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EFFECTS OF UNCERTAINTY AVERSION
ON THE CALL OPTION MARKET

ABSTRACT. This article examines the effects of uncertainty aversion in
competitive call option markets using a partial equilibrium model with
the Choquet-expected utility setup. We find that the trading volume of
a call option is negatively affected by uncertainty aversion, whereas the
price of the call is practically independent of it.
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1. INTRODUCTION

Financial asset theory is commonly presented in an expected
utility framework. Some relevant results, like those on portfo-
lio diversification and on the determination of prices for finan-
cial assets and their derivatives, are obtained using the notion
of risk aversion,1 which is equivalent to concavity of the von
Neumann–Morgenstern utility function. This framework seems
inadequate to capture some important aspects of the real world
(the equity premium puzzle and the home-bias puzzle are only
two examples). Over the last years, several more general theo-
ries have emerged, which take into account uncertainty (ambi-
guity) aversion, not only risk aversion. Among these theories,
the Choquet-expected utility model introduced by Schmeidler
(1989) and Gilboa (1987) appears particularly promising.

Uncertainty aversion seems particularly important in finan-
cial markets, where transparency matters. We can interpret
transparency of an asset as the reliability of the probabil-
ity distribution of its outcomes, so that the preference for
more transparent assets is represented by uncertainty aversion.
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Uncertainty aversion has many implications, only some of
which shared by risk aversion.2

This article sets out to examine the effect of uncertainty
aversion on asset derivatives. We use a partial equilibrium
approach to analyze the effects of uncertainty aversion on the
competitive equilibrium in terms of price and volume of a
call option. While most current literature exclusively focuses
on the value of derivatives, we analyze both the demand and
the supply side to directly determine the price and the trading
volume of the call option. The partial equilibrium approach
limits the analysis of asset interdependencies, which are with-
out any doubt important in financial markets in general, and
for the determination of asset prices in particular. Since the
scope of this work is detecting the influence of uncertainty
aversion on the trading volume, this restriction is of minor
importance. While the value of an asset is strongly affected by
the prices of other assets and by other events affecting agents’
future consumption, the relation between trading volumes and
agents’ information can be analyzed without these factors at
a rather significant analytical simplicity. Similar approaches
are fairly common in economic theory: while the theory of
prices is performed in general equilibrium, a partial equi-
librium approach is used for analyzing the production of a
commodity.

In this article, we demonstrate that market equilibrium
exchanges of call options decrease with uncertainty aversion,
but that the equilibrium price is substantially independent
from it. That is, we show that, even neglecting no-arbitrage
conditions, the price of a call is essentially independent from
the quality of information about the chances of gains and
losses, i.e., from transparency (this information corresponds,
with respect to Ellsberg’s urn—see below in Section 2—to the
knowledge on the proportion of the balls in the urn accord-
ing to their colors, which is the transparency of the urn). This
seemingly counterintuitive result is explained by the fact that
uncertainty aversion does not only reduce Choquet-expected
utility of call buyers, but also the Choquet-expected utility
of call suppliers. The former effect shrinks the demand for
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calls, the latter decreases their supply. As a result, uncertainty
aversion reduces the total trading volume, but leaves the price
of the call practically unaffected.

Section 2 contains a short summary of the Choquet-expected
utility model. We introduce the market for call options in
Section 3 in the framework of the Choquet-expected utility
model, and analyze a population of agents and their choice
with respect to uncertainty aversion. Section 4 examines the
partial market equilibrium. We demonstrate that the trading
volume for a population of uncertainty averse agents is lower
than the corresponding volume for an uncertainty neutral pop-
ulation, whereas no significant differences emerge with respect
to the price of the call. In Section 5, we present a comparison
between call market equilibria of two populations character-
ized by a different attitude toward uncertainty, as well as a
comparison between the market equilibria for two calls with
different degrees of uncertainty. Last, we provide a comparison
between the expected utility model and the Choquet-expected
utility model in Section 6. We point out that the expected utility
model, contrarily to the Choquet-expected utility model, does
not provide any relevant result in terms of risk aversion in the
likely case that the size of calls relative to agents’ wealth is lim-
ited. Moreover, the expected utility model does not react to
differences in the information on the probability distribution
of outcomes, i.e., in the transparency of assets. The main result
of the article is that a lower degree of transparency reduces
the trading volume of asset derivatives. This result provides a
possible explanation for the empirical fact that the “history of
financial markets is replete with episodes of increase in uncer-
tainty leading to a thinning out of trade” (Mukerji and Tallon,
2001, p. 899).

2. A SHORT SUMMARY ON CHOQUET EXPECTED UTILITY

The Choquet-expected utility model differs from Savage’s
expected utility model in not necessarily assuming probability
to be additive. Let S be the set of the states of nature and let
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subsets E ⊆ S indicate possible events. The Choquet-expected
utility model associates a capacity rather than a probability
to every event. The probability function p: 2S → [0,1] requires
p(∅)=0, p(S)=1, p(E)≤p(E′) if E ⊆E′, and p(E)+p(E′)=
p(E ∪ E′) + p(E ∩ E′) for every pair E,E′ ∈ 2S (where 2S is
the set of all the subsets of S, the empty set included). The
capacity (or non-additive probability) function v : 2S → [0,1]
requires v(∅)=0, v(S)=1 and v(E)≤v(E′) if E ⊆E′, but does
not require the additive condition v(E) + v(E′)=v

(E ∪E′)+v(E ∩E′).
A monetary act a is a function f : S →X, where X ⊆R+ is

a set of monetary outcomes or, equally, a function (which is
the inverse of the preceding function) E: X → 2S , with E(x)=
{s ∈ S : f (s) = x} for every x ∈ X(a), where X(a) = {x ∈ X : x =
f (s) for some s ∈S} is the range of the function f : S →X, so
that (E(x))x∈X is a partition of S.

The preference system 〈A,�〉, where A is the set of possible
acts, is represented (according to the Choquet-expected utility
model and assuming X =R+ and that the function u: R+ →R

has a lower bound) by the functional

CEU(a)=u(0)+
∫ ∞

0
v(t)du(t)

where v(t) is the capacity of the event {s ∈S:f (s)≥ t}.
The following definitions will be used in the analysis of the

market for calls.

DEFINITION 1. (Montesano and Giovannoni, 1996; Ghi-
rardato and Marinacci, 2002).3 An agent, whose preference
system 〈A,�〉 is represented by the Choquet-expected utility
model, is averse to uncertainty if the core of the capacity is
non-empty, i.e.,

core(v)={p ∈P :p(E)≥v(E) for all E ∈2S} �=∅

where P is the set of all probability (or additive capacity)

distributions on S. In fact, the introduction of a probability
belonging to core(v), in place of the capacity, increases, or
does not modify, the utility of every action a ∈ A. Therefore,
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an uncertainty averse agent appreciates information on chances,
i.e., he is willing to pay in order to know the probabilities of
events (for instance, in Ellsberg’s experiments, in order to know
the composition of the urn).

DEFINITION 2. (Montesano, 1999, p. 29; Ghirardato and
Marinacci, 2002, Theorem 17). Agent 1, with preferences
〈A,�1〉, is more averse to uncertainty than agent 2, with prefer-
ences 〈A,�2〉, if v1(E)− v2(E)≤ 0 for all E ∈ 2S, i.e., agent 1 is
willing to pay no less than agent 2 in order to know the chances.

DEFINITION 3. This definition introduces a notion of com-
parative aversion between two monetary acts with respect to
agent’s preferences. Act a1 (function f1 : S → X, with X ⊆ R+)

is, for an uncertainty averse agent, more uncertain than act a2

(function f2: S → X) if v(E1(t)) − v(E2(t)) ≤ 0 and v(Ec
1(t)) −

v(Ec
2(t)) ≤ 0 for all t ∈ X, where Ei(t) = {s ∈ S : fi(s) ≥ t} and

Ec
i (t)={s ∈S:fi(s)≤ t} for i ∈{1,2}.
An intuition is provided by Ellsberg’s example that

proposes an urn with 30 red balls and 60 green or black balls
in an unknown proportion. Act a1 gives a prize if a black ball
is drawn (i.e., if event B occurs), act a2 does it if a red ball
is drawn (event R), i.e., act a1 is uncertain, while act a2 is not
uncertain, only risky. For an uncertainty averse agent, we have
v(B)−v(R)≤0 and v(R ∪G)−v(B ∪G)≤0, where v(B) is the
capacity of the event “a black ball is drawn,” v(R∪G)=v(Bc)

is the capacity of the event “a non-black ball is drawn,” and
so on. Then, v(B) and v(R) are the capacities of getting the
prize, respectively, in case of act a1 and act a2, while v(R ∪G)

and v(B ∪G) are the corresponding capacities of the comple-
mentary event, i.e., not getting the prize.

Then, either the purchase or the supply of act a2 is preferred
to the purchase or the supply of act a1 by the uncertainty averse
agent under consideration, because both the decumulative and
the cumulative distribution of capacities associated to act a1 are
lower than those of act a2.4

It should be noted that uncertainty significantly differs
from risk in this respect. A riskier lottery can be generated
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from a lottery through mean-preserving spreads, which
increases dispersion by modifying probabilities, so that a
decrease in the probability of one outcome is compensated by
an increase of the probabilities of other outcomes. A more
uncertain act, on the contrary, according to the preceding def-
inition, is generated from an act through a general decrease
of capacities. For instance, if an act a1 is riskier than act a2,
then there is a t ∈ X for which p(E1(t)) > p(E2(t)), and, con-
sequently, p(Ec

1(t)) < p(Ec
2(t)), where Ei(t) = {s ∈ S : fi(s) ≥ t}

and Ec
i (t)={s ∈ S: fi(s)≤ t} for i ∈ {1,2}, while, if an act a1 is

more uncertain than act a2, then both v(E1(t))≤v(E2(t)) and
v(Ec

1(t))≤v(Ec
2(t)) for every t ∈X.

3. MODELING THE MARKET FOR CALLS

Consider a European call option. Analyzing the competitive
partial equilibrium for the call option, we assume that there are
only two dates: the date when the call can be bought or sold
(date 0) and the expiry date of the call (date 1).5 Agents have
preferences represented by the Choquet-expected utility model.

The unknown variables of the model are the call price c

and the trading volume Q, i.e., the quantity of exchanged
calls. More precisely, c indicates the future value of the call
price: i.e., if c′ is the call price at date 0 and i is the inter-
est rate for the period between date 0 and date 1, then
c=c′(1+ i). The strike call price π at the expiry date is given,
while the price πm of the primary asset at date 1 is uncertain.
Then, the set of states of the nature is the set of the possible
prices πm, which is R+.6

ASSUMPTION 1. The capacity functions v(t) and vc(t), which
represent, respectively, the beliefs on the possibility of the event
πm ≥ t and on the possibility of the event πm ≤ t , are contin-
uous for all agents, with v(t) + vc(t) ≤ 1, so that uncertainty
aversion is assumed. The utility function u(y) of every agent
is continuous, non-decreasing and concave, i.e., u′(y) ≥ 0 and
u′′(y)≤ 0 for every y ∈R+ (with u′(w)> 0 and u′′(w)< 0, where
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w is the agent’s initial wealth), so that cardinal risk aversion is
assumed.

If an agent buys q calls, then his utility at the expiry date
will be Ub = u(w − cq + q max{πm − π,0}). If he is uncertainty
neutral and p(t) = Pr{πm ≥ t} is the decumulative probability
distribution, then his expected utility will be

EUb =u(w − cq)+q

∫ ∞

π

u′(w +q(t −π − c))p(t)dt,

i.e.,

EUb =u(w − cq)+πq

∫ ∞

1
u′
(
w +πq

(
x −1− c

π

))
p(x)dx,

where x = t
π

and p(x) = Pr{πm

π
≥ x}.7 If the agent has sold q

calls, then, analogously, Us =u(w + cq −q max{πm −π,0}) and

EUs =u(w + cq)−πq

∫ ∞

1
u′
(
w −πq

(
x −1− c

π

))
p(x)dx.

If the agent is uncertainty averse and he is a buyer, then the
Choquet-expected utility is

CEUb =u(w − cq)+πq

∫ ∞

1
u′
(
w +πq

(
x −1− c

π

))
ν(x)dx,

where v(x) is the capacity of the event πm

π
≥x. If he is a seller,

the Choquet-expected utility is

CEUs=u(w+cq)−πq

∫ ∞

1
u′
(
w−πq

(
x−1− c

π

))
(1−νc(x))dx,

where vc(x) is the capacity of the event πm

π
≤ x. Introducing

the notation ν̄(x) = 1 − vc(x), the Choquet-expected utility is
CEUs = u(w + cq) − πq

∫∞
1 u′(w − πq

(
x −1− c

π

)
ν̄(x)dx.8 Since

the utility function is concave, both CEUb and CEUs are con-
cave functions of q.

The agent in question is uncertainty neutral if v(x) = v̄(x)

for every x ∈ R+, he is uncertainty averse if v(x) ≤ v̄(x) for
every x ∈R+. The definition of capacity requires v(0)= v̄(0)=
1, v(∞)= v̄(∞)=0, and that v(x) and v̄(x) are non-increasing
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functions. Moreover, as for Assumption 1, these functions are
continuous. For uncertainty averse agents, according to Def-
inition 1, core(v) �= ∅, i.e., there are probability distributions
p(x) such that p(x) ≥ v(x) and 1 − p(x) ≥ vc(x) = 1 − v̄(x), so
that v(x) ≤ p(x) ≤ v̄(x) for every x ∈ R+. For uncertainty neu-
tral agents for whom v(x) = v̄(x) for every x ∈ R+, core(v) is
a set composed of a unique point and the distributions v(x)

and v̄(x) coincide with a probability distribution p(x).
The agent’s choice is determined by the solutions of the

problems max
q≥0

CEUb and max
q≥0

CEUs . The boundary solutions

qd=0 and qs=0, respectively, require ∂CEUb

∂q

∣∣∣
q=0

≤0 and ∂CEUs

∂q

∣∣∣
q=0

≤ 0. They imply − c
π

+ ∫∞
1 v(x)dx ≤ 0 if qd = 0 and c

π
−∫∞

1 v̄(x)dx ≤0 if qs =0.
Using the notation α=∫∞

1 ν(x)dx and ᾱ=∫∞
1 ν̄(x)dx, it fol-

lows that, on the one hand, uncertainty aversion implies α≤ ᾱ

and, on the other hand, that an agent will buy calls only if
c
π

<α and will sell calls only if c
π

>ᾱ. In the following Figure 1

x1

(x)
(x)

(x)

c

1

0

Figure 1. Functions v(x), vc(x) and v̄(x) and areas α and ᾱ for an uncertainty
averse agent.
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the functions v(x), vc(x) and v̄(x) of an uncertainty averse
agent are represented and the corresponding areas α and ᾱ

are indicated.
Taking into account that the inequalities α > c

π
and ᾱ < c

π

are incompatible for an uncertainty averse agent, for whom it
is α ≤ ᾱ, the following remark emerges.

Remark 1. An uncertainty averse agent will buy calls if α > c
π

;
he will sell calls if ᾱ < c

π
; and he will neither buy nor sell calls

if α ≤ c
π

≤ ᾱ.

The quantity of calls that are bought or sold by an agent
are determined by the first-order conditions of the problems
max
q≥0

CEUb and max
q≥0

CEUs , i.e.,

− cu′(w − cq)+π

∫ ∞

1
u′
(
w +πq

(
x −1− c

π

))
v(x)dx

+π2q

∫ ∞

1

(
x −1− c

π

)
u′′
(
w +πq

(
x −1− c

π

))
v(x)dx =0

and

cu′(w+cq)−π

∫ ∞

1
u′
(
w−πq

(
x−1− c

π

))
v̄(x)dx

+π2q

∫ ∞

1

(
x−1− c

π

)
u′′
(
w−πq

(
x−1− c

π

))
v̄(x)dx =0.

Thus, agent’s demand for calls qd = d(c/π) is a non-increas-
ing function,9 with d(α)= 0 and lim c

π
→0 d(c/π)=∞. His sup-

ply qs = s(c/π) is non-decreasing, with s(ᾱ)=0.10

Let us assume that agents are characterized only by their
attitude toward uncertainty, so that the cardinal utility func-
tion ui(.) is the same for all agents, i.e., ui(.) = u(.), and
every agent i is characterized by the pair (vi(x), v̄i(x))x∈(1,∞),
with vi(x) ≤ v̄i(x) for every x ∈ R+ (and vi(x) = v̄i(x) in the
case of uncertainty neutrality).11 Let us assume also that
the population is composed of agents whose capacity func-
tions (vi(x), v̄i(x))x∈(1,∞) can be parameterized by (αi, ᾱi). (For
instance, this occurs if (vi(x), v̄i(x))x∈(1,∞) are stochastically
ordered with vi(x)≥vj (x) or vi(x)≤vj (x) for every x ∈ (1,∞),
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and v̄i(x)≥ v̄j (x) or v̄i(x)≤ v̄j (x) for every x ∈ (1,∞), if i �= j).
Consequently, we can put i = (α, ᾱ) so that every agent is indi-
cated by the pair (α, ᾱ) ∈ R

2
+ with α ≤ ᾱ. Thus, the demand

and supply functions for calls of the agent (α, ᾱ) are, indi-
cated respectively, by qd =d(c/π;α) and qs =s(c/π; ᾱ). (Notice
that the demand function depends only on the characteristic
α, and the supply function only on the characteristic ᾱ). Let
F(α, ᾱ) to represent the corresponding frequency distribution
function (i.e., F(α, ᾱ) is the proportion of agents whose char-
acteristics do not exceed (α, ᾱ)). Then, N(α)= limᾱ→∞ F(α, ᾱ)

and N̄(ᾱ)= limα→∞ F(α, ᾱ), where N(z) and N̄(z) are the mar-
ginal distribution functions, which are non-decreasing, with
N(0) = N̄(0) = 0 and N(∞) = N̄(∞) = 1. Since α ≤ ᾱ for all
agents, then N(z)≥ N̄(z) for every z ∈ R+. All this is summa-
rized by Assumption 2.

ASSUMPTION 2. The population is composed of uncertainty
averse agents characterized only by their attitude toward
uncertainty. This attitude can be represented by the pair
(α, ᾱ) ∈ R

2
+, with α ≤ ᾱ. The marginal distribution functions

N(z) and N̄(z), which respectively indicate the proportion of
agents (α, ᾱ) with α ≤ z and ᾱ ≤ z, thus with N(z) ≥ N̄(z) for
every z∈R+, are continuous.

Agents with α > c
π

will buy calls. Since their demand
depends on the function v(x), but not on v̄(x), and func-
tion v(x) can be parameterized by α, then qd = d(c/π;α),
with ∂qd

∂c/π
≤ 0 and ∂qd

∂α
≥ 0. The total demand for calls can

be determined taking into account the marginal distribution
function N(α), i.e., D(c/π)=∫∞

c/π
d(c/π;α)dN(α). Agents with

α ≤ c
π

≤ ᾱ neither buy nor sell calls. Agents with ᾱ < c
π

will
sell calls and, analogously to the buyers case, we have qs =
s(c/π; ᾱ), with ∂qs

∂c/π
≥ 0 and ∂qs

∂ᾱ
≤ 0, and the total supply

S(c/π)=∫ c/π

0 s(c/π; ᾱ)dN̄(ᾱ) determined by means of the mar-
ginal distribution function N̄(ᾱ). Then, D(c/π) is a contin-
uous and decreasing function, with lim c

π
→0 D(c/π) = ∞ and

D(c/π) = 0 for c
π

≥ cd
max
π

= min {α :N(α)=1}; and S(c/π) is a
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z

( )N z

( )N z
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1
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dcmin

sc

Figure 2. Marginal distribution functions of an uncertainty averse population
and of an associate uncertainty neutral population.

continuous and increasing function, with S(c/π) = 0 for c
π

≤
cs

min
π

=max
{
ᾱ : N̄(ᾱ)=0

}
.

Taking into account, for every agent i = (α, ᾱ), a probabil-
ity distribution pi(x) belonging to core(vi), for which vi(x)≤
pi(x) ≤ v̄i(x) for every x ∈ R+, and defining αP

i = ∫∞
1 pi(x)dx,

we have αP
i ∈ [αi, ᾱi ]. In this way we associate an uncertainty

neutral agent to every agent i, i.e., an agent αP with αP ∈ [α, ᾱ]
is associated to agent (α, ᾱ). Therefore, we have introduced an
uncertainty neutral population of the same size of the popula-
tion in examination. The frequency distribution NP (z) (where
NP (z) indicates the proportion of agents with αP ≤ z) of this
uncertainty neutral population is such that N̄(z) ≤ NP (z) ≤
N(z) for every z ∈ R+, as represented by Figure 2. This intro-
duces the following definition.

DEFINITION 4. Take a population P of uncertainty averse
agents that is characterized by the marginal distribution func-
tions N : R+ → [0,1], N̄ : R+ → [0,1], with N̄(z)≤N(z) for every
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z ∈ R+. Any population P ′ of the same size that is composed
of uncertainty neutral agents and characterized by a distribution
function NP :R+ → [0,1] such that N̄(z)≤NP (z)≤N(z) for every
z ∈ R+, is defined as an “associate uncertainty neutral popula-
tion”.

In Sections 4 and 5, we examine the competitive partial
equilibrium for call options, determining the price of the call
and its trading volume and their dependence on uncertainty
aversion.

4. EQUILIBRIUM OF THE MARKET FOR CALLS

Assumptions 1 and 2 imply the following total demand and
supply functions:

D(c/π)=
∫ ∞

c/π

d(c/π;α)dN(α),

S(c/π)=
∫ c/π

0
s(c/π; ᾱ)dN̄(ᾱ)

Equilibrium conditions Q = D(c/π) = S(c/π) determine the
price c∗ of the call in question and the quantity Q∗ of
calls. Since D(c/π) is a continuous and decreasing function,

with lim c
π

→0 D(c/π) = ∞ and D(c/π) = 0 for c
π

≥ cd
max
π

=min
{α:N(α)=1} and S(c/π) is a continuous and increasing function,
with S(c/π)=0 for c

π
≤ cs

min
π

=max{ᾱ : N̄(ᾱ)=0}, the equilibrium
exists and it is unique if cd

max ≥ cs
min. Otherwise, i.e., if cd

max <cs
min,

then Q∗=0 and c∗ is undetermined in the interval [cd
max, c

s
min].

Then, market equilibrium requires

Q∗ =
∫ ∞

c∗/π
d(c∗/π;α)dN(α)=

∫ c∗/π

0
s(c∗/π; ᾱ)dN̄(ᾱ)

Assuming cd
max ≥ cs

min, the following propositions concern
the effects of uncertainty aversion on the equilibrium variables
c∗ and Q∗.

PROPOSITION 1. If P is an uncertainty averse population
(thus characterized by marginal distribution functions N : R+ →
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[0,1], N̄ :R+ → [0,1], with N̄(z)≤N(z) for every z∈R+) and P ′

is any associate uncertainty neutral population (thus character-
ized by a distribution function NP :R+ → [0,1] such that N̄(z)≤
NP (z) ≤ N(z) for every z ∈ R+, as introduced by Definition 4),
then the corresponding equilibrium conditions

Q∗ =
∫ ∞

c∗/π
d(c∗/π;α)dN(α)=

∫ c∗/π

0
s(c∗/π; ᾱ)dN̄(ᾱ)

and

QP =
∫ ∞

cP /π

d(cP /π;αP )dNP (αP )=
∫ cP /π

0
s(cP /π;αP )dNP (αP )

imply QP ≥Q∗.

Proof. There are two main reasons that justify this result. On
the one hand, a probability distribution belonging to the core
of the capacities distributions implies a non-smaller demand or
supply for calls for every agent than those generated by the
capacity distributions. Formally, since α ≤αP ≤ ᾱ and ∂d(c/π;α)

∂α
≥

0, ∂s(c/π;ᾱ)

∂ᾱ
≤ 0, then d(c/π;αP ) ≥ d(c/π;α) and s(c/π;αP ) ≥

s(c/π; ᾱ). On the other hand, the proportion of agents who
demand or supply calls is non-lesser. Formally, since N̄(z) ≤
NP (z) ≤ N(z) for every z ∈ R+, then

∫∞
c/π

dNP (αP ) ≥ ∫∞
c/π

dN(α)

and
∫ c/π

0 dNP (αP ) ≥ ∫ c/π

0 dN̄(ᾱ). Consequently, if cP ≤ c∗, also
taking into account that ∂d(c/π;α)

∂c/π
≤0, then

QP =
∫ ∞

cP /π

d(cP /π;αP )dNP (αP )≥
∫ ∞

c∗/π
d(cP /π;αP )dNP (αP )

≥
∫ ∞

c∗/π
d(cP /π;α)dN(α)≥

∫ ∞

c∗/π
d(c∗/π;α)dN(α)=Q∗

and, if cP ≥ c∗, also taking into account that ∂s(c/π;ᾱ)

∂c/π
≥0, then

QP =
∫ cP /π

0
s(cP /π;αP )dNP (αP )≥

∫ c∗/π

0
s(cP /π;αP )dNP (αP )

≥
∫ c∗/π

0
s(cP /π; ᾱ)dN̄(ᾱ)≥

∫ c∗/π

0
s(c∗/π; ᾱ)dN̄(ᾱ)=Q∗.

�
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Proposition 1 says that the trading volume of calls is
smaller for an uncertainty averse population than for any
associate uncertainty neutral population.12

However, there is no such unilateral relation for the price
c∗ of a call; call prices appear to be mostly unaffected by
uncertainty aversion. We can even obtain cP =c∗, for instance
taking the associate uncertainty neutral population NP (z) =
λN(z)+ (1−λ)N̄(z) with

λ

1−λ
=
∫ c∗/π

0 s(c∗/π; ᾱ)dN̄(ᾱ)− ∫∞
c∗/π d(c∗/π;α)dN̄(α)∫∞

c∗/π d(c∗/π;α)dN(α)− ∫ c∗/π
0 s(c∗/π; ᾱ)dN(ᾱ)

.

In fact, the equality
∫ ∞

cP /π

d(cP /π;αP )dNP (αP )=
∫ cP /π

0
s(cP /π;αP )dNP (αP )

requires

λ

∫ ∞

cP /π

d(cP /π;αP )dN(αP )+ (1−λ)

∫ ∞

cP /π

d(cP /π;αP )dN̄(αP )

=λ

∫ cP /π

0
s(cP /π;αP )dN(αP )+ (1−λ)

∫ cP /π

0
s(cP /π;αP )

×dN̄(αP )

and, therefore, cP = c∗.
Figure 3 represents the equilibrium for an uncertainty averse

population and an associate uncertainty neutral population.

5. A COMPARISON OF THE CALL MARKET EQUILIBRIUM
FOR TWO POPULATIONS AND FOR TWO CALLS

The preceding analysis can be enlarged comparing equilibria
for populations that differ only with regard to uncertainty
aversion and equilibria for two different calls.

The following definition introduces a comparison of two
populations with respect to uncertainty aversion, in order to
examine the relation between their equilibria. This definition
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Figure 3. Market equilibria for an uncertainty averse population and an asso-
ciate uncertainty neutral population.

on two populations is based on Definition 2 concerning the
comparative definition of uncertainty aversion for two agents,
according to which agent 1 is more averse to uncertainty
than agent 2 if v1(E)− v2(E)≤ 0 for all E ∈ 2S , i.e., if v1(x)−
v2(x)≤0 and for all x ∈R+, so that, since v̄(x)=1−vc(x), also
v̄1(x)− v̄2(x)≥0. This implies that α1 ≤α2, ᾱ1 ≥ ᾱ2, d1(c/π;α1)≤
d2(c/π;α2) and s1(c/π; ᾱ1)≤ s2(c/π; ᾱ2) for every c

π
∈R+.

DEFINITION 5. Let two populations P and P ′ be respectively
characterized by the marginal distribution functions N : R+ →
[0,1], N̄ : R+ → [0,1] and N ′: R+ → [0,1], N̄ ′: R+ → [0,1]. Popu-
lation P ′ is defined as more uncertainty averse than population
P for a given call if N ′(z) ≥ N(z) and N̄ ′(z) ≤ N̄(z) for every
z∈R+.

Remark 2. If P is an associate uncertainty neutral population
with respect to an uncertainty averse population P ′ (according
to Definition 4), then P ′ is more uncertainty averse than P .

The following proposition says that the trading volume
depends on the “more uncertainty averse” relation introduced
by Definition 5. The trading volume is smaller for the more
uncertainty averse population.
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PROPOSITION 2. If population P ′ is more uncertainty averse
than population P according to Definition 5, then its trading
volume is smaller, i.e., it is Q∗′ ≤Q∗.

Proof. The demonstration is analogous to that of Proposi-
tion 1. Equilibrium conditions require, for population P and
population P ′ respectively,

Q∗ =
∫ ∞

c∗/π
d(c∗/π;α)dN(α)=

∫ c∗/π

0
s(c∗/π; ᾱ)dN̄(ᾱ)

and

Q∗′ =
∫ ∞

c∗′/π
d(c∗′/π;α′)dN ′(α′)=

∫ c∗′/π

0
s(c∗′/π; ᾱ′)dN̄ ′(ᾱ′).

Since ∂d(c/π;α)

∂α
≥ 0,

∂s(c/π;ᾱ)

∂ᾱ
≤ 0,

∂d(c/π;α)

∂c/π
≤ 0,

∂s(c/π;ᾱ)

∂c/π
≥ 0 and

N̄ ′(z)≤ N̄(z)≤N(z)≤N ′(z) for every z∈R+, if c∗ ≤ c∗′, then

Q∗ =
∫ ∞

c∗/π
d(c∗/π;α)dN(α)≥

∫ ∞

c∗′/π
d(c∗/π;α)dN(α)

≥
∫ ∞

c∗′/π
d(c∗/π;α′)dN ′(α′)≥

∫ ∞

c∗′/π
d(c∗′/π;α′)dN ′(α′)

=Q∗′

and, if c∗ ≥ c∗′, then

Q∗ =
∫ c∗/π

0
s(c∗/π; ᾱ)dN̄(ᾱ)≥

∫ c∗′/π

0
s(c∗/π; ᾱ)dN̄(ᾱ)

≥
∫ c∗′/π

0
s(c∗/π; ᾱ′)dN̄ ′(ᾱ′)≥

∫ c∗′/π

0
s(c∗′/π; ᾱ′)dN̄ ′(ᾱ′)

=Q∗′.

Remark 3. No qualitative implication on the price of the call
results from the comparison of the equilibria for populations
P and P ′, i.e., c∗′ ≶ c∗. The equilibrium conditions for the
above populations P and P ′ (where P ′ is more uncertainty
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averse than P) may be satisfied by an identical price of the
call, i.e., it can be found c∗ = c∗′. For instance, with the dis-
tributions N(z) = λN ′(z) + (1 − λ)N̄ ′(z) and N̄(z) = µN ′(z) +
(1−µ)N̄ ′(z), with µ≤λ and

µ

1−λ
=
∫∞
c∗′/π d(c∗′/π;α′)dN̄ ′(α′)− ∫∞

c∗′/π d(c∗′/π;α′)dN ′(α′)∫ c∗′/π
0 s(c∗′/π; ᾱ′)dN ′(ᾱ′)− ∫ c∗′/π

0 s(c∗′/π; ᾱ′)dN̄ ′(ᾱ′)
,

the equality
∫ ∞

c∗/π
d(c∗/π;α)dN(α)=

∫ c∗/π

0
s(c∗/π; ᾱ)dN̄(ᾱ)

requires

λ

∫ ∞

c∗/π
d(c∗/π;α)dN ′(α)+ (1−λ)

∫ ∞

c∗/π
d(c∗/π;α)dN̄ ′(α)

=µ

∫ c∗/π

0
s(c∗/π; ᾱ)dN ′(ᾱ)+(1−µ)

∫ c∗/π

0
s(c∗/π; ᾱ)dN̄ ′(ᾱ),

i.e., ∫ ∞

c∗/π
d(c∗/π;α)dN ′(α)+ (1−λ)

(∫ ∞

c∗/π
d(c∗/π;α)dN̄ ′(α)

−
∫ ∞

c∗/π
d(c∗/π;α)dN ′(α)

)
=
∫ c∗/π

0
s(c∗/π; ᾱ)dN̄ ′(ᾱ)

+µ

(∫ c∗/π

0
s(c∗/π; ᾱ)dN ′(ᾱ)−

∫ c∗/π

0
s(c∗/π; ᾱ)dN̄ ′(ᾱ)

)

which is satisfied by c∗ = c∗′.

Now, the competitive partial equilibria of two different
calls C and C ′ presenting the same strike price π will be taken
into consideration (obviously, the two calls regard two differ-
ent primary assets). A given population is characterized by
the marginal distribution functions N : R+ → [0,1], N̄ : R+ →
[0,1] and N ′ : R+ → [0,1], N̄ ′ : R+ → [0,1], respectively for call
C and for call C ′. To further analyze this case, the following
Definition 6 is introduced, based on Definition 3, according
to which the call C ′ is, for an agent, more uncertain than



114 ALDO MONTESANO

call C if v′(x)− v(x)≤ 0 and v̄′(x)− v̄(x)≥ 0 for all x ∈ (1,∞).
Consequently, for an uncertainty averse agent, if call C ′ is
more uncertain than call C, then ᾱ′ ≥ ᾱ ≥α ≥α′.

DEFINITION 6. For a given population of uncertainty averse
agents, let two calls C and C ′ be characterized by the marginal
distribution functions N:R+ → [0,1], N̄:R+ → [0,1] and N ′:R+ →
[0,1], N̄ ′ : R+ → [0,1], respectively. Call C ′ is defined as more
uncertain for this population than call C if N ′(z) ≥ N(z) and
N̄ ′(z)≤ N̄(z) for every z∈R+.

The following proposition says that the trading volume
depends on the “more uncertain” relation introduced by Defi-
nition 6. The trading volume is smaller for the more uncertain
call.

PROPOSITION 3. If call C ′ is more uncertain for a population
of uncertainty averse agents than call C, according to Defini-
tion 6, then its trading volume is smaller, i.e., it is Q∗′ ≤Q∗.

Proof. The demonstration is formally identical to that of
Proposition 2.

It seems important to point out that the two equilibria out-
lined above have no implications regarding the relative prices
of the calls C and C ′. Similarly to Remark 3, the equilib-
rium conditions for the above calls C and C ′ (where C ′ is
more uncertain than C for a population of uncertainty averse
agents) may be satisfied by an identical price, i.e., it can be
found c∗ = c∗′.

6. A COMPARISON WITH THE EXPECTED UTILITY MODEL

Given that the results presented before are based on the
Choquet-expected utility model, it seems natural to compare
the results obtained through this model to those obtained
within an expected utility framework.
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Choquet-expected utility differs from expected utility only
because probability is not additive, so that the Choquet-
expected utility model coincides with the expected utility model
if agents are uncertainty neutral. A first difference, which is
similar to the Dow–Werlang (1992) stability effect, is indi-
cated by Remark 1, taking into account that the expected util-
ity model requires that all agents buy or sell calls (an agent
does not exchange calls only if it is exactly c

π
= ∫∞

1 p(x)dx).
This stability effect leads to no trade and an undetermined
price of the call if the intersection of the cores of indi-
vidual agents is nonempty, i.e., if cd

max < cs
min. In this case,

total demand D(c/π) is lower than total supply S(c/π) at
every Q > 0, and equilibrium conditions are satisfied for
Q∗ = 0 and any c∗ ∈ [cd

max, c
s
min]. This result can be extended

to a general equilibrium model of uncertainty averse agents
(so that, according to Definition 1, every agent has a nonempty
core(v)), stating that no trade and undetermined prices occur
if the intersection of the cores of individual agents is nonempty
and contains more than one probability distribution.13

Proposition 1 provides a second difference, stating that the
market for calls is thinner for a population of uncertainty
averse agents than for a corresponding population of uncer-
tainty neutral agents.

Differences are weaker if we examine the dependence of
market equilibrium on cardinal risk aversion, rather than its
dependence on uncertainty aversion.14 Although the expected
utility model seems to supply similar results to those of the
Choquet-expected value model, replacing uncertainty aversion
with risk aversion15 yields the following two main differences
given below.

Remark 4. The attitude towards cardinal risk is irrelevant
when the investment in a call is negligible with respect to
agents’ wealth. In this case agents behave almost as if they
were risk neutral since cardinal utility is locally linear. On
the contrary, even in this case, the attitude toward uncertainty
matters, since it affects the decision to trade or not to trade
calls, and thus also the total volume observed.
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Remark 5. The expected utility model excludes that uncer-
tainty on the probability distribution of outcomes matters.
The expected utility model assumes either that the proba-
bility distribution is perfectly known or that agents’ choice
does not depend on the quality of information on the prob-
ability distribution (i.e., with reference to acts on an urn,
information on the composition of the urn does not influ-
ence an expected utility decision maker). On the contrary,
the Choquet-expected utility model is based on the possibil-
ity that this information (i.e., on the urn composition, which
can be known or, totally or partially, unknown) influences
choices if agents are not uncertainty neutral. Consequently,
the expected utility equilibrium conditions do not depend
on the quality of information on the probability distribution
of outcomes, whereas this information affects the Choquet-
expected utility equilibrium conditions through uncertainty
aversion.16 Therefore, taking into account two populations or
two assets which are equivalent in all respects except for the
quality of information on the probability distribution of out-
comes, the expected utility market equilibrium conditions are
equal, while market equilibrium conditions differ if the Cho-
quet-expected utilities are taken into account. Indeed, in this
case different marginal distribution functions arise for the two
populations or the two calls (i.e., N(.) and N̄(.) for popula-
tion P or call C, and N ′(.) and N̄ ′(.) for population P ′ or call
C ′, as indicated by Definitions 5 and 6). Then, the expected
utility model states that the trading volume of calls is equal
for the two populations and the two calls, while the Choquet-
expected utility model states that such volume will generally
differ.
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NOTES

1. For instance, Mas-Colell et al. (1995, pp. 188–189, 192–194, and
699–708) and Varian (1992, pp. 184–185, 187–188, and 368–385).

2. For instance, portfolio diversification is explained both by risk aver-
sion and by uncertainty aversion. It is usually explained in the liter-
ature with reference to risk aversion only. Kelsey and Milne (1995,
Proposition 4.2) make explicit reference to risk aversion in order to
explain portfolio diversification, even if their analysis also includes
uncertainty aversion. In case of uncertainty neutrality, i.e., with
additive probability, Dekel (1989, Proposition 2) demonstrates that
preference for portfolio diversification implies risk aversion (defined
as aversion to mean-preserving spreads) even if the Fréchet-dif-
ferentiable preference function does not satisfy the independence
axiom.

Uncertainty aversion can also produce incompleteness of financial
markets (Mukerji and Tallon, 2001) as well as indeterminate equi-
libria (Epstein and Wang, 1994), which imply the possibility of siz-
able volatility in these markets. General equilibrium analysis with
Choquet-expected utility is carried out by Chateauneuf et al. (2000)
who indicate some interesting results, for instance if the intersection
of agents’ cores is not empty (i.e., there are probability distributions
that dominate the capacities of all agents), then there is an equilib-
rium, which is indeterminate if the above intersection contains more
than one probability distribution.

The stability of the portfolio choice with respect to a variation in
the asset prices (i.e., prices may vary without modifying the optimal
portfolio) is incompatible with the expected utility model. As dem-
onstrated first by Dow and Werlang (1992) and examined in a more
general framework by Epstein and Wang (1994), the stability of the
portfolio choice crucially depends on uncertainty aversion.

3. A stronger definition of uncertainty aversion is proposed by Schmei-
dler (1989). According to this definition, there is uncertainty aversion
if the capacity is convex, i.e., if v(E)+v(E′)−v(E ∪E′)−v(E ∩E′)≤
0 for every pair E,E′ ∈2S . Note that if the capacity is convex, then
its core is non-empty (Shapley, 1971).
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4. If we extend to capacities the notion of the first-order stochastic domi-
nance, this definition requires that a2 dominates a1 with respect to the
decumulative distribution and a2 dominates a1 with respect to the cumu-
lative distribution. Formally, a monetary act a1 is first-order stochas-
tically dominated by a2 if p1(t) ≤ p2(t) for all t ∈ R+, where p(t) is
the decumalitive probability distribution, i.e., p(t)= Pr{s ∈S: f (s)≥ t},
and, consequently, pc

1(t) ≥ pc
2(t), where pc(t) is the cumulative prob-

ability distribution (since p(t) + pc(t) = 1 for all t ∈ R+). Definition 3
states that a1 is more uncertain than a2 if, with respect to the capacity
distributions, both v1(t) ≤ v2(t) and vc

1(t) ≤ vc
2(t) for all t ∈ R+, where

v(t) and vc(t) are respectively the decumulative capacity distribution
and the cumulative one, i.e., v(t)= v(E(t)) and vc(t)= v(Ec(t)), where
E(t)={s ∈S:f (s)≥ t} and Ec(t)={s ∈S:f (s)≤ t}.

5. This assumption rules out any trading strategy process for the period
between these two dates, which is the most important part of the
current analysis of the value of a call option (see, for instance,
Duffie, 2001, pp. 37–39 and 88–90).

6. The following representation may be useful. Suppose an urn with
various gray balls and an index of grayness from zero for white balls
to infinite for black balls (for instance, if the color is produced by
a mixture of a white matter and a black matter, then the proposed
index of grayness may be b

1−b
, where b is the proportion of the

black matter in the mixture). Let us associate the “primary asset”
to the act that gives a prize equal to the grayness πm of the drawn
ball. There is no uncertainty if the composition of the urn is known
(i.e., the color of every ball in the urn is known), uncertainty if its
composition is totally or partially unknown.

Thus uncertainty is connected to the information on the composi-
tion of the urn, i.e., to its transparency. Uncertainty averse agents
like transparency: they prefer more transparent acts and are willing
to pay for transparency. In other words, an act is valued less by
a more uncertainty averse agent than by a less uncertainty averse
agent. And an uncertainty averse agent values a more uncertain act
less than a less uncertain act (assuming that the two acts coincide in
all except the degree of transparency of the urn). However, this val-
uation regards acts that are stochastically independent from agent’s
wealth. If the same state of the nature that determines the prize of
the act under examination also affects agent’s initial wealth and the
two effects are opposite, so that the resulting total act (composed
of the initial wealth and of the act under examination) is risk free
(or less uncertain than initial wealth), then a more uncertainty averse
agent values the act under examination more than a less uncertainty
agent, because this act reduces total uncertainty. For instance, going
back to Ellsberg’s example, if only act a1 (that gives a prize if a
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black ball is drawn) is available in the market, then it can be sold at
a low price, since both risk aversion and uncertainty aversion reduces
its value. On the contrary, if both act a1 and the act that gives the
same prize as act a1 if a non black ball is drawn (i.e., if the event
R∪G occurs) are available, then an agent who already holds the lat-
ter act is willing to pay a large price in order to get act a1 and, so,
hedge the risk. Consequently, if both acts are available in the mar-
ket, their prices are unaffected not only by uncertainty aversion but
also by risk aversion (since the sum of the prices of the two acts is
equal to their prize, independently from uncertainty, and risk, aver-
sion).

In the same way, the price of the primary asset is affected by
uncertainty aversion if there is no possibility of hedging risks by
means of options. Uncertainty (and risk) aversion is ineffective if
options are available in the market. For instance, indicating the price
of the primary asset with πa and the price of the put option (with
the same strike price π of the call) with p (more precisely, πa and
p are their future value, i.e., πa =π ′

a(1 + i) and p =p′(1 + i), where
π ′

a and p′ are the prices at date 0 and i is the interest rate for the
period between date 0 and date 1), we have the no-arbitrage con-
dition c +π −πa =p. (This condition comes out from the fact that
a portfolio composed of an equal amount of the primary asset and
puts and short of calls is risk free). Consequently, assuming the pos-
sibility of hedging risks, the price πa of the primary asset is unaf-
fected by uncertainty aversion (and risk aversion) if this happens for
calls and puts. (In the present article, the price of a call is proved
to be practically independent from uncertainty aversion even without
considering the possibility of hedging risks).

7. Notice that
∫∞
π

p(t)dt is a decreasing function of π , as well as, a for-
tiori,

∫∞
1 p(x)dx.

8. The possibility of default is excluded by this relationship. If it is

taken into account, then CEUs = u(w + cq) − ∫ 1+ c
π

+ w
πq

1 u′(w − πq

(x −1− c
π
)v̄(x)dx. The addendum

∫∞
1+ c

π
+ w

πq
u′(w−πq(x −1− c

π
)v̄(x)dx

is neglected in the following analysis.
9. The analysis of demand and supply functions, in order to dem-

onstrate that demand is decreasing and supply is increasing with
respect to the price of the call, can be performed taking into
account that, integrating by parts, CEUb = (1 − v(1))u(w − cq) −∫∞

1 u(w +πq(x − 1 − c
π
)dv(x). Then, ∂CEUb

∂q
=−cu′(w − cq)(1 − v(1))−

π
∫∞

1 (x − 1 − c
π
)u′(w + πq(x − 1 − c

π
))dv(x), ∂2CEUb

∂q2 = c2u′′(w − cq)

(1−v(1))−π2
∫∞

1 (x −1− c
π
)2u′′(w+πq(x −1− c

π
))dv(x) and ∂2CEUb

∂q∂ c
π

=
−πu′(w − cq)(1 − v(1)) + πqcu′′(w − cq)(1 − v(1))+ π

∫∞
1 (u′(w +
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πq(x − 1 − c
π
)) + πq(x − 1 − c

π
)u′′(w + πq(x − 1 − c

π
))) dv(x), with

∂CEUb

∂q
=0 because of the first-order condition, ∂2CEUb

∂q2 <0 and ∂2CEUb

∂q∂(c/π)
<

0, so that not only the second-order condition is satisfied, but also

∂qd

∂(c/π)
=−

∂2CEUb

∂q∂(c/π)

∂2CEUb

∂q2

<0. Analogously for the supply function.

10. For instance, let u(y) = −e−σy , v(x) = e−ρx and v̄(x) = e−ρ̄x with
ρ ≥ ρ̄ > 1, so that α = ρ−1e−ρ and ᾱ = ρ̄−1e−ρ̄ . Then CEUb =
−(ρ + σπq(1 − e−ρ))(ρ + σπq)−1e−σw+σqc and the inverse demand
function is, for c

π
< α, c

π
= ρe−ρ(ρ + σπq)−1(ρ + σπq − σπqe−ρ)−1.

Thus, for c
π

< α, the direct demand function qd = d( c
π
;ρ) is qd =

ρ
2(eρ−1)σπ

(
1−2eρ +

√
1+4 eρ−1

ρc/π

)
, then with ∂qd

∂c/π
< 0, ∂2qd

∂(c/π)2 > 0 and
∂qd

∂ρ
< 0, so that ∂qd

∂α
> 0 since dα

dρ
< 0. Analogously, CEUs =−(ρ̄ − σ

πq(1 − e−ρ̄ ))(ρ̄ − σπq)−1e−σw−σqc and, for c
π

> ᾱ, c
π

= ρ̄e−ρ̄ (ρ̄ −
σπq)−1(ρ̄ −σπq +σπqe−ρ̄ )−1, qs = ρ̄

2(eρ̄−1)σπ

(
2eρ̄ −1−

√
1+4 eρ̄−1

ρ̄c/π

)
,

thus, for qs = s( c
π
; ρ̄), with ∂qd

∂c/π
> 0, ∂2qs

∂(c/π)2 < 0, lim c
p

→∞ qs = ρ̄
σπ

,
∂qs

∂ρ̄
>0 and ∂qs

∂ᾱ
<0. Moreover, with respect to cardinal risk aversion,

which is measured by the parameter σ in this example, we find that
∂qd

∂σ
<0 and ∂qs

∂σ
<0.

11. The assumption that the cardinal utility function is the same for
all agents is introduced for the sake of simplicity. If cardinal utility
functions are heterogeneous, then the demand and supply functions
will depend in a complicated way on differences in attitudes toward
risk as well as on differences in attitudes toward uncertainty. Then
this assumption allows determining the effects of the differences in
uncertainty aversion without the necessity of separating them from
the effects of the differences in risk aversion.

12. If the demand and supply functions for calls are specified, then
specific results can be obtained. For instance, if the demand and
supply functions are constant, i.e., d(c/π;α) = s(c/π; ᾱ) = k, then
the equilibrium conditions Q∗ = k

∫∞
c∗/π dN(α) = k

∫ c∗/π
0 dN̄(ᾱ) imply

1
k
Q∗ = 1 − N(c∗/π) = N̄(c∗/π). Thus, if all agents are uncertainty

neutral, so that N(c∗/π) = N̄(c∗/π), then Q∗ = 1
2k and c∗

π
is equal

to the median of the distribution N(.). Consequently, if all agents
are uncertainty averse, so that N(c∗/π) ≥ N̄(c∗/π), then 1

k
Q∗ = 1 −

N(c∗/π) = N̄(c∗/π) ≤ 1
2 (since N̄(c∗/π) > 1

2 would imply N(c∗/π) >
1
2 and 1 − N(c∗/π) < 1

2 , so that 1 − N(c∗/π) �= N̄(c∗/π)). If the
demand and supply functions are linear, with d(c/π;α) = (α −
c/π)k and s(c/π; ᾱ) = (c/π − ᾱ)k, then the equilibrium conditions
Q∗ = k

∫∞
c∗/π (α − c∗/π)dN(α) = k

∫ c∗/π
0 (c∗/π − ᾱ)dN̄(ᾱ) imply Q∗ =
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k
∫∞
c∗/π αdN(α)−k(1−N(c∗/π))c∗/π =kN̄(c∗/π)c∗/π −k

∫ c∗/π
0 ᾱdN̄(ᾱ).

Thus, if all agents are uncertainty neutral, so that α = ᾱ and
N(c∗/π) = N̄(c∗/π), then c∗

π
is equal to the average of the dis-

tribution N(.), i.e., c∗
π

= ∫∞
0 α dN(α), and Q∗ = k

∫ c∗/π
0 N(α)dα.

Consequently, if all agents are uncertainty averse, so that α ≤ ᾱ

and N(c∗/π) ≥ N̄(c∗/π), then 1
k
Q∗ = c∗

π
N̄(c∗/π) − ∫ c∗/π

0 ᾱdN̄(ᾱ) =∫ c∗/π
0 N̄(ᾱ)dᾱ ≤ ∫ c∗/π

0 N(α)dα.
13. These indeterminate equilibria are analyzed by Chateauneuf et al.

(2000), as indicated in footnote 2.
14. See Carr and Madan (2001) for an analysis where only risk aversion

matters.
15. See, for instance, the end of footnote 10.
16. This aspect can be clarified by means of the following example. The

outcome (which is the price of the asset at the expiry date) can take
two possible values, B or W , according to the action chosen in the
set {a, b, c} by the management of a firm and to the quantity of rain
after the action is chosen. Let us take under consideration two sit-
uations, according to the information on the action of the manage-
ment. In the former situation, the action is unknown. In the latter it
is known: it is action b. The probability of the best outcome, which
is B, is equal to 60% (thus, that of the worst outcome W is equal
to 40%) in case of action a, 50% in case b, and 40% in case c, if it
rains sufficiently; and it is equal to 40% in case of action a, 50% in
case b, and 60% in case c, if the weather is dry. The expected util-
ity model implies that choice is characterized in both situations by
probabilities: if they are 50% for the best outcome, i.e., p(B)= 0.5,
and 50% for the worst outcome, i.e., p(W) = 0.5 in the former sit-
uation, then the choice in the former situation (no information on
the action chosen by the management) is equal to the choice in the
latter situation (where the action is known). The presence of infor-
mation (on the action of management) does not matter. On the con-
trary, the Choquet-expected utility model introduces capacities when
the former situation is analyzed: this can be rationalized assuming
that an uncertainty averse agent attributes a capacity smaller than
50% to the best outcome if he is a buyer of a call (for instance,
v(B)=0.4, more or less as he is focused on the pessimistic hypoth-
esis that the management has chosen the wrong action), whereas he
attributes a capacity smaller than 50% to the complementary event
if he is a seller of a call (for instance, v(W)=0.4, more or less as he
is focused on the pessimistic hypothesis, for the seller, that the man-
agement has chosen the right action). There are capacities in place
of probabilities, for the Choquet-expected utility model in the former
situation, because the information on the action of the management
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is lacking. A deeper information makes weaker, ceteris paribus, the
effect of uncertainty aversion. If the agent is fully informed, as in
the latter situation, then uncertainty aversion is ineffective, because
there is no uncertainty.
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