PRIMITIVE RECURSIVE PROGRAM TRANSFORMATION *

R. S. Boyer, J S. Moore, and R. E. Shostak

ABSTRACT

We describe how to transform certain flowchart
programs into equivalent explicit primitive recursive
programs. The input/outpul correctness conditions for the
transformed programs are more amenable to({;roof than the
verification conditions for the corresponding flowchart
prozrams. In particular, the transformed correctness

conditions can often be verified automatically by the
theorem prover developed by Boyer and Moore [lﬁ.

KEY WORDS

flowcharts, LISP, program verification, structural
induction, theorem proving.

INTRODUCTION

Experiments with the theorem prover developed by R.
Boyer and J Moore [1] have shown that structural
induction in combination with symbolic evaluation and
some generalization heuristics can be used (o prove
properties of a wide variety of LISP functions completely
automatically. The Xev property of these functions making
them amenable to induction is their explicit primitive
recursive specification. Roughly speaking, the explicit
primitive recursive form produces the effect that when the
formula to be proved in the induction conclusion is
symbolically evaluated, it assumes the form of the
induction hypothesis.

In order to use the theorem prover on flowchart
programs, it is necessary to translate the flowcharts into
functional form. The easiest approach is that described in
McCarthy [3] which produces partial recursive
specifications. One is then forced either to extend the
theorem prover to cope with a limited class of partial
recursive specifications (as Moore does in [4]) or to
further transform these specifications @where possible) into
explicit primitive recursion. In this paper we are concerned
with the second approach.

* This work was supported in part by
the Office of Naval Research under
Contract No, N00014-75-C-=0816, : by
the Air Force Office of Scientific
Research under Contract No. F44620-
73=-C=0068, and by Xerox Palo Alto
Research Center.

Of course, not all programs compule primitive
recursive functions (for example, programs that compute
Ackermann’s function or that interpret FORTRAN
programs compute partial "recursive, but not primitive
recursive functions.) Furthermore, it 1is undecidable
whether a function for which a partial recursive definition
is given is primitive recursive. Thus, the method described
here is not applicable to arbitrary flowchart programs, but
only to those fitting certain schemes known to describe
primitive recursive functions.

AN EXAMPLE

Our approach is best outlined with an example.
Although we have restricted our presentation to the domain
of lists and numbers, the general ideas are more broadly
applicable.

Figure | shows a flowchart program computing the
function int(x) that converts a binary number represented
as a list of 1's and 0's into an integer. The program scans
the input list from left to right. At each position scanned,
it doubles the value of an accumulator A and adds the
value of the scanned bit. After all bits have been scanned,
the value of the accumulator is returned.

Consider the theorem stating that left-shifting a binary
number (i.e., tacking a 0 onto the right end) has the effect
of doubling that number's value: .

(1) int(append(L,1list(0))) = 2*int(L),

where L is understood to be a universally quantified
variable ranging over all lists of 1’s and 0's.

The first step in proving the theorem. is to convert the
flowchart program into functional form. McCarthy [3] has
shown that one can do this in a mechanical way for
arbitrary flowchart programs by introducing a new
recursive function for each tag point. In the above
example, one obtains:

int(x)} = intl(x,0),

ae0

x = NIL Yes . return(a)

-~

No

a«car(x) +2%*a

x « cdr(x)

FIGURE 1

where

intl(x,a) =
if x = NIL
then a;
else intl(cdr(x),car(x)+2%a).

The theorem to be proved can now be stated:

(2) intl(append(L,list(0)),0) = 2*int1(L,0). -

One might now be tempted to try to prove (2) using
structural induction on L. The basis case, L = NIL, goes
through easily because both sides of (2) symbolically
evaluate to 0. The induction step, however, does not go
through. For that step, one assumes the induction
hypothesis (1), and tries to prove:

(3) intl{append(cons(B.L),1ist(0)},0)

2*int1{cons(B,L),0),
where B is a variable ranging over the set {0, 1}.
Symbolically evaluating both sides of (3) gives:
(4) inti(append(L,list(0)),B) = 2*int1{L,B).

At this poinl, if all had gone well, we would have been
able to invoke the induction hypothesis (2) and been done.
But although (4) is similar to (2), it is not quite the same.
Specifically, the second argument place’ of intl is filled
with 0 in the one case and with B in the other.

The source of the difficulty is that the form of the
definition of int1 is not primitive recursive. In particular,
the primitive recursive form requires all parameters but the
"control” parameter (i.c., the one in the first argument
position of intl) to be unmodified in the internal
recursive calls. In the definition of intl, however, the
second argument is changed from a to car(x)+2*a.

" TRANSFORMATION TO PRIMITIVE RECURSION

The solution we propose here is to transform the non-
primitive recursive definition of intl into one that is

" primitive recursive. The transformation works on all

functions that are instances of the scheme:

f(x,y) = if p(x) then g(x,y)
else f(n(x),h(x,y)),

. where p, g, n, and h are primitive recursive.

The primitive recursive transform of f is f*:

£'(x.y) = _
g(finalx(x),finaly(rev(seqx(x)).y))

~where finalx, finaly, and seqx are primitive recursive

functions whose definitions are exhibited below:

finalx(x) = if p(x) then x
else finalx(n(x)),

finaly(xl,y) =
if x1=NIL
then y .
else h(car(xl1),
finaly(cdr(xl).y),

seqx(x) = if p{x) then NIL
else cons(x,seqx(n(x))).

and rev is the primitive recursive function which reverses
a list:

rev(x) =
if x=NIL then NIL
else append(rev(cdr(x)}),
list{car(x))).

The justification for the theorem:
f{Xg.Yg) = ['(Xg.Yg)

is as follows: Let X, denote ni(xo) and let k be the
smallest non-negative integer such that p(X,), then

&) f(Xg.Yg)
g(Xy, h(Xp qs h(xk-z.t..'.h(xo,vo)...))).
However, ‘
finalx(Xg) = X,

and

seqx(Xo) = (X0 X ... xk-l)’
Thus,

rev(seqx(xo)) = (Xk_1 xk-2 . X1 Xo)
so that

finaly(rev(seqx(xo)) .Yo)

h(xk_l.h(xk_z.....h(xo.vo)...'i).
Therefore,
£'(Xg.Yg)
(X h(Xy_y h(Xyg. . 0(Xp,Yg). .2)))s
which is just f(Xg.Yg) by (5).

Informally, seqx constructs a list of the successive
values x will take on during the computation of f. This
list, in reverse order, is then given to finaly which
computes the final value of the "accumulator” y. This
value, and that of finalx which is the final value of x, is
then given to g to compute the final output of f.

In the special case where p(x) is x=NIL, n(x) is cdr(x},
and h(x.,y) can be expressed as a function, h', of car(x)
and y the transform is simpler:

f'{x.y) = g(NIL,finaly(rev(x).¥)).

where we use h* for h in the definition of finaly. The
informal justification of this is that if the final y can be
computed only in terms of the car's of the successive
values of x, then we need not compute the sequence of x

values but merely the sequence of car(x) values. But if p
and n are as above this sequence is just x.

It is easy to see that intl is an instance of the scheme
described by f, and in fact is an example of the simpler
case, since we can let

p(x) = x=NIL

glx,y) = ¥

n(x) = cdr(x)

h(x,y) = car(x) + 2°y.

Thus, we get
intl'(x,a) = finala(rev(x),a).
where finala is:

finala(x,a) =
if x=aNIL
then a
else
car(x)+2*finala(cdr(x),a).

Given this definition of intl', the example theorem:
(2) intl(append(L,list(0)),0) = 2*int1(L,0),
becomes:
finala(rev(app(L,1ist(0))).0)
2'finala(:ev(L).0).
While this theorem is somewhat more complicated
(syntactically) than (2), all of the functions in it are

primitive recursive and it can be proved immediately by
the theorem prover described in [1].

 DISCUSSION

The idea that flowchart programs can sometimes be
replaced by equivalent explicit primitive recursive functions
was first mentioned in the 1934 work of R. Peter [5]. To
quote from Peter ([5]. pp. 69):

»5. it may be seen in a similar way that in general a
recursion of the form

(0.2) = a(a),

@(n+1,3) = :
B(nag(ny(na))o(ny,y(na)...olny (na))

and even a definition of the form

@(0a|,a,) = ala..ap)

p(n+la l"“'ar) =

ﬂ(n,al,....ﬂr.
enyy(nay.—ad..y(nay..al)
o(nyy(nay..ap.. yzr(n.al,...,ar)),

avey

e(nyg(najea).yy (nag,.a)))

of a function with arbitrarily many argument places does
not lead out from the class of primitive recursive

functions.”

Peter's result for the two argument case is easily seen,
since it is just the theorem:

[(X.Yg) = £'(Xg.Yg),

justifiecd above. This theorem can actually be proved
completely automatically by the modified theorem prover
described in [4]. Peter’s proof of the theorem is somewhat
complicated because she carries it out in number theory
where a Goedel enumeration method must be used to
express the notion of the list of x's used in the
computation of £,

As noted in the introduction, it is possible to avoid
the translation of the partial recursive specifications into
primitive recursive ones and still prove many theorems.
Moore [4] describes how. Roughly stated, Moore's
approach requires two enrichments of the original theorem
prover. First, the induction principle must be strengthened
« that to prove @(X,Y) for all X and Y, where Y is used
as an accumulator in some function f in @, one first
Troves 9(0,Y) for all Y, and then inductively assumes
(X.e(X+1,Y)) for any expression e, and proves
‘@(}1.Y). Moore explains why this is a valid induction
prixple (also cf. Goodstein [2], pp. 123). The choice of
she oxpression e is left to the theorem proving process, and
Moore explains how it can be determined from the
akefmaion of f. The second augmentation required in {4}
'« the extension of the generalization heuristic so that
txumulator argument positions which initially contain
amtants can be replaced by expressions containing free
voriables, allowing the use of the induction method above.
“Hhis generalization introduces a mew function, called the
“rxumulator function®”, into the accumulator positions, It
tutns out that Moore's accumulator function is just our
frnaly,

The method of translation into primitive recursive
fo¢m pfoposed in this paper does not require either the
~iched form of induction or the subtle generalization,

We have found that proofs of many thcorems

olving £* are complicated by the introduction of terms
*#Nas finaly(append(x,y).z). due to the expansion of
@ .rev call in £*. However, use of the lemma:

This is a pood example of why future number theory
foures should be taught using Pure LISP as the meta-

Toage.

finaly(append(x,y),z)

finaly(x,finaly(y.z)),

(which can be proved by the theorem prover) allows these
terms to be further simplified.

In fact, the use of this equality usually yields the same
femma produced by accumulator generalization and
induction in [4].

.

REFERENCES

[1] Boyer, RS. and Moore, J Strother. Proving theorems
about LISP functions. J. ACM 22, 1 (January 1975),
pp. 83-105.

[2] Goodstein, R. L. Studies in logic. North-Holland
Publishing Company, Amsterdam, 1964,

+ [3] McCarthy, J. Recursive functions of symbolic functions

and their computation by machine. C. ACM, 3 (April
1960).

[4] Moore, J Strother. Introducing iteration into the Pure
LISP Theorem Prpver. 1EEE Transactions on Software
Engineering, SE-1, No. 3 (September 1975), pp. 328-
338. .

[5] Peter, R. Recursive functions. Academic Press, New
York, 1967, pp. 63-69.

