,
decreases significantly by robust regression (p = 0.0015). C: disappearances above the
null model at max entropy. We witness a drop in the last part of the graph, meaning
that networks become more robust to complete randomization of activity periods than
their null model counterparts. Parameters R = 0 and a = 0.1 D: the same variable
represented by boxplot, the mean is significantly lower after 1990 than before, by a
Wilcoxon rank test, p = 0.006. E: a lower, realistic entropy increase, represented for
different latitudes, as a proxy for climates. Time, latitude, and their interaction all are
significant explanatory variables. Parameters R = 0.2 and a = 0.1. F: Johnson-Neyman
plot showing the effect of time depending on latitude. This plot shows for which latitude
the impact of time significantly differs from 0.
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ness, to 100, a perfectly random network (Rodŕıguez-Gironés & Santamaŕıa, 2006). The
Nestedness metric based on Overlap and Decreasing Fill (NODF) is a more accurate
nestedness measure than temperature. A variation of it, cNODF, has been introduced
for comparison purposes and is mostly independent of species number and connectance
(Song et al., 2017). Network temperature increases over time (α = 0.2, p = 0.048,
fig. 9A). Accordingly, nestedness decreases with time (α = −0.019, p = 0.0015, fig. 9B).
This result strongly suggests that plant-pollinator network structures have been chang-
ing in recent years. However, we did not find an effect of ecosystems’ latitude; therefore,
it is not straightforward that these changes are related to phenologies (contra Song et al.,
2017). Note also the differences in sampling method can impact network topology and
be a confounding factor (Dunne).

We used the quantities introduced by our theoretical analysis to analyze historical
trends further. Specifically, we investigated the proportion of species disappearing for
maximum entropy configurations (fig. 9C,D) and for a realistic increase in entropy
(fig. 9E,F). We use the difference between the empirical network’s properties and random
networks with the same dimension and marginal sums for comparison purposes. First, as
a general observation, we find that the original networks always have fewer disappearing
species than the average null model ones (the plotted values are negative in all but one
point leading to p < 10−11 in both cases). Real networks are more robust to random
phenology changes than the null model networks.

For maximum entropy disruptions, we find an overall decrease in the number of dis-
appearing species that does not seem linear (the trend is still significant with p = 0.041,
with no effect of latitude). We thus separate the time window into two parts and com-
pare them, leading to a substantial drop (p = 0.006, fig. 9D). This result means that
networks tend to become more robust than null model networks for significant pheno-
logical changes. Therefore, we hypothesize that this result stems from the disruptions
taking place in the last decades. To substantiate this claim, let us recall that we have
seen in examples that a disruption tends to lead to a system that is more robust to
further disruptions (fig. 8B,F). We systematically compared the property plotted in
figure 9D, the number of disappearances above the null model at max entropy, for net-
works of our dataset before and after a disruption and confirmed that networks after a
disruption are more robust than before (i.e., this quantity is lower, p < 10−7).

Concerning more realistic randomizations of the microstates, the outcome is more
complex, with a significant effect of latitude, time, and their interactions. The effects
are qualitatively similar and significant for all values of the parameters R and a (details
are in supplementary materials). Figure 9E illustrates the time response for different
latitudes, and figure 9F shows for which latitudes the estimated time response is signif-
icantly different from 0. Remarkably, the effects tend to be opposite between low and
high-latitude ecosystems. As mentioned above, low-latitude ecosystems tend to become
more robust over time than the null model, which is the expected outcome. By contrast,
high-latitude ecosystems lose robustness over time by comparison with the null model.
This intriguing result remains to be confirmed since it is based on fewer points than the
temperate and tropical trends.

In summary, there are significant changes in network structural properties over time
in the database used. Moreover, indicators derived from our framework show significant
changes that are consistent with its most straightforward prediction. Namely, networks
that have been the object of disruptions tend to be more robust for new random changes.
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5 Conclusion

Let us first interpret the theoretical framework introduced above. Earth’s orbit has
led to rhythms in terrestrial physical properties, and the latter has led to the appear-
ance of seasonal activity periods. As a result, populations’ activity periods and their
synchronization became relevant aspects of ecosystems in evolution. These properties
generate a considerable number of pre-possibilities, that is, combinatorial possibilities
stemming from existing properties that are not necessarily compatible with the com-
plete ecosystem’s ability to sustain itself (Montévil, 2019). The crucial point is that
only an overwhelmingly narrow part of these pre-possibilities are genuine possibilities
compatible with the entire ecosystem’s survival. Here, overwhelmingly narrow means
40 over 10655 for one of the examples presented — let us recall that physicists estimate
that there are “only” 1080 particles in the universe. As a result, for these aspects, the
window of viability becomes so small that it is better described as a slit.

When we study an ecosystem today, it has to be in such a narrow part of the possi-
bility space because it is the condition for the viability of its populations, at least for the
aspect we studied. However, such special configurations require an explanation. Here,
the underlying reason is that ecosystems are a viable outcome of natural history. We do
not mean that ecosystems are optimal, just that evolutionary history generates unlikely
configurations at the ecosystem level by the evolution of their components (populations)
by natural selection and the complexification of ecosystems over time (when they do
complexify). Being in this narrow domain is the condition of possibility for the complete
ecosystem to exist and sustain the entire possibility space (Montévil & Mossio, 2015;
Gatti et al., 2018). However, climate change and the following phenological changes
typically push ecosystems outside of this narrow domain. Then, part of the ecosys-
tem disappears, and accordingly, part of this space collapses. We hypothesize that this
phenomenon is a typical disruption at the ecosystem level.

Let us expand on the conceptualization of randomness in our framework. It is de-
batable whether phenology changes in response to climate change should be seen as
deterministic or random processes because they depend on predefined physiological and
developmental properties. Building on Boltzman’s rationale, we nevertheless argue that
these disruptions correspond to a particular form of randomness. First, we partition the
space of activity periods based on the number of non-viable populations before the phe-
nological change’s consequences are drawn. This operation defines the “macrostates”.
The corresponding entropy of a macrostate is the number of configurations leading to
this macrostate. Then, a change in activity periods can lead to a macrostate change.
When this change corresponds to an entropy increase, it introduces randomness in
the ecosystem with respect to viability. Specifically, the viability of the ecosystem’s
populations defines this entropy and randomness for activity periods, a fundamental,
irreducible theoretical step called coarse-graining (Rovelli, 2017).

This reasoning has a very practical ramification: since viable configurations are in
a very narrow part of the possibility space, a change will typically push the system
towards a more generic configuration, where many populations will disappear. There is
only one exception: when the change has special properties for viability; for example,
if the change is the same for all populations, it does not affect viability. Similarly, we
have seen that a change leading to all species’ disappearance requires finding special
configurations; they are not obtained entirely randomly. However, most changes are
random for viability, and this is the case for the phenology changes resulting from cli-
mate change to a large extent. The notion of random change is critical since it addresses
the fact that the change has no special property for viability, which is analyzed quan-
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titatively with the Boltzmann schema. One may object that there may be correlations
between phenology changes of interdependent species (Renner & Zohner, 2018). These
correlations exist in the data we use; however, they are not significant; see discussion
in section 3.1. Let us mention that our approach can be adapted to situations where
a part of the change is random with respect to viability, and another is not, primarily
due to possible coevolutions. Last, the core of our reasoning is the properties of the
possibility space with respect to viability. If viability was a rather generic property,
then disruptions in our sense could not occur for the aspect of interest.
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Figure 10: Effects of Gaussian changes of activity periods. The web stems from Kato
& Miura (1996), R = 0.2 and a = 0. Gaussian random change is applied to the
activity period of each species. The standard deviation is the standard deviation of
activity period changes. The mean is the difference between the mean of the plant and
pollinators’ random shifts. A mean of 182 days means that pollinators’ activity will
shift six months more than plants on average, leading to complete ecosystem extinction
when the standard deviation is low.

As a toy example to illustrate this concept of randomness, we plotted viability as a
result of Gaussian changes from the initial configuration, where the mean is the mean
difference between plants and pollinators — a special property, i.e. not random, with
respect to viability (fig. 10). First, for a mean of 0, we observe that the increase of
standard deviation leads to more and more disappearances up to the level of maximum
entropy. Now, with 0 standard deviations, increasing the mean leads to more and more
loss of viability, that is, a more and more random situation w.r. to viability, up to
a point where it becomes a special change that can entail the total extinction of the
ecosystem (for example, around 182 days). When the mean is high, close to 182 days,
an increase in standard deviation blurs this special, detrimental change and leads to a
maximum entropy configuration, where only a part of the ecosystem goes extinct. In
our framework, randomness is about the genericity, i.e., the lack of specificity of the
macrostate, not about the process underlying microstate changes.

Analyzing anthropogenic disruptions in this framework led us to raise new questions.
Complete randomness for activity periods, i.e., maximum entropy, does not lead to the
entire ecosystem’s extinction. Moreover, robustness does not impact this outcome much;
however, resilience, defined as pollinators’ ability to pollinate new flowers, impacts it
significantly. By contrast, robustness changes the effect of low randomization of the
initial state. Moreover, we show that our measures lead to significant trends in a

22



dataset of ecological networks for date and latitude.
Concerning theoretical principles, our approach opens new perspectives on articulat-

ing entropy and living systems. The entropy that we describe is conceptually distinct
from physics’s entropy because the latter has the physical dimension of energy by a
temperature. Moreover, it accommodates the notion that biological entropy should be
defined with respect to biological organizations and, more generally, viability (Montévil,
2021; Kauffman, 2020). We also emphasize that historicity has a double role in our rea-
soning. It justifies that the system is in a narrow part of the possibility space, and it
also appears in the notion of changing possibility space. The latter leads to a com-
plementary quantity to entropy based on the entire possibility space’s size at a given
time. This quantity is reminiscent of the concept of anti-entropy, a complementary
quantity to entropy intended to describe biological complexity (Bailly & Longo, 2009;
Longo & Montévil, 2012; Montévil, 2021). Additional integration between the approach
developed here and the concept of anti-entropy will be the object of further work.

Let us now conclude on the concept of disruption in biology in this work. Starting
from a specific result of a history contributing to a system’s viability, disruption is
the randomization of this specificity leading to a less viable situation. In the case we
discussed, the viability of the complete ecosystem is limited to an extremely narrow
part of the possibility space of activity periods, and this initial configuration is justified
by evolution. Then, climate change leads to shifts that are random with respect to
viability; thus, the system exits this viability zone, and, subsequently, many populations
disappear. In other words, disruptions occur when the viability zone is a very small part
of the possibilities, and a generic displacement will reduce the viability. As a result,
we used and adapted the Boltzmann schema to address the structure of the possibility
space with respect to viability. Since this schema is rather general, this approach can
be transposed to other ecological phenomena.

In our view, a significant conclusion is that the historical nature of biological phe-
nomena leads to specific vulnerabilities. Disruptions explain why relatively minor tem-
perature changes can tear apart the web of relations living beings have woven over
evolutionary times. In further work, we will investigate the generality of our approach
by studying disruptions in different biological contexts, notably other situations in ecol-
ogy and the case of endocrine disruptors in development.
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A Models

In this appendix, we provide further details on the model.

A.1 Overview of the model

The model has several main steps:

• The network comes from empirical data. The phenologies are generated as de-
scribed in the section A.2.

• The microstate change is generated according to the sampling method of interest,
as described in section A.4.

• We draw the consequence of this change according to the viability criteria de-
scribed in section A.3.

These operations are typically iterated when sampling the possibility space to determine
the entropy of macrostates.

A.2 Generation of phenologies

Initial networks stem directly from data; however, initial activity periods are unavail-
able. We designed a small algorithm to generate an initial configuration based on the
statistics of a specific case. The relative complexity of the method stems from the fact
that the initial situation is the specific result of history, as discussed in the manuscript.
By random drawings, we may obtain a situation that does not accommodate the net-
work’s properties– interactions of the network need to occur–or viability conditions that
we consider strictly here (without robustness).
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• The time of the beginning of plant activity is selected randomly with uniform
distribution with boundaries given by the data of Burkle et al. (2013a).

• The length of plant activity is obtained randomly, following a Gaussian distribu-
tion with mean and variance of the data of Burkle et al. (2013a).

• For every bee, we choose the start (resp. end) of activity periods between the ear-
liest flowering among pollinated plants randomly and the first pollinated finishing
its flowering (the earliest and the last end of pollinated plant flowering, resp.).
Probabilities are the logarithm of the available pollinated plants every day. This
method is inspired by Memmott et al. (2007).

• We check whether there is a gap without plants to pollinate in pollinators’ activity
periods, in which case the pollinator is removed. We also check whether the plants
are pollinated at least once.

• We check whether a sufficient proportion of the network remains after the elimi-
nations above (threshold is 99%). If not, we draw another random situation.

A.3 Viability tests

Plants are viable when they are pollinated at least once. Therefore, we neglect vege-
tative propagation or at least consider that sexual reproduction is necessary for survival.

Pollinators are viable if they have plants to pollinate, except at most a proportion
R of their activity periods. Therefore, R represents the robustness of pollinators.

Non-viable pollinators may be “rescued” if the second parameter, a, is non-zero.
Then, they have a chance a0 = 0.4 of looking for flowers (i.e., plants in their activities
period) that they are not interacting with and that they can interact with. More
precisely, every day without a plant to pollinate and every plant, the pollinator has a
chance a to establish an interaction, with a = 0.1 in the article’s examples. Of course,
this model is very simple; it can be complexified ad libitum, for example, by using
pollinators and flowers morphology data.

A.4 Sampling of microscopic possibility space

A.4.1 Maximum entropy

To study the effects of maximum entropy configurations, we randomly choose the start
of all populations’ activity periods, with uniform distribution from day 1 to day 365.
Let us recall that we keep the length of activity periods constant; therefore, this pro-
cess is sufficient to determine activity periods entirely. Then, we record the number of
population disappearances and, separately, the number of plant and pollinator disap-
pearances.

Iterating this process leads to estimating the high entropy microstates’ frequency,
as illustrated in figure 6. For the latter illustration, we used 107 samples. For the time
response in figure 9, we take the average for 100 times 10000 samples.

A.4.2 Realistic entropy increase

For a realistic change of activity periods, we started from the initial configuration and
shifted activity periods using random samples from Gaussian distributions, one for
plants and one for pollinators, with mean and variance estimated from the data of
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Burkle et al. (2013a). Otherwise, the logic is the same as in the previous case. For the
time response in figure 9, we take the average for 100 times 10000 samples. For figure
10, we use 200 samples on every point of a 150× 150 grid.

A.4.3 Systematic exploration of possibility space

Estimation of log(ωi
d) The number of possibilities is 365n; therefore, exhaustive ex-

ploration is not possible. Instead, we used a multiscale approach to probe the possibility
space.

More precisely, we sampled balls for ∥.∥∞ (i.e., balls that are boxes) of increasing
radius ρk centered on the initial conditions xii, Bρk(xi). We also sample balls centered

on xii, where the plants are in the initial conditions, and pollinators’ activity is shifted
by 182 days to target situations where more populations disappear than in maximum
entropy configurations. The balls’ volume is (2ρk)

n, and we ensure that the ratio be-
tween the volume of two successive balls is larger than the sampling rate to minimize
overlaps. Then,

ω̃i
d =

∑
k

∑
SBρk

→d

(2ρk)
n

N

where SBρk
→ d are the samples in ball Bρk that correspond to the macrostate d,

and N is the number of samples taken for each ball. We use N = 10 in the graphs and
take the mean over 200 iterations to evaluate the variables.

This method has a drawback. For example, let us consider the disappearance of
a pollinator that interacts with a single plant (the latter being also otherwise polli-
nated). All activity periods of the pollinator that do not overlap with the plant’s
activity period lead to the same macrostate. As a result, we include a correction term
r(d) =

∑d
i=1 1/k(i), where k(i) is the number of interactions of the pollinator i when

sorted by the increasing number of interactions. This correction is heuristic and only
significant for pollinators with one or two interactions, that is, for low values of d.

log(ωi
d) ≈ ˜log(ωi

d)

n−r(d)
n

+ log(365)r(d)

Estimation of log(ωf
0 ) To estimate log(ωf

0 ) corresponding to a macrostate d, we first
use the sampling method of log(ωi

d) to find initial microstates corresponding to d. Then,
we select the ones that are representative of the largest volume of microstate. Specif-
ically, we take the m (m = 10 in practice) microstates corresponding to d associated

with the largest microspace volumes. Then, we assess the associated log(ωf
0 ) by tak-

ing the mean of the m estimates. Note that the ecological network changes due to
disappearances and possibly agency, so each evaluation is done with the corresponding
network.

To estimate log(ωf
0 ) for a given microstate, we use the changed network described

above and the initial microstate and follow a similar scheme to estimate log(ωi
d). The

main difference is that we perform a binary search for the largest ball where all pop-
ulations survive instead of sampling every ball. In the paper’s simulation, we take 20
samples per ball and iterate the estimation 400 times.
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Harfoot, M., Hasegawa, T., Hellweg, S., Hilbers, J. P., Hill, S. L. L., Humpenöder,
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