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Abstract

In this paper we naturally define when a theory has bounded quantifier elim-
ination, or is bounded model complete. We give several equivalent conditions for
a theory to have each of these properties. These results provide simple proofs for
some known results in the model theory of the bounded arithmetic theories like
CPV and PV1. We use the mentioned results to obtain some independence results
in the context of intuitionistic bounded arithmetic. We show that, if the intuition-
istic theory of polynomial induction on strict Πb

2 formulas proves decidability of Σb
1

formulas, then P = NP. We also prove that, if the mentioned intuitionistic theory
proves LMIN(Σb

1), then P = NP.
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1 Preliminaries

Assume that any theory T we work with below contains 6 in its language and that T

proves the following basic properties of 6. We assume that T proves that 6 is reflexive

and transitive. We also assume that for all r and s, there is a term t so that T proves that

r 6 t and s 6 t. We further suppose that, for all terms t(x, y) and r(x), there is a term

s(x) such that T proves y 6 r(x) → t(x, y) 6 s(x). Bounded quantifiers and bounded

formulas are defined in the usual way. By a Σb
1 formula we mean a quantifier-free formula

prefixed by a bounded existential quantifier. We also call these formulas NP formulas,

simultaneously. The reason is that, in this paper, we are mainly concerned with bounded

arithmetic theories that use the language of Cook’s equational theory PV and have PV

as a subtheory. In these theories, the Σb
1 formulas are exactly the formulas that define

the NP relations in the standard model of natural numbers. The Πb
1 and coNP notations

will be used in the same way.

A theory is said to be bounded if it is axiomatizable by a set of bounded formulas. To

see a proof of the following fact, see e.g. [B2].
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Fact 1.1 (Parikh’s Theorem) Let T be a bounded Theory and A(x, y) be a bounded

formula. Suppose that T ` ∀x∃yA(x, y). Then there is a term t such that T ` ∀x∃y 6
tA(x, y).

The theories PV1 and CPV of bounded arithmetic are the first-order versions of the

equational theory theory PV, and Buss’s theory S1
2 conservatively extended to the lan-

guage of PV, respectively. It is known that PV1 is a universal theory, and CPV is

∀∃-conservative over PV1.

The theory IPV is defined as CPV but over intuitionistic logic. CPV is ∀∃-conservative

over IPV. For more on IPV, see [CU], [B3], [B4] and [A1]. For a semantical investigation of

this theory, see [M1], where Kripke models of intuitionistic bounded arithmetic is studied.

2 Some model theory for bounded formulas

In this chapter, we define bounded versions of some well-known notions in model

theory, and prove modifications of some well-known theorems of model theory in the

context of bounded formulas. These theorems, in some sense, extend the corresponding

theorems concerning bounded arithmetic theories which can be proved using the relations

between bounded arithmetic and propositional proof complexity, see e.g. [K].

Definition 2.1 Let T be a theory. T has bounded quantifier elimination if any bounded

formula is T -equivalent to a quantifier-free formula (with the same free variables).

The following proposition can be easily proved via induction on the quantifier com-

plexity of the prenex bounded formulas.

Proposition 2.2 A theory T has bounded quantifier elimination if any Σb
1 formula is

T -equivalent to a quantifier-free formula (with the same free variables).

As an example of a theory which has bounded quantifier elimination, one can con-

sider the (first-order) theory PRA (Primitive Recursive Arithmetic). The language of

PRA contains a function symbol for each primitive recursive function and the theory has

defining axioms for these functions. For more on PRA, see e.g. [A2] and [TD].

The theory PRA is not bounded. There is also a simple way to construct a theory

which is bounded and at the same time has bounded quantifier elimination. This method

is similar to the way that in the basic model theory one can extend a theory to a theory

in a extended language and with quantifier elimination. Let T be a bounded theory in a

language L. For each bounded L-formula ϕ(x), add a new predicate symbol Rϕ(x) to L

to obtain a language L′. Also, for each such ϕ, add a new axiom ∀x(ϕ(x) ↔ Rϕ(x)) to

T to obtain a new (bounded) theory T ′ in the language L′. It is easy to see that T ′ has

bounded quantifier elimination.
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Definition 2.3 Let T be a theory. A model M of T is called bounded existentially

closed if whenever N is a model of T such that M ⊆ N , then M ⊆b
1 N , i.e. for any Σb

1

formula ϕ(x) with parameters from M , if N � ϕ(a), then M � ϕ(a), where a ∈M .

By a well-known result in model theory, any model of a universal theory can be

embedded in an existentially closed model of that theory (see e.g. [CK, Lemma 3.5.7]).

As a consequence, any model of PV can be embedded in a bounded existentially closed

model of PV. In such a model, the extended Frege propositional proof system EF is

complete, see [K, Corollary 15.3.10 and Theorem 15.3.12].

Definition 2.4 A theory T is called bounded model complete if whenever M ⊆ N are

models of T , then M ⊆b
1 N .

As an example of a theory which is bounded model complete, one can consider the

theory PA (Peano Arithmetic). By the famous MRDP theorem, any bounded formula in

PA is equivalent to a ∃-formula, and so, if M ⊆ N are models of PA, then N is a bounded

elementary extension of M (see e.g. [HP]).

The following theorem is similar to a famous result in model theory characterizing

model complete theories (see e.g [CK, Theorem 3.5.1]).

Theorem 2.5 Let T be a bounded theory. The following are equivalent.

(1) T is bounded model complete.

(2) Every model of T is a b.e.c. model of T .

(3) For any Σb
1 formula there is a T -equivalent Πb

1 formula.

(4) For any bounded formula there is a T -equivalent Πb
1 formula.

Proof We only give the proof for the case (1) implies (3). The other parts are

straightforward and similar to the ones for the unbounded version of this theorem. Let

∃x 6 tϕ(x,w) be a Σb
1 formula. By the assumption and a basic result in model theory

characterizing universal formulas (see e.g. [Ho, Theorem 5.4.4]), there is a universal for-

mula ∀yψ(y, w) such that T ` ∀yψ(y, w) ↔ ∃x 6 tϕ(x, w). From T ` ∀yψ(y, w) →
∃x 6 tϕ(x,w), we have T ` ∃y∃x 6 t(ψ(y, w) → ϕ(x,w)). Now, using the fact that

T is a bounded theory, by Parikh’s theorem (Fact 1.1), there is a term s such that

T ` ∃y 6 s∃x 6 t(ψ(y, w) → ϕ(x,w)). So T ` ∀y 6 sψ(y, w) → ∃x 6 tϕ(x, w).

Therefore, T ` ∀y 6 sψ(y, w) ↔ ∃x 6 tϕ(x,w). �

Corollary 2.6 Let T be a bounded theory which is bounded model complete. Then

T is ∀Σb
1-axiomatizable.

Proof Using the fact that T is a bounded theory and Theorem 2.5 (4), one can see

that the class of models of T is closed under union of chains. So, by a well-known result
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in model theory, T is ∀∃-axiomatizable. Now Parikh’s theorem guarantees that T is

∀Σb
1-axiomatizable. �

Corollary 2.7 If PV1 is not equal to CPV, then there exist models M and N of CPV

such that M ⊆ N but not M ⊆b
1 N .

Proof If PV1 is not equal to CPV, then CPV is not ∀Σb
1-axiomatizable. �

NOTE The above result can also be proved via some known results in bounded

arithmetic as follows. We refer to [K] for the proofs of all mentioned facts. If PV1 is not

equal to CPV, then PV1 does not prove P = NP, since PV1 proves polynomial induction

on the quantifier-free formulas. So, CPV 0 P = NP as CPV is a ∀∃∆b
1-conservative

extension of PV1 and P = NP is a ∀∃∆b
1 sentence. Therefore, CPV 0 NP = coNP because

CPV ` P = NP∩ coNP. So, there is a model of CPV in which the extended Frege system

is not complete. Hence, it is not the case that any extension of the mentioned model is

Σb
1 elementary.

3 Some intuitionistic consequences

In this section we prove some independence results in the context of intuitionistic

bounded arithmetic using the results proved in Chapter 2. Our proofs are based on Kripke

model theory for these theories. In the context of intuitionistic bounded arithmetic, where

quantifier-free formulas are decidable, Kripke models are normal, i.e. the interpretation

of = in each world is true equality, and the accessability relation is substructure. For

more on Kripke models of intuitionistic bounded arithmetic, we refer the reader to [B3]

and [M1].

Cook and Urquhart [CU] proved that if the theory IPV proves the principe PEM of

excluded middle for Σb
1 formulas, then P = NP. Below, we prove a similar result for a

stronger theory.

Recall that the instance of the length-minimization LMIN with respect to a distin-

guished free variable x on a formula ϕ(x) (which may have more free variables) is the

universal closure of the formula

∃xϕ(x) → [ϕ(0) ∨ ∃x(ϕ(x) ∧ (∀z 6 x
x

2
y)¬ϕ(z))].

By a strict Πb
2 formula, denoted sΠb

2, we mean a formula of the form

∀x 6 t∃y 6 sϕ(x, y), where ϕ is a quantifier-free formula.

Recall that the theory S2
2 proves polynomial induction on all Πb

2 formulas, see [B1] for

the definition of the hierarchy of bounded arithmetic formulas and the mentioned result.
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Theorem 3.1 If the intuitionistic theory of BASIC + PIND(sΠb
2) proves PEM(Σb

1),

then S2
2 ` P = NP.

Proof First we show that if M ⊆ N are models of S2
2, then the two node tower can

be considered as a Kripke model of BASIC + PIND(sΠb
2). For this, assume that ψ(x) is

a sΠb
2 formula with possible parameters from M (and with x as the only free variable).

Using the definition of forcing, one can easily see that ψ(a), for a ∈ M , is forced in M

if and only if ψ(a) is satisfied in M and N . Assume for the purpose of a contradiction,

that PIND(ψ(x)) is not forced in M . So ψ(0) and ∀x(ψ(xx
2
y) → ψ(x)) are forced in

M , but ∀xψ(x) is not forced in M . So ∀xψ(x) is not satisfied in M since it should be

satisfied in N as forcing and satisfaction are equivalent in N . Now, using LMIN on the

Σb
2 formula ¬ψ(x) which is available by [B1, Theorem 2.8.17], there exists an a ∈ M

such that M 2 ψ(a) and for any b ∈ M with the condition b 6 xa
2
y, M � ψ(b). In

particular, M � ψ(xa
2
y). So, M  ψ(xa

2
y). Therefore, by M  ∀x(ψ(xx

2
y) → ψ(x)), we

have M  ψ(a), contradiction.

So, if the intuitionistic theory of BASIC + PIND(sΠb
2) proves PEM(Σb

1), then the two-

node Kripke model forces PEM(Σb
1), and so one can easily see that M ⊆b

1 N . Hence, we

proved that the relation between any two models M ⊆ N of S2
2 is Σb

1-elementary extension.

Now use Theorem 2.5 and the fact CPV ` P = NP ∩ coNP. �

The above result implies that, if P 6= NP, then BASIC + PIND(sΠb
2) 0i PIND(Πb+

2 ).

The reason is that, as mentioned in [Ha], Cook proved that the intuitionistic theory of

BASIC + PIND(Πb+
2 ) proves decidability of Σb

1 formulas. Here, Πb+
2 denotes the class of

positive Πb
2 formulas. A formula is positive if it does not contain ¬ and →.

It is known that S2
2 proves the scheme length-minimization for Σb

2 formulas (see [B1,

Theorem 2.8.17]). Here we show that even LMIN(Σb
1) is not derivable in the intuitionistic

theory of BASIC + PIND(sΠb
2), unless P = NP. In [M2], it is proved that a weak form of

LMIN(Σb
1) is not derivable in IPV under the assumption that PV1 is not equal to CPV

(and so, unless the polynomial hierarchy collapses by [KPT]).

Theorem 3.2 If the intuitionistic theory of BASIC + PIND(sΠb
2) proves LMIN(Σb

1),

then S2
2 ` P = NP.

Proof Assume that S2
2 0 P = NP. So, there exist models M and N of S2

2 such that

M ⊆ N but not M ⊆b
1 N . Let σ be an L(M)-sentence which is Σb

1 and satisfied in N

but not in M . Let K be the Kripke model of BASIC + PIND(sΠb
2) obtained by putting

N above M (see prove of the above Theorem) . Let ϕ(x) be the Σb
1 formula x = 2 ∨ σ.

We show that K does not force the instance of LMIN on ϕ(x). It is easy to see that M

(resp. N) forces ϕ(a), for a ∈M , if and only if M (resp. N) satisfies ϕ(a).

So we have M 1 ϕ(0), M 1 ϕ(1), and M  ϕ(2). Moreover, M 1 ¬ϕ(0) and
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M 1 ¬ϕ(1). Therefore K 1 LMIN(ϕ(x)). �
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