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Abstract. We prove that the existential theory of the Turing degrees, in the
language with Turing reduction, 0, and unary relations for the classes in the

generalized high/low hierarchy, is decidable.

1. Introduction

The high/low hierarchy was introduced by Soare in [Soa74] and independently
by Cooper in a preprint of [Coo74] with the idea of classifying the Turing degrees
below 0′ depending on how close they are to being recursive and how close they
are to being complete. This classification has been very helpful in the study of the
structure of the ∆0

2 Turing degrees. A generalization of this classification to all
the Turing degrees is the generalized high/low hierarchy introduced by Jockusch
and Posner in [JP78]. Many properties have been proved about members of certain
classes in this hierarchy. To cite a few: every 1-generic set is GL1 (see [Ler83,
IV.2]); every minimal degree is GL2 [JP78]; every non-GL2 cups to every degree
above it [JP78]; every GH1 degree bounds a minimal degree [Joc77] but not every
GH2 [Ler86]; every GH1 degree has the complementation property [GMS].

In [Ler85], Lerman proved that the ∃-theory of the Turing degrees in the language
LH , which has a relation for the Turing reduction, constants for 0 and 0′, and one
unary relation for each class in the high/low hierarchy, is decidable. In that paper he
leaves as an open question the decidability of the ∃-theory of the Turing Degrees in
the language with predicates for the classes in the generalized high/low hierarchy.
We prove here that ∃-theory of the Turing Degrees in the language LGH, which
has relations for the classes in the generalized high/low hierarchies instead of the
high/low hierarchy and does not have a constant for 0′ is decidable. The language
LGH does not contain a relation symbol for GH0 (x ∈ GH0 ⇐⇒ x ≥ 0′), and
whether the ∃-theory of the Turing Degrees in the language LGH0 with a symbol
for GH0 is decidable or not is unknown. A proof of this decidability result would
probably use different techniques than ours.

The result we are proving, as Lerman’s, is also interesting because it helps to
understand how the degrees from the various classes of the generalized high/low
hierarchy are located in the poset of the Turing Degrees. To prove it we show that
every finite poset labeled with elements of G∗, satisfying certain trivial conditions,
can be embedded in the Turing Degrees. G∗ is the partition of D induced by the
generalized high/low hierarchy (see Definition 1.1). The proof is divided into two
parts. In section 2 we analyze the problem and reduce it to a technical proposition
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which is an extension of Harrington’s ZBC Lemma. One of the main tools in
simplifying the problem is Lerman’s Bounding Lemma [Ler85, 2.8]. We prove our
technical result in section 3.

We have to note that the decidability of the ∃-theory of the Turing degrees in the
language LGH , without a symbol for GI(·), would follow from the decidability of
the ∃-theory of 〈D,≤,∨,′ , 0〉. But this problem is still open. Another observation
is that the ∃-theory of the Turing degrees in the language which has a relation
for the Turing reduction and one binary relation for each class in the Relativized
generalized high/low hierarchy (but does not have a constant for 0), is decidable. If
we remove the symbol GI(·, ·) from the language, this follows from the decidability
of the ∃-theory of 〈D,≤,∨,′ 〉, which was proved in [Mon03]. Otherwise we have to
use that every countable Jump upper semilattice can be embedded in the Turing
degrees, which was also proved in [Mon03].

Basic Notions. Define

C = {L1, L2, ...} ∪ {I} ∪ {H1,H2, ...},

where Ln is the class of lown degrees, I the class of intermediate degrees, and Hn

the class of highn degrees. A degree x ≤ 0′ is lown if x(n) = 0(n), is highn if
x(n) = 0(n+1), and is intermediate if ∀n

(
0(n) <T x(n) <T 0(n+1)

)
. Note that for all

n, Ln ⊆ Ln+1, Hn ⊆ Hn+1, and Ln, Hn and I are disjoint. These classes induce a
partition, C∗, of the degrees ≤ 0′.

C∗ = {L∗1, L∗2, ...} ∪ {I∗} ∪ {H∗
1 ,H

∗
2 , ...},

where L∗1 = L1, H∗
1 = H1, I∗ = I and for n > 1, L∗n = Ln r Ln−1, and H∗

n =
Hn rHn−1. We define an ordering, ≺, on C∗ as follows:

L∗1 ≺ L∗2 ≺ · · · ≺ I∗ ≺ · · · ≺ H∗
2 ≺ H∗

1 .

Observe that if x ≤ y, x ∈ X ∈ C∗ and y ∈ Y ∈ C∗, then X � Y . Let LH be
the first order language with a binary relation ≤, two constant symbols 0 and 0′,
and an unary relation for each class in C. Lerman proved that every existential
formula of LH which is consistent with the observation above, and consistent with
the axioms of partial orderings with bottom and top elements, 0 and 0′, is true
about the degrees below 0′, and also about the r.e. degrees.

As a generalization of these notions to all the Turing degrees we get the gener-
alized high/low hierarchy.

Definition 1.1. For n ≥ 1 we say that a degree x is generalized lown, or GLn, if
x(n) = (x∨ 0′)(n−1). We say that a degree x is a generalized highn degree, or GHn,
if x(n) = (x∨0′)(n), and it is generalized intermediate, or GI, if ∀n

(
(x∨0′)(n−1) <T

x(n) <T (x ∨ 0′)(n)
)
. Let

G = {GL1,GL2, ...} ∪ {GI} ∪ {GH1,GH2, ...}.

and
G∗ = {GL∗1,GL∗2, ...} ∪ {GI∗} ∪ {GH∗

1,GH∗
2, ...},

where GL∗1 = GL1, GH∗
1 = GH1, GI∗ = GI and for n > 1, GL∗n = GLn r GLn−1,

and GH∗
n = GHn r GHn−1. Let LGH be the first order language with a binary

relation ≤, a constant symbol 0, and an unary relation for each class in G.
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We make two observations. The first one is that, as in the high/low hierarchy,
for all n, GLn ⊆ GLn+1, GHn ⊆ GHn+1, and GLn, GHn and GI are disjoint. The
second one is that 0 is GL1. We will prove that every existential formula of LGH

which is consistent with the observations above, and consistent with the axioms of
partial orderings with bottom element 0, is true about the Turing degrees.

By relativizing these notions we get the Relativized generalized high/low hierar-
chy. We say that a is GHn relative to b, and we write a ∈ GHn(b) (or GHn(a,b))
if a ≥T b and a(n) = (a ∨ b′)(n). Analogously we can define GLn(b) and GI(b).

2. GH-posets.

In this section we show how to use our technical result, which extends Har-
rington’s ZBC lemma, to prove our main result. (Harrington’s ZBC lemma will
be stated, and its extension will be proved, in the next section.) First we define
GH-posets as the generalized version of Lerman’s H-posets (see [Ler85]).

Definition 2.1. A GH-poset is a structure P = 〈P,≤, 0,GL1,GL2, ...,GI, ...,GH1〉
where 〈P,≤〉 is a partial ordering, 0 ∈ P and GL1, GL2,...,GI,...,GH1 are unary
relations such that

• for all n, GLn, GI and GHn are mutually disjoint,
• for all n, GLn ⊆ GLn+1 and GHn ⊆ GHn+1,
• 0 is the least element of P, and
• GL1(0) holds.

For C ∈ G∗ and x ∈ P we define C(x) in the obvious way. A GH-poset P is standard
if for all x ∈ P , there is a C ∈ G∗ such that C(x). A standard GH-poset can be
represented as a quadruple 〈P,≤, 0, f〉 where f : P → G∗ takes x ∈ P to the unique
C ∈ G∗ such that C(x). Note that every GH-poset can be extended to a standard
GH-poset on the same universe.

Of course, the main example that we are interested in is the GH-poset of the
Turing Degrees.

Theorem 2.2. The existential theory of

D = 〈D,≤T , 0,GL1,GL2, ...,GI, ...,GH2,GH1〉

is decidable.

Proof. From the following proposition we get that an existential formula about D
is true if and only if it does not contradicts the definition of GH-poset. It is not
hard to show that one can check that effectively. �

Proposition 2.3. Every finite GH-poset can be embedded into D. (Of course via
a GH-poset embedding.)

Proof. Let P = 〈P,≤, ...〉 be a finite GH-poset. Without lost of generality we can
assume that P is standard. The following lemma will allow us to consider only
standard GH-posets where all the elements are either GL1 or GH1.

Bounding Lemma (Lerman, [Ler85, 2.8]). Let a 6∈ GL2 be given, and fix X ∈ G∗
such that a ∈ X. Let Y ≺ X be given. Then there is a degree b ≤T a such that
b ∈ Y .
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Here ≺ refers to the following ordering on G∗:
GL∗1 ≺ GL∗2 ≺ GL∗3 ≺ · · · ≺ GI∗ ≺ · · · ≺ GH∗

3 ≺ GH∗
2 ≺ GH∗

1.

Corollary 2.4. If x ≤T y ∈ D, x ∈ GL1, y ∈ GH1, and X ∈ G∗, then there exists
a degree z such that x ≤T z ≤T y and z ∈ X.

Proof. First, we observe that for Y ∈ G∗, and a ≥T x, since x ∈ GL1, we have that
a ∈ Y ⇐⇒ a ∈ Y (x). This is because a ∨ x′ = a ∨ (x ∨ 0′) = a ∨ 0′. Then just
apply the previous lemma relativized to x. �

Let Q = 〈Q,≤〉, where Q = (P r {0})× {0, 1}, and

〈x, i〉 ≤ 〈y, j〉 ⇐⇒ x ≤ y ∨ (x = y & i ≤ j)

From the corollary above, we get that if we had an embedding ψ : Q → 〈D,≤〉,
such that for all x ∈ P , ψ(〈x, 0〉) >T 0, ψ(〈x, 0〉) is GL1 and ψ(〈x, 1〉) is GH1,
we could get an embedding ϕ : P → D. Just let ϕ(x) be some degree in between
ψ(〈x, 0〉) and ψ(〈x, 1〉) which is in the class f(x), and let ϕ(0) = 0 ∈ D. Now we
have to show how to construct such a ψ.

Let {Ei : i ∈ P} be a uniformly low, independent set of r.e. sets. For F ⊆ P ,
let EF =

⊕
i∈F Ei We will construct a sequence of sets {Xi}i∈ω such that

(X.1) For all i, Xi+1 is r.e. in and above Xi.
(X.2) For all i and F ⊆ P , X2i ⊕ EF is GL1 and X2i+1 ⊕ EF is GH1.
(X.3) For i, j ∈ ω and F1, F2 ⊆ P we have that

Xi ⊕ EF1 ≤T Xj ⊕ EF2 ⇐⇒ i ≤ j & F1 ⊆ F2.

Then, we define ψ : Q→ D by

ψ(〈x, i〉) = X2rk(x)+i ⊕ E{y∈P :y≤x},

where rk is some increasing function from P to ω. It is not hard to check, using
(X.2), and (X.3), that ψ is an embedding Q → 〈D ≤〉 and that for all x ∈ P r {0},
ψ(〈x, 0〉) is GL1 and ψ(〈x, 1〉) is GH1.

To construct the sequence {Xi}i, the main tool is the following proposition that
we will prove in the next section.

Proposition 3.1

Proposition. Let {Di : i ∈ G} be a finite, uniformly low, independent set of r.e.
sets. For F ⊆ G, let DF =

⊕
j∈F Dj. Then, there exist an r.e. set A and an

A-r.e. set B such that

A′ ≡T 0′′ ≡T B ⊕ 0′ ≡T B′
G and

∀F ⊂ G ∀i ∈ Gr F
(
Di �T BF

)
,

where BF = A⊕B ⊕DF .

Let P = G, {Di : i ∈ G} = {Ei : i ∈ P} and A and B be as above. We let
X0 = ∅, X1 = A and X2 = A ⊕ B. Observe that for all F ⊆ P , X0 ⊕ EF is
GL1 (actually, it is low). We have that X1 ⊕ EF is GH1 because it is r.e. and
(A⊕DF )′ ≥T 0′′. We have that X2 ⊕ EF is GL1 because

X2 ⊕ EF ⊕ 0′ ≥T B ⊕ 0′ ≡T (A⊕B ⊕DF )′ = (X2 ⊕ EF )′.

We construct the rest of the sequence by induction. Suppose we have defined the
sequence up to X2i satisfying the conditions (X.1)-(X.3). For each i ∈ P , let
Di = Ei ⊕ X2i. Since X2i satisfies (X.2), we have that {Di : i ∈ P} is a finite,
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uniformly low, independent set of r.e. sets relative toX2i. By the relativized version
of the Proposition 3.1 we have sets A and B, both ≥ X2i, A r.e. in X2i and B r.e.
in A, such that

A′ ≡T X ′′
2i ≡T B ⊕X ′

2i ≡T (A⊕B ⊕DP )′ and(2.1)
∀F ⊂ G ∀i ∈ Gr F

(
Di �T A⊕B ⊕DF

)
.(2.2)

Let X2i+1 = A and X2i+2 = A ⊕ B. As above, we get that X2i+1 ⊕ EF ∈
GH1(X2i) and X2i+2 ⊕ EF ∈ GL1(X2i). Since X2i is GL1, we have that X2i+1 ⊕
EF ∈ GH1 and X2i+2 ⊕ EF ∈ GL1.

Now, let us prove that (X.3) holds. It is clear that if k ≤ j and F1 ⊆ F2 then
Xk ⊕ DF1 ≤T Xj ⊕ DF2 . Now suppose that either k 6≤ j or F1 6⊆ F2. In the
latter case, from (2.2) we get that Xk ⊕ DF1 �T Xj ⊕ DF2 . In the former case
we divide into two possible cases. First assume that j = 2i. We cannot have that
X2i ⊕DF2 ≥T X2i+1 because

(X2i ⊕DF2)
′′ ≡T X ′′

2i ≡T X ′
2i+1.

Hence Xk ⊕ DF1 �T Xj ⊕ DF2 . Second, assume that j = 2i + 1. It cannot
happen that X2i+1 ⊕ DF2 ≥ X2i+2 because X2i+1 ⊕ DF2 is r.e. in X2i but, since
X2i+2 ⊕X ′

2i ≡T X ′′
2i, X2i+2 6≤T X ′

2i.
We have proved that every finite GH-poset P can be embedded into D. �

3. The main Lemma.

In this section we prove the extension of Harrington’s ZBC Lemma that we need
to prove Proposition 2.3.

Harrington ZBC Lemma. Given a set W , r.e. in and above Z ′, there exist sets
B and C, such that, B is r.e. in Z, C is r.e. in B, and

(Z ⊕B)′ ≡T (Z ⊕B ⊕ C)′ ≡T Z ′ ⊕B ⊕ C ≡T Z ′ ⊕W.

Proofs of Harrington’s ZBC Lemma can be found in [Sim85, Lemma 2.1] and in
[HS91, Theorem 2.5]. It consists of a finite injury construction on top of an infinite
injury construction. Instead, to prove our extension, we needed two infinite injury
tree constructions, one in top of the other.

Proposition 3.1. Let {Di : i ∈ G} be a finite, uniformly low, independent set of
r.e. sets. For F ⊆ G, let DF =

⊕
j∈F Dj. Then, there exist an r.e. set A and an

A-r.e. set B such that

A′ ≡T 0′′ ≡T B ⊕ 0′,(3.1)
B′

G ≡T 0′′ and(3.2)

∀F ⊂ G ∀i ∈ Gr F
(
Di �T BF

)
,(3.3)

where BF = A⊕B ⊕DF .

We will do two constructions. First we show how to construct an r.e. operator,
that, when applied to A, will give us B. Then, we show how to construct A. During
the construction of A we use the r.e. operator constructed to guess how B is going
to look at the end. Both constructions are going to be 0′′-priority arguments over
a tree of strategies.

Although the proof we give does not formally assume knowledge of 0′′-priority
arguments over a tree of strategies, familiarity with this kind of arguments would
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be extremely useful in understanding the proof. The reader might look at [Soa87,
Chapter XIV] for an introduction to tree constructions.

We have to satisfy various requirements. To get A′ ≡T 0′′, we will construct A
such that ∀n ∈ ω

(
0′′(n) = 1 − limsA(〈n, s〉)

)
. Let E be an r.e. set such that if

n ∈ 0′′ then E[n] = m for some m ∈ ω and if n 6∈ 0′′ then E[n] = ω. (We write E[n]

for {x : 〈n, x〉 ∈ E} and by E[n] = m we mean E[n] = {0, ...,m− 1}.) Let {Es}s be
a recursive enumeration of E such that for all s and n, E[n]

s is an initial segment
of ω. We will have that A′ ≡T 0′′ if, for every n ∈ ω, the following requirement is
satisfied:

PA
n : A[n] =∗ E[n].

To get 0′′ ≡T B ⊕ 0′, we will try to code the modulus of convergence of A(〈n, s〉)
into B. We let Ã be the A-r.e. set such that for all n, Ã[n] = k where k is the
least such that ∀x ≥ k

(
A(〈n, x〉) = A(〈n, k〉)

)
. The requirement PB

n will try to
enumerate the elements of Ã[n] into B, as long as it is permitted by higher priority
negative requirements. We will prove later that, with the help of 0′, we will be able
to decode Ã from B, and hence we will get that 0′′ ≤T 0′ ⊕ B. To get Di �T BF ,
for i ∈ Gr F , we have the negative requirements:

N〈F,i,e〉 : {e}BF 6= Di.

To satisfy these requirements we will use the Sacks preservation method (see [Soa87,
VII.3]). Each requirement Nn is going to be split in two requirements NA

n and NB
n ,

the former working in the construction of A, and the latter in the construction of B.
As in the Sacks jump theorem (see [Soa87, Remark VII.3.3]), these requirements
help us keep the jump of BF down, because they preserve computations of the form
{e}BF (0)↓. We will prove later that, because of this,

(3.4) ∀F ⊂ G
(
B′

F ≡T 0′′
)
.

Well, we actually wanted B′
G ≡T 0′′. There are two possible approaches to obtain

this. The first one is to add requirements which preserve computations of the form
{e}BG(0)↓. The second one, is just to prove that B′

F = 0′′ for all F ⊂ G. In
the latter, we would be proving a weaker result, but it implies the statement of
the theorem as follows: Let D−1 be an r.e. set such that {Di : i ∈ G1} is an
independent, uniformly low set, where G1 = G ∪ {−1}. To get D−1 construct a
low r.e. set D >T DG using Sacks Jump Inversion theorem (as in [Soa87, Remark
VII.3.2]), and then construct D−1 ≤T D so that {Di : i ∈ G1} is independent
(using [Rob71, Corollary 6]). The weaker result we would be proving will give us
an r.e. set A and an A-r.e. set B such that (3.1),(3.4) and (3.3) hold for G1 instead
of G. Since G ⊂ G1, we have that B′

G ≡T 0′′. We will take this second approach.

3.1. True Stages. Suppose that we are doing a construction using a tree of strate-
gies and that γ is a node in the tree. For the strategy at γ, only the stages at which
γ is accessible are relevant. Here we define the notion of being a true stage with
respect to a given set of stages.

Given a recursive set S of stages and a recursive enumeration {Ds}s of an r.e.
set D, we say that s ∈ S is an S-D-true stage if ∃x

(
s = µs′ ∈ S(Ds′ �x = D �x)

)
.

We are interested in true stages because of the following property. If σ ∈ 2<ω is
an initial segment of both Ds and Dp(s), where p(s) = max t < s(t ∈ S), and s is
S-D-true, then σ is an initial segment of D. Hence, if we have a computation with
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oracle Dp(s) which remains unaltered if we change the oracle to Ds, it will remain
unaltered if we change the oracle to D.

Note that the set of S-D-true stages is recursive in D. However, at a given stage
t ≥ s we can guess recursively whether s is S-D-true as follows. We say that s ∈ S
looks S-D-true at t, and we write s �

S
t, if ∃x

(
s = µs′ ∈ S(s ≤ t & Ds′ �x =

Dt �x)
)
. Note that 〈S,�

S
〉 is a partial order. Moreover, it is a tree in the sense

that for all s ∈ S, 〈{s′ : s′ �
S
s},�

S
〉 is a linear order. Also note that if s is

S-D-true, then for all t ≥ s, s �
S
t and for all t ≤ s we have that t �

S
s iff t is

S-D-true.

3.2. Tree Constructions. Now, we show how to construct an r.e. set C using
a tree of strategies the way we are going to construct A and B later. When we
construct A and B, all we are going to do is to specify certain parameters of the
construction of C.

Assume that we want to construct C satisfying certain positive and negative
requirements. Suppose that there is a positive requirement PC which wants to
enumerate the elements of an r.e. set Y into C, for which we have a recursive
enumeration {Ys}s. PC is divided into infinitely many sub-requirements PC

n , n ∈ ω.
Each PC

n is in charge of enumerating the elements of Y [n] into C [n]. We assume that
the enumeration of Y satisfies that for all s and n, Y [n]

s is a finite initial segment
of ω. Hence Y [n] is either ω or a finite initial segment of it.

We also have negative requirements NC
n which want to preserve certain com-

putations by imposing a restraint on the enumeration of C. At each stage s, NC
n

computes lC(n, s) ∈ ω. (In the constructions of A and B, lC(n, s) is an approxima-
tion to the length of agreement between {e}BF and Di.) When computing lC(n, s),
NC

n wants to approximate a computation which uses a certain r.e. set DFn
as an

oracle. So, NC
n will be interested in DFn

-true stages.
We arrange the strategies in a tree: T = ({i} ∪ ω)<ω. The nodes at level 2n

work for NC
n and the ones a level 2n+ 1 work for PC

n . The outcome of NC
n is the

restraint it imposes, and the outcome of PC
n is i if Y [n] is infinite, and the first

number not in Y [n] otherwise. We order each level as follows: i <L 0 <L 1 <L ....
This induces a lexicographic order <L on T as in [Soa87, Definition XIV.1.1].

At each stage s we define γs ∈ T, and we say that γ is accessible at s if γ ⊆ γs.
We define:

• SC
γ = {s : γ ⊆ γs} ∪ {0}; we call the stages in Sγ , γ-stagesC .

• TC
γ = {t : t is an SC

γ -DFn
-true stage} where 2n = |γ|; we call the stages in

TC
γ , γ-true stagesC .

• we say that t ≺C
γ s if s looks SC

γ -DFn
-true at t, where 2n = |γ|.

• pC
γ (t) = max t̄ < t(t̄ ∈ SC

γ ), the last γ-stageC before t.
• Let TPC be maximal in T ∪ [T] such that for all k < |TPC |,

TPC(k) = lim inf
t∈SC

T P C � k

γt(k);

we call TPC , the true path of the construction of C.
• s is a γ-expansionary stageC iff s ∈ SC

γ and lC(n, s) > lC(n, t) for all
γ-stageC t < s.

The superscript C in SC
γ , TC

γ , stageC , etc. denotes that these objects correspond
to the C-construction. We include the superscript in the notation because later on
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we will be considering more than one construction at the same time. We might
drop it if it is clear from the context which construction we are referring to.

Construction of C. Stage 0. Let C0 = ∅ and γ0 = ∅.
Stage s+ 1. Define Cs,0 = Cs. For k = 1, ..., s, run sub-stage k.
Substage k. Suppose we have already defined γs � k = γ and Cs,k−1.
k = 2n+ 1:

B Let R(n, s) = max{γs′(2i) : s′ ≤ s & (γs′ � 2i <L γ ∨ γs′ � 2i ⊆ γ)}, the
maximum of all the restraints imposed by higher priority negative require-
ments.

B If, since the last γ-stage, something has been enumerated into Y [n], set
γs(k) = i and enumerate all the elements of {n} × Y

[n]
s not less than

R(n, s) into Cs,k.
B Otherwise set γs(k) to be the smallest number not in Y [n]

s .
k = 2n:

B First, NC
n computes lC(n, s), and hence it determines whether s is γ-

expansionary or not.
B Let γs(k) be the last γ-expansionary stage which is �γ s.

At the end of stage s define Cs+1 = Cs,s.
Let C =

⋃
s Cs. ♦

Note that, to construct an r.e. set C this way, all we have to do is specify {Ys}s,
lC(n, s) and {DFn,s}s for each n ∈ ω.

We define Ĉs,k as the best approximation to C that we have at sub-stage k of
stage s:

Ĉs,k = Cs,k ∪
⋃
{({j} × ω rR(j, s)) : j <

k

2
& γs(2j + 1)↓ = i}.

(Here we use R(j, s) as {x : x < R(j, s)}.)
In the following lemma we state and prove some basic properties of this con-

struction.

Lemma 3.2. Suppose that γ = γs0 � k ⊆ TPC .
(1) For all s ≥ s0, γs 6<L γ.
(2) If k = 2n+ 1 then

(a) for all s ≥ s0, R(n, s) ≥ R(n, s0), and if s ∈ Sγ then R(n, s) =
R(n, s0);

(b) TPC(k) =

{
i if Y [n] is infinite
l if Y [n] = l < ω;

(c) if γs0 � k + 1 ⊆ TPC , then Ĉ
[≤n]
s0,k = C [≤n];

(d) C [≤n] =∗ Y [≤n].
(3) If k = 2n then

(a) If γs0(k) = s1 ∈ Tγ , then for all γ-stages s ≥ s0, γs(k) ≥ s1.
(b) TPC(k) = lims∈Tγ

γs(k) = last γ-expansionary true stage, if such a
stage exists.

(c) R(n, s0) = γs0(k).
(d) If γs0(k) = s1 ∈ Tγ , then Ĉs,k � s1 = C � s1.
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Proof. The proof is by simultaneous induction on k. Suppose the lemma is true for
all γ with |γ| < k. First suppose that k = 2n+1 for some n. Let γ′ = γ � k− 1. By
part (1) of the induction hypothesis we have that, for all s ≥ s0, γs 6<L γ′. By (3b),
γ(k−1) is a γ′-true stage, and then by (3a), for all s ≥ s0, if s ∈ Sγ′ , γs 6<L γ. This
proves (1). Part (2a) follows from the previous one and the definition of R. Part
(2b) is immediate from the construction. For (2c), we know, from the induction
hypothesis, that Ĉ [<n]

s0,k = C [<n]. If γs0(k) = i, since lim infsR(n, s) = R(n, s0),

C [n] = Cn
s0,k ∪ (ωrR(n, s0)[n]) = Ĉ

[n]
s0,k, where R(n, s0)[n] = {x : 〈n, x〉 < R(n, s0)}.

If γs0(k) = yn = TPC(k) < ω, then nothing else is enumerated into Y [n] after s0, and
hence nothing is enumerated into C [n] after s0. So C [n] = C

[n]
s0 = Ĉ

[n]
s,k. Part (2d)

follows from the fact that for some s, γs � k + 1 ⊂ TPC , and that Ĉ [≤n]
s,k =∗ Y [≤n].

Now suppose that k = 2n for some n. To prove (1), assume that k > 0, (it is
trivial otherwise) and let γ′ = γ � k − 1. By induction hypothesis, we have that for
all s ≥ s0, γs 6<L γ′. If γs(k − 1) = i we clearly never go left again. Otherwise, we
do not enumerate anything in Y [n] any more, and hence, we never move left again
either. For part (3a) observe that s1 is γ-expansionary and that for all s ≥ s1,
s1 �γ s. Part (3b) follows from (3a). Now, let us prove (3c). Let s1 = γs0(k). By
(2a), R(n, s0) = R(n, s1), and R(n, s1) can not be > s1, but R(n, s1) ≥ γs1(k) = s1.
So R(n, s0) = R(n, s1) = s1 = γs0(k). For the last part we have that Ĉ [<n]

γ,s = C [<n]

by (2c), and that Ĉ [≥n]
γ,s � s1 = C [≥n] � s1 because for all s ≥ s0, R(n, s) ≥ s1. �

3.3. Construction of B. Now we construct an r.e. operator that, when applied
to a set Z, returns a set B[Z] r.e. in Z. Later, when we define A, we will let
B = B[A]. We use the framework defined 3.2.

Construction of B[Z]. All we need to do is to specify the parameters needed in the
tree construction of 3.2. We let Z̃ be the set that PB wants to enumerate. Z̃ has
the following recursive enumeration:

Z̃t = {〈e, x〉 < t : ∃y > x
(
〈e, y〉 < t & Z(〈e, x〉) 6= Z(〈e, y〉)

)
}.

For each negative requirement NB
n we have to define DFn

and lB[Z](n, t). For
n = 〈F, i, e〉 let DFn = DF . We will use the letter t for the stages in the B-
construction and βt ∈ TB for the approximation to TPB at t. Now suppose that
we are at stage t, sub-stage k of the construction, where k = 2n and n = 〈F, i, e〉.
Assume we have already defined Bt,k−1 and β = βt � k. Define

lB[Z](n, t) =


x+ 1

2 if {e}BF,t,k[Z]
t (x)↓ = {e}

BF,pβ(t)[Z]

pβ(t) (x) with

the same computation
x otherwise.

where x is maximal such that Di,t �x = {e}BF,t,k[Z]
t �x = {e}

BF,pβ(t)[Z]

pβ(t) �x with
the same computation. Recall that pβ(t) is the last β-stage before t and that
BF,t,k[Z] = Z ⊕Bt,k[Z]⊕DF,t. ♦

First, observe that the construction is recursive in Z, and hence B[Z] is Z-re.
Second, observe that Z̃t depends only on Z � t, and hence so do the first t stages of
the construction of B[Z].
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For the followings definition and lemma fix Z and drop the suffix [Z] from the
notation.

Definition 3.3. For n = 〈F, i, e〉, let

lBn =

{
x+ 1

2 if {e}BF (x)↓
x otherwise.

where x is maximal such that Di �x = {e}BF �x (x might be ω).

Lemma 3.4. Let β = TPB � k, where k = 2n and n = 〈F, i, e〉, and assume that
Z̃ [<n] is finite.

(1) If β ⊆ βt0 , βt0(k) = t1 ∈ Tβ and l = dlB(β, t0)e, then

{e}BF,t0,k

t0 � l = {e}BF � l.

(For p ∈ Q, dpe = µq ∈ Z(p ≤ q).)
(2) If l ∈ 1

2 · ω = {n
2 : n ∈ ω} and l ≤ lBn , then there exists a β-expansionary

true stage t0 such that lB(β, t0) ≥ l.
(3) If {e}BF 6= Di then

TPB(k) = lim
t∈Tβ

βt(k) < ω.

Proof. For part (1) we have to show that BF,t0,k is preserved up to the use, u, of
the computations {e}BF,t0,k

t0 �dlB(β, t0)e. By Lemma 3.2.3d and the assumption on
Z̃ [<n], we have that Bt0,k � t1 = B̂t,k � t1 = B � t1. Note that t1 > u. Since the
computations {e}BF,t0,k

t0 �dlB(β, t0)e were there at stage pβ(t1) too, we have that
DF,pβ(t1) �u = DF,t1 �u. Since t1 ∈ Tβ , nothing below u is enumerated into DF

after t1. So we have that BF,t0,k �u = BF �u. This proves (1). Part (2) is clear.
For part (3), suppose toward a contradiction, that there are infinitely many β-

expansionary true stages. This implies that there is a stage t0 ∈ Tβ with lB(β, t0) >
lBn . Let l = blBn c. So we have that {e}BF,t0,k

t0 (l)↓, and that this computation is
going to be preserved for ever by part (1). Since Di(l) 6= {e}BF (l), l had to be
enumerated into Di after stage t0, and this disagreement is preserved for ever. So,
for no t after that stage, we have that lB(β, t) > lB(β, t0). Hence, there are no
more β-expansionary stages. �

3.4. Construction of A. We construct an r.e. set A satisfying the following re-
quirements:

PA
n : A[n] =∗ E[n],

NA
〈F,i,e〉 : {e}BF 6= Di.

We will use a tree construction like the one in 3.2. At each stage s, NA
n computes

an approximation to

ln =

{
x+ 1

2 if {e}BF [A](x)↓
x otherwise.

where x = maxx′ ≤ ω
(
Di �x′ = {e}BF [A] �x′

)
, and imposes a restraint on A

to preserve these computations. To approximate BF [A], we run the construction
of B for a few stages using Âs,2n as an oracle. (Recall that Âs,2n is the best
approximation to A that NA

n has at stage s.) So we have to decide for how many
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stages to run Bt[Âs,2n]. For this purpose, along with the construction we define
δs ∈ TB as an approximation to TPB .

Construction of A. All we need to do is to specify the parameters needed in the
tree construction of 3.2. The set that PA wants to enumerate is E, for which we
have a recursive enumeration {Es}s. For each negative requirement NA

n we have
to define DFn and lA(n, s). For n = 〈F, i, e〉 let DFn = DF . We will use the letter
s for the stages of the A-construction and αs ∈ TA for the approximation to TPA

at s. Now, for each s and n < s
2 , we define δs ∈ TB and lA(n, s). Suppose that we

are in stage s, sub-stage k = 2n of the construction, and we have already defined
As,k−1, α = αs � k and δ = δs � k.

B Let tn,s < pA
α (s) be maximal such that tn,s ≺

B[Âs,k]
δ s. If there is no such

tn,s, let it be 0. (This is for how many stages we are going to run the
computation of B[Âs,k].)

B δs(k) = β
B[Âs,k]
tn,s

(k) (the last δ-expansionary stageB[Âs,k] that is < pA
α (s)

and ≺B[Âs,k]
δ s).

B lA(n, s) = lB[Âs,k](n, tn,s) (= lB[Âs,k](n, δs(k))).

B δs(k + 1) = µx(x 6∈ ˜̂
A

[n]
s,k) (the place after which the nth column of Âs,k

stabilizes).

♦

Let B = B[A]. From now on, when we write the superscript B, we are referring
to the construction of B[A].

In the following lemma we show that δs is a good approximation to TPB .

Lemma 3.5. Let α = TPA � k and β = TPB � k, where k = 2n and n = 〈F, i, e〉.
(1) If α ⊆ αs0 , then β ⊆ δs0 .
(2) If s0 is an α-expansionary true stageA, then t0 = δs0(k) is a β-expansionary

true stageB. Moreover, for every α-stageA s ≥ s0, t0 ≤ δs(k).
(3) If s0 is an α-expansionary true stageA, and s1 is and α-stageA, s0 < s1,

then δs0(k) < δs1(k) ⇐⇒ αs0(k) < αs1(k).
(4) If s0 is a true stageA, then t0 = δs0(k) is a β-expansionary true stageB.
(5) If TPA � k + 1 ⊆ αs, then TPB � k + 1 ⊆ δs.

Proof. We prove the lemma by simultaneous induction on n. Let α′ = α � k−1 and
β′ = β � k− 1. From part (5) of the induction hypothesis, we have that if α′ ⊆ αs0 ,
then β′ ⊆ δs0 (because α′ = TPA � 2(n − 1) + 1). If also α ⊆ αs0 , then, by Lemma

3.2.2c, Â[<n]
s0,k = A[<n], and hence ˜̂

A
[n−1]
s0,k = Ã[n−1]. Therefore, the computation of

δs0(k − 1) is correct. This proves part (1).
To prove (2), we start by showing that t0 is a β-expansionary true stageB[Âs0,k].

Since t0 = β
B[Âs0,k]
tn,s

(k), it is clear that it is β-expansionaryB[Âs0,k]. It is a β-

true stageB[Âs0,k] because t0 < pA
α (s0), t0 ≺

B[Âs0,k]

β s0 and s0 ∈ TA
α . The second

observation is that since Âs0,k � s0 = A � s0 (this is by Lemma 3.2.3d), the first s0 (≥
t0) stages of the computations of B[Âs0,k], and of B[A] are the same. This implies
that t0 is a β-expansionary true stageB . Moreover, if s ∈ SA

α and s > s0, then
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Âs0,k � s0 = Âs,k � s0 = A � s0. As above, this implies that t0 is a β-expansionary

true stageB[Âs,k]. Then, since t0 ≺
B[Âs,k]
β s and t0 < pA

α (s), t0 ≤ δs(k).
Let us prove part (3). Let t0 = δs0(k) and t1 = δs1(k). From the proof of

part (2) we get that t0 is a β-expansionary true stageB[Âα,s1 ] and t0 ≤ t1. So,
t1 > t0 iff lB[Âα,s1 ](n, t1) > lB[Âα,s1 ](n, t0). Note that lA(n, s1) = lB[Âα,s1 ](n, t1)
and that, since the first s0 stages in the computations of B[Âs0,k], and of B[Âs1,k]
are the same, lB[Âα,s1 ](n, t0) = lB[Âα,s0 ](n, t0) = lA(n, s0). So, t1 > t0 iff lA(n, s1) >
lA(n, s0). We have that lA(n, s1) > lA(n, s0) iff there is and α-expansionary stageA

s̄, s0 ≺A
α s̄ �A

α s1, which happens iff αs1(k) > αs0(k).
For part (4), let s1 = αs0(k). s1 is an α-expansionary stageA, and it is �A

α s0.
Since s0 is α-true, so is s1. Then, by part (2), δs1(k) is a β-expansionary true
stageB . Since αs0 = s1 = αs1(k), by part (3), t0 = δs0(k) = δs1(k). So t0 is a
β-expansionary true stageB .

For part (5), let s0 = TPA(k) and t0 = δs0(k). We claim that t0 = TPB(k).
Since s0 is and α-expansionary true stageA, from (2), we have that t0 is a β-
expansionary true stageB . We have to show that it is the last one. Suppose,
toward a contradiction, that t1 > t0 is a β-expansionary true stageB . Let s1 ∈ TA

α

be such that t1 < pA
α (s1) and As1 � t1 = A � t1. Then we have that t1 is a β-

expansionary true stageB[Âs1,k] and t1 ≤ tn,s1 . So δs1(k) ≥ t1 > t0 = δs0(k), and
hence αs1(k) > αs0(k), which contradicts the fact that s0 is the last α-expansionary
true stage. Now, we have to show that for any (α∧s0)-stageA s, δs(k) = t0. Since
αs(k) = s0 = αs0(k), δs(k) = δs0(k) = t0. �

Lemma 3.6. Let α = TPA � k and β = TPB � k, where k = 2n and n = 〈F, i, e〉,
and assume that Ã[<n] is finite.

(1) If s0 ∈ Tα, t0 = δs0(k) and l = dlA(n, s0)e, then

{e}BF,t0,k[Âs0,k]
t0 � l = {e}BF � l.

(2) If l ∈ 1
2 · ω and l ≤ ln, then there exists an α-expansionary true stageA s0

such that lA(n, s0) ≥ l.

Proof. Let s1 = αs0(k). By Lemma 3.2.3d, Âs0,k � s1 = A � s1. Then, since t0 ≤ s1
(this is because αs0(k) = αs1(k), and hence, by Lemma 3.5.3, t0 = δs0(k) = δs1(k) ≤
s1),

{e}BF,t0,k[Âs0,k]
t0 �dlA(n, s0)e = {e}BF,t0,k

t0 �dlA(n, s0)e.
By Lemma 3.4.1, and since t0 ∈ Tβ (this is by 3.5.4),

{e}BF,t0,k

t0 �dlB(n, t0)e = {e}BF �dlB(n, t0)e.

Part (1) now follows, since lA(n, s0) = lB(n, t0).
For part (2) we use Lemma 3.4.2. So we get a β-expansionary true stageB t0

such that lB(n, t0) ≥ l. As in the proof of 3.5.5, there is a stage s0 ∈ TA
α such that

the first t0 stages of the computations of B[Âs0,k], and of B[A] are the same and
δs0(k) ≥ t0. Therefore lA(n, s0) = lB(n, δs0(k)) ≥ lB(n, t0) ≥ l. �

3.5. Verifications. Now we show that A and B = B[A] are as we wanted.

Lemma 3.7. If |TPA| ≥ 2n, where n = 〈F, i, e〉, and Ã[<n] is finite, then {e}BF 6=
Di.
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Proof. Suppose, toward a contradiction, that {e}BF = Di. We will show that
then Di ≤T DF contradicting the hypothesis. Let α = TPA � k, where k = 2n.
Given p ∈ ω, we want to find Di(p) recursively in DF . Find s0 ∈ TA

α , such that
lA(α, s0) > p. Such an s0 exists because of Lemma 3.6.2, and we can find it
recursively in TA

α ≤ DF . Then, by Lemma 3.6.1,

Di(p) = {e}BF (p) = {e}BF,t0,k[Âs0,k]
t0 ,

where t0 = δs0(k). �

Lemma 3.8. For all n, if n = 〈F, i, e〉, then

(1) {e}BF 6= Di;
(2) |TPB | ≥ 2n+ 1.
(3) |TPA| ≥ 2n+ 1;
(4) A[n] =∗ E[n] and |TPA| ≥ 2n+ 2
(5) B[n] is finite, |TPB | ≥ 2n+ 2.

Proof. We prove the lemma by induction on n. Suppose the lemma is true for
all m < n. By part (4) of the inductive hypothesis we have that |TPA| ≥ 2n
and Ã[<n] is finite. So, Lemma 3.7 implies (1). Then, Lemma 3.4.3 implies (2).
To prove (3) we observe that if s0 < s1 are α-expansionary true stagesA, then
δs0(2n) < δs1(2n) (this is by 3.5.3). Then, by Lemma 3.5.2 both δs0(2n) and
δs1(2n) are β-expansionary true stagesB . But then, since there are only finitely
many β-expansionary true stagesB , there are only finitely many α-expansionary
true stagesA. Hence TPA(2n) exists. Part (4) is now implied by Lemma 3.2, parts
2d and 2b. This also implies that Ã[n] is finite and the last part follows, again by
Lemma 3.2, parts 2d and 2b. �

From the previous lemma we get that |TPA| = |TPB | = ω, and that all the
requirements Nn and PA

n are satisfied. What is left to show is that for all F ⊂ G,
B′

F ≡T 0′′ and that 0′′ ≡T B ⊕ 0′.

Lemma 3.9. For all F ⊂ G, TPA ≡T 0′′ ≡T (BF )′.

Proof. Clearly TPA ≤T 0′′. We can compute 0′′, from (BF )′, because A ≤T BF and
0′′ ≤T A′. Now we show how to compute (BF )′ from TPA. Fix F and i ∈ G r F .
We claim that

{e}BF (0)↓ ⇐⇒ {e}BF,t0,k[Âs0,k]
t0 (0)↓,

where s0 = TPA(k), t0 = TPB(k), k = 2n and n = 〈F, i, e〉. The implication from
right to left is because of Lemma 3.6.2. For the other direction, is because of Lemma
3.6.1. �

Lemma 3.10. TPA ≡T 0′′ ≡T B ⊕ 0′.

Proof. We know that TPA ≡T 0′′ and that B⊕ 0′ ≤T 0′′ because B is r.e. in an r.e.
set. Now we prove that TPA ≤T B ⊕ 0′. By induction on n we compute

• TPA(2n),
• TPB(2n),
• TPB(2n+ 1), and
• TPA(2n+ 1),
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recursively in B ⊕ 0′. By Lemma 3.2.3b, we have that

TPA(2n) = lim
s∈T A

α

αs(2n),

where α = TPA � 2n. Since TA
α ≤ DF (where F is such that n = 〈F, i, e〉), we can

compute this recursively in D′
F ≡T 0′. Then we compute TPB(2n) = δs(2n), where

s = TPA(2n) (this is because of Lemma 3.5.5). Now, let

zn = µz
(
〈n, z〉 ≥ TPB(2n) & z 6∈ B[n]

)
.

From the construction, since TPB(2n) = lim inftR
B(n, t), it has to be the case

that zn 6∈ Ã[n] (otherwise it would be eventually enumerated into B[n]). Hav-
ing this information, we can compute TPB(2n + 1) = µz(z 6∈ Ã[n]) recursively in
A ≤T 0′. Then we can compute limxE(〈n, x〉) = limxA(〈n, x〉) = A(〈n, zn〉). If
limxE(〈n, x〉) is 1, then TPA(2n+ 1) = i, and if it is 0, then TPA(2n+ 1) = µx(x 6∈
E[n]) which can be computed from E ≤T 0′. �

This finishes the proof of Proposition 3.1.
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