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Introduction.

When I returned to the CRM after a month’s break in September 2003 I
discovered that Sy Friedman had been squatting in ‘my’ office in my ab-
sence. The main trace he had left was a CRM preprint giving a forcing
construction exploiting conditions with finite ‘working parts.’ This was un-
canny as completely coincidentally I had been working on just such forcing
constructions before I left.

After a couple of weeks I eventually got around to reading the preprint and
started wondering about recasting the argument in my preferred formalism.
I arrogantly assumed that this would allow one to smooth out parts of the
proof and simplify the details of the definition of the forcing conditions (at
the cost of taking the framework set out in §§1,2 below as given). However
when I tried to write things down I found myself, to my chagrin, more or less
cornered in making my definitions into most of the intricacies that Friedman
had been. I suppose that this shows that the original proof is in some
sense the natural one (or one of a family of ‘natural’ ones). Nevertheless I
obstinately persisted and this note is the result.

There are a couple of excuses for making the note public. First of all, putting
the constuction into the same framework as previous ones helps clarify its
relationship to them. At the same time it opens up the possibility of mixing
and matching, or using the construction as a component in more compli-
cated M-proper forcings. Thirdly, the argument that ω2 is preservered is
perhaps conceptually a little simpler than Freidman’s. How strong these ex-
cuses are is for the reader to judge. A fourth reason is that the construction
is, unlike Friedman’s, repeatable. I discuss this further below.

Finally, the proof yields more than Friedman’s does (at least explicitly).
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Spanish Ministry of Education. Throughout I have been a research fellow at University

College London. I would like to thank these institutions for their support.
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This is because hypothesis that Friedman used is that ω2 is the L-sucessor
of ω1, whereas here all that is needed is the existence of a stationary (ω1, 1)-
simplified morass. In order to establish the consistency of the non-existence
of such a simplified morass one needs to assume the consistency of the
existence of an inaccessible cardinal. The whys and wherefores of this are
explained, for example, in the introduction to [SVM]. Thus ω2 being L-
accessible from ω1 is ample for the proof given here.

This sort of weakening of the hypotheses tends to be regarded as being
intrinsically good. I must confess I personally find the utility and aesthetic
of the proof and technique more interesting than the formal weakening.

Actually one needs to be a little careful about what one claims here because
Friedman’s conclusion is that if there is a constructible very stationary set
with a constructible witness to its ‘very stationary-ness’ then there is a
constructible forcing to shoot a club set through it. The forcing in this
paper will be easily seen to be constructible from the simplified morass
(together with the very stationary set and its witness), while if ω2 is the
L-successor of ω1 then the morass will be constructible. So strictly speaking
the result here generalizes Friedman’s rather than strengthening it.

Nevertheless, the ‘side condition’ parts of Friedman’s forcing conditions are
sets of countable constructible Σ1-submodels of Lβs and one needs to know
that if y is one of these models and γ < β has cofinality ω1 then y ∩ Lγ
is another. Thus the properties of the L-hierachy itself seem to be firmly
embedded in Friedman’s construction. For example, if one has ω2 = ω

L[A]
1

for some set A then one does not have the analogue of Friedman’s result
where ‘constructible’ is replaced by ‘constructible in A’ via an essentially
unmodified version of his proof. This use of the L-hierachy is also why
Friedman’s construction is not repeatable. In contrast, since the stationary
simplified morass remains a stationary simplified morass after the forcing
in this paper the construction here can be repeated. iteration?

Most of the set theoretic notation used in the paper is standard, but it may
be useful to remind the reader of a couple of items.

If X ⊆ On then ssup(X), the strong supemum of X, is the least ordinal
α such that X ⊆ α, and if τ , ν are ordinals with τ < ν then [τ, ν) is the
interval {ξ ∈ On | τ ≤ ξ < ν }. For µ, κ cardinals, µ regular and µ < κ let
Sκµ = {ξ < κ | cf (ξ) = µ}. If the context is clear one simply writes Sµ for
Sκµ .

Definitions, Theorems, Lemmas and so on are numbered separately in each
section. Thus, for example, Fact (4) of §1 is referred to as Fact (4) within
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§1 and as Fact (1.4) elsewhere. The symbol ‘N’ indicates the end of the
statement of a result (a theorem, proposition, lemma or fact) or of a proof.

Definition. If D ⊆ ω2 then a stationary set D0 ⊆ D ∩ Sω1 witnesses that
D is very stationary if for each ξ ∈ D0 the set D ∩ ξ contains a club subset
of ξ.

§1. Background material on morasses and µ+-M-properness.

Definition 1. ([V]) Let κ be a regular cardinal.

M = 〈〈θα | α ≤ κ〉, 〈Fαβ | α ≤ β ≤ κ〉〉

is a (κ, 1)-simplified morass if 〈θα | α < κ〉 is an increasing sequence of
ordinals less than κ, θκ = κ+, and each Fαβ is a collection of maps from θα
to θβ such that the following properties hold:

∀α ≤ κ Fαα = { id}(i)
∀α ≤ β ≤ γ ≤ κ Fαγ = {g · f | f ∈ Fαβ & g ∈ Fβγ }(ii)
∀α < κ

((
Fαα+1 = { id} & θα+1 = θα + 1

)
or

(
Fαα+1 = { id, h} &(iii)

∃σ < θα (h � σ = id & ∀τ (σ + τ < θα −→ h(σ + τ) = θα + τ))
))

∀α ≤ κ (α is a limit ordinal −→ ∀β0, β1 < α ∀f0 ∈ Fβ0α ∀f1 ∈ Fβ1α(iv)
∃γ ∈ [β0 ∪ β1, α) ∃h ∈ Fγα ∃g0 ∈ Fβ0γ ∃g1 ∈ Fβ1γ

(f0 = h · g0 & f1 = h · g1))⋃
{f“θα | α < κ & f ∈ Fακ} = κ+(v)

Definition 2. Let M = 〈〈θα | α ≤ κ〉, 〈Fαβ | α ≤ β ≤ κ〉〉 be a
(κ, 1)-simplified morass. Then F =

⋃
{(α, f) | α < κ & f ∈ Fακ}.

For (β, f) ∈ F and ν ≤ θβ write ςf�ν for ssup(rge(f � ν)).

Definition 3. A (κ, 1)-simplified morass, M, with F as in Definition (2), is
stationary if {rge(f) | ∃α < κ (α, f) ∈ F } is a stationary subset of [κ+]<κ.

Stationary (κ, 1)-simplified morasses exist in L, KDJ and so on, for all
regular cardinals κ, and the usual forcing ([V]) for adding (κ, 1)-simplified
morasses adds stationary ones. (Notice that, as the forcing is κ-directed
closed, it is consistent that κ is also supercompact.) The following well-
known, fundamental fact due to Velleman always comes into play when
dealing with simplified morasses.
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Fact 4. (Velleman, [V, Lemma 3.2]) Let α ≤ β ≤ κ, and f , g ∈ Fαβ . If
ν ∈ rge(f) ∩ rge(g) there is some ν < θα such that f(ν) = ν = g(ν) and
f � ν + 1 = g � ν + 1. N

Proof. By induction on β for each α. N

Another two useful facts from [V] are the following.

Fact 5. (Stanley, [V, Theorem 3.9]) If α ≤ β ≤ κ, f ∈ Fαβ and ν < θα then
there is some g ∈ Fαβ such that g � ν = f � ν and g(ν + ξ) = ssup(g“ν) + ξ
for ν + ξ < θα. N

Proof. Again by induction on β for each α. N

Fact 6. (Velleman, [V, Corollary 3.5]) If 〈fi | i < χ〉 is a collection of
maps with each fi ∈ Fαiβ for i < χ and χ < cf (β) then there is some
α ∈ [sup({αi | i < χ}, β), some f ∈ Fαβ and maps gi ∈ Fαiα for all i < χ
such that fi = f · gi for all i < χ. In particular any collection of fewer than
κ maps in F can be factored through some single common map (α, f) ∈ F .

N

A small strengthening of Fact (4) is also well known.

Fact 7. Let α ≤ β ≤ κ, and f , g ∈ Fαβ . If ν, τ ≤ θα and ssup(f“ν) =
ssup(g“τ) then ν = τ and f � ν = g � ν. N

Proof. By induction on β for each α. (For ν, τ < θα this is an immediate
corollary of Facts (5) and (6), without the necessity of a separate inductive
proof.) N

Next we need some notation that will be useful in specifically in this proof.

Definition 8. For (β, f) ∈ F and ξ < κ+ define f cut (down) at ξ, written
f � ξ, as follows. Let ν ≤ θβ be maximal such that f“ν ⊆ ξ. Then f � ξ is
f � ν and (β, f) � ξ is (β, f) � ν. Of course, (β, f) � κ+ is just (β, f); and
using the notation of Definition (1.2) one has that ςf�ξ is ssup(f ∩ ξ).

Definition 9. If X ⊆ Sκ
+

κ , (β, f) ∈ F and ν ≤ θβ then define hX(β, f � ν),
the X-height of (β, f) � ν, to be the least ξ ∈ X ∪ {κ+} such that f“ν ⊆ ξ.

Definition 10. If I ∈ [κ+]1∪ [κ+]2 write I− for min(I) and I+ for max(I).

Definition 11. If a ⊆ [κ+]1 ∪ [κ+]2 let Xa = {I− | I ∈ a} ∩ Sκ.

Definition 12. If a ⊆ [κ+]1 ∪ [κ+]2 and A ⊆ F let

A =
{

(β, f) � ξ
∣∣ (β, f) ∈ A & ξ ∈ Xa ∪ {κ+}

}
.
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Fact 13. Note that if (β, f) ∈ F , ν ≤ θβ and β ≤ γ < κ then there are
g ∈ Fβγ and h ∈ Fγω1 such that f � ν = h · g � ν and g � ν and h � ςg�ν ,
= h � (ssup(g“ν)), are uniquely defined. This is immediate from Fact (3).
N

Now suppose that M is stationary and let µ = κ− be the cardinal predecessor
of κ. (Up until now everything mentioned was true for any regular κ, but
the following definition as stated only makes sense for successor κ.)

Definition 14. Let λ be a regular cardinal greater than κ+. Then (N , ε) ≺
(Hλ,∈) is a good model if N = µ, {M, F , c, κ, κ+} ∪ µ ⊆ N , N<µ ⊆ N ,
δ = N ∩ κ ∈ κ, there is some F ∈ Fδκ such that rge(F ) = N ∩ κ+, and for
each (α, f) ∈ F with α < δ if there is some f ′ ∈ Fαδ such that f = F · f ′
then (α, f), rge(f) ∈ N .

The following two observations about good models are useful in the next
section.

Lemma 15. If N is good, α < δ, g ∈ Fακ, g′ ∈ Fαδ, g′′ ∈ Fδκ and
g = g′′ · g′ then h(g) = F · g′ ∈ Fακ ∩N (and so (α, h(g)) ∈ F ∩N ). N

Proof. As N is good, if α < δ and g′ ∈ Fαδ then F · g′ ∈ N . N

Lemma 16. If N is good and (α, f) ∈ N then ∃f ′ ∈ Fαδ (f = F · f ′). N

Proof. If (α, f) ∈ N then, firstly, f ∈ N , and, secondly, α < δ, since
δ = N ∩ κ. Since M ∈ N and α ∈ N one has that θα < δ, and hence that
θα ⊆ N . So if ξ < θα then f(ξ) ∈ N . Hence rge(f) ⊆ κ+ ∩N = rge(F ).

Now factor f as k · h, where (δ, k) ∈ F and h ∈ Fαδ. Let θ = ssup(h“θα).
Then there is some ζ ≤ θδ such that ssup(F“ζ) = ssup(k“θ). Consequently,
by Fact (7), one has that ζ = θ and F � θ = k � θ. Thus one also has that
f = F · h. N

However the main point of introducing the notion of a good model is in
order to formulate the following definition and fact.

Definition 17. Let P be a forcing notion with P ∈ Hλ for some regular car-
dinal λ. P is κ-M-proper if there is some x ∈ [Hλ]≤µ such that the following
holds. Suppose p ∈ P and N is a good model with {P, p} ∪ x ∪ p ⊆ N .
Then there is some p∗ ≤ p which is (P,N )-generic.

Fact 18. If P is κ-M-proper then ‖–P µ
+ = κ. N
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Fact 19. In order to prove that P preserves ω2 it suffices to show that: If
p ∈ P, D is a dense and open (below p) subset of P and N ≺ Hω3 is such
that D, p, M, F ∈ N , N < ω2, Nω ⊆ N , δ = N ∩ ω2 ∈ ω2 and cf (δ) = ω1,
there is some p∗ ≤ p such that for any q ≤ p∗ with q ∈ D there is some
s ∈ D ∩N such that q and s are compatible. N

Proof. This is well-known folklore, cf. the “general comment about ω1-
preservation” on the first page of [F]. N

From now onwards suppose that M is a stationary (ω1, 1)-simplified morass,
so that F = {(β, f) | β < ω1 & f ∈ Fβκ }.

§2. Adding a club subset of ω2.

Theorem 1. Suppose there is a stationary (ω1, 1)-simplified morass. Let D
be a very stationary subset of ω2. Then there is an M-proper, ω2-preserving
forcing of size ω2 (and which is thus preserves all cardinals) such that if G
is P-generic over V then V [G] |= “there is a club set C ⊆ D.”

Definition 2. Define a notion of forcing P as follows. p ∈ P if p = (ap, Ap),
where a ∈ [[ω2]1 ∪ [ω2]2]<ω and A ∈ [F ]<ω, and, writing Xp and hp for Xap

and hXap
respectively, the following properties hold.

(a) If I, J ∈ ap then either I+ < J− or J+ < I−.

(b) If I ∈ ap and (β, φ) ∈ Ap then

I− ∈ rge(φ) =⇒ I+ ∈ rge(φ), and(i)
I− /∈ rge(φ) & I− < ςφ =⇒ ∃J ∈ ap J− = min(rge(φ) \ I−).(ii)

(So when I− /∈ rge(φ) and I− < ςφ, one has, using (a), that I+ /∈ rge(φ).)

(c) Suppose (β, f) and (γ, g) ∈ Ap and ξ ∈ Xp ∪ {ω2 } are such that
hp(β, f � ξ), hp(γ, g � ξ) = ξ. Let α < ξ. Then

rge(f � ξ) ⊆ rge(g � ξ) or rge(g � ξ) ⊆ rge(f � ξ), and(i)
if ςf�α = α = ςg�α and g(αγ) < f(αβ) < ξ(ii)
then ∀ν < α ∃τ ∈ (ν, α] ∩ (rge(g) \ rge(f)).

If q, p ∈ P then q ≤ p if ap ⊆ aq and Ap ⊆ Aq.

Reformulations of (c).
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First of all consider (c.i). Assume that β ≤ γ and set dom(φ) = µ
and φ = σ · π, where there is some g ∈ Fβγ such that π = g � µ and
dom(σ) = ssup(π“µ) = ςπ�µ, and let dom(ψ) = ν. Then the conclusion to
(c.i) is equivalent to the assertion that either ςπ�µ ≤ ν and φ = ψ · π or
ν ≤ µ, ψ = σ � ν and π � ν = id.

Secondly, note that it is implicit in the hypotheses of (c.ii) that α < ςφ, ςψ.
By (c.i) they also give that rge(φ) ( rge(ψ) and β < γ since one knows that
min(rge(ψ) ∩ [α, ξ)) = ψ(αγ) < φ(αβ) = min(rge(φ) ∩ [α, ξ)).

Thirdly, (c) is equivalent to the following apparent generalization. If (β, φ)
and (γ, ψ) ∈ Ap and hp(β, φ) = hp(γ, ψ) then

rge(φ) ⊆ rge(ψ) or rge(ψ) ⊆ rge(φ)(i)
if ξ ∈ Xp ∪ {ω2 } and α < ξ are such that(ii)

φ = f � ξ & ψ = g � ξ for some (β, f), (γ, g) ∈ Ap, and
ςφ�α = α = ςψ�α and ψ(αγ) < φ(αβ) < ξ

then ∀ν < α ∃τ ∈ (ν, α] ∩ (rge(ψ) \ rge(φ)).

This is because given such (β, φ), (γ, ψ) and ξ one has φ = φ � h(β, φ),
ψ = ψ � h(γ, ψ) and α < h(β, φ) = h(γ, ψ) ≤ ξ

Finally, a stronger, yet still reasonable, conclusion for (c.ii) is to demand
“ψ(αγ) = α” in place of “∃γ ∈ (ν, α]∩ rge(ψ) \ rge(φ).” This condition will
be satisfied automatically if the elements of Ap are all “good” maps in the
sense of [M*2], for example. However the proof given below goes through
without insisting on this more restrictive condition.

Overview of the relationship between the various clauses of the
definition of P. Let P0 consist of pairs (ap, Ap) ∈ [[ω2]1∪ [ω2]2]<ω× [F ]<ω

satisfying (a), (b) and (c.i), with a similar ordering to that of P. The proof
below, in which (a), (b) and (c.i) are used in an inextricably intertwined
way, shows that P0, as well as P, is M-proper and preserves ω2.

However, the requirement that conditions in P satisfy (c.ii) is more or less
orthogonal to this cardinal-preservation part of the proof of Theorem (6).
One need only carry out the very simple check that the model N in the
proof of M-properness, Proposition (10) below, can be chosen so that the
map (δ, F ) satifies (c.ii) with respect to the maps (β, f) ∈ Ap for the ‘p’
of that proof. This is essentially immediate. Apart from this, (c.ii) is self-
propagating.

The reason one does need (c.ii) is to complete the proof that if G is P-generic
over V then CG = {I− | ∃p ∈ G I ∈ ap} is indeed a club subset of ω2.
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I highlight the five key places in the proof of Theorem (6) where one is
extending conditins and thes considerations are in play by tagging them
(A)-(E).

Before embarking on the proofs that show that P preserves cardinals one
may as well isolate a couple of lemmas concerning adding apices to Ap and
large enough single ordinals to ap for conditions p ∈ P.

Definition 3. (γ, g) ∈ ‘calF is a candidate apex for Ap if ,
⋃
ap ⊆ rge(g)

and for all (β, f) ∈ Ap one has β < γ and there is some kf ∈ Fβγ such that
f = g · kf .

p ∈ P is pointed with apex

Lemma 4. Suppose that p ∈ P and (γ, g) ∈ F is a candidate apex for Ap.
Then p∗ = (ap, Ap ∪ {(γ, g)}) ∈ P0. N

Proof. (a) holds because it does for p and ap∗ = ap.

(b). Let I ∈ ap and ξ ∈ Xp ∪ {ω2 }. By the assumption that
⋃
ap ⊆ rge(g)

one has that I−, I+ ∈ rge(g). If I− < ξ then I+ < ξ by (a) (since there is
some J ∈ ap such that ξ = J−) and so I−, I+ ∈ rge(g) ∩ ξ = rge(g � ξ).
While if ξ ≤ I− then (b) is vacuously true. Thus (b) holds for the elements
of Ap∗ \Ap. (b) holds for elements of Ap since it holds for p.

(c). Clearly if (β, φ), (ε, ψ) are either both elements of Ap or of Ap∗ \ Ap
there is nothing (new) to prove. So suppose that (β, f) ∈ Ap is such that
φ = f � ν for some ν ≤ θβ and that (ε, ψ) = (γ, g) � ξ for ξ = hp(β, ψ)
= hp(γ, g � ξ). By the assumption on (γ, g) one has that f = g · kf . So
φ = f � ξ = (g � ξ · kf ) � ν, as required. N

Remark. Thus p∗ ∈ P if (γ, g) satisfies (c.ii) of the Definition of P with
respect to the maps in Ap.

Definition 5. p is pointed with apex (γ, g) if (γ, g) ∈ Ap and (γ, g) is a
candidate apex for Ap \ (γ, g).

Lemma 6. Suppose p ∈ P and ssup(
⋃
ap ∪

⋃
{rge(f) | (β, f) ∈ Ap}) ≤ ζ.

Then p′ = (ap ∪ {ζ }, Ap) ∈ P. N

Proof. By the assumptions I+ < ζ = min{ζ } for every I ∈ ap, so
(a) holds. Also by the assumptions, ζ /∈ rge(φ) and ssup(rge(φ)) ≤ ζ
for every (β, φ) ∈ Ap, so (b) holds vacuously. Finally Ap′ = Ap and
hp′(β, φ) = hp(β, φ) for (β, φ) ∈ Ap unless hp(β, φ) = ω2 and ζ ∈ Sω1 ,
in which case hp′(β, φ) = ζ. Thus (c) also holds. N
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Proposition 7. P is M-proper. N

Proof. Let p ∈ P and let N ≺ Hω3 be countable and good with p, P
M, F , ω1, ω2 ∈ N , δ = N ∩ ω1 < ω1. Let (δ, F ) ∈ F be such that and
N ∩ ω2 = rge(F ).

I also assume, by the stationarity of M, that if ν < θδ and ςF �ν < F (ν) then
cf (F (ν)) = ω1. (Recall that ςF �ν = ssup(F“ν).)

(A). Let p∗ = (ap, Ap ∪ {(δ, F )}). By Lemmas (8) p∗ ∈ P0. As each
(β, f) ∈ Ap and each ν < θβ are elements of N one has that ςf�ν ∈ N ∩ω2 =
rge(F ). So condition (c.ii) of the definition of P holds for p∗ and p∗ ∈ P.
Clearly p∗ ≤ p. N(A)

I show that p∗ is (P, N )-generic. Let D ∈ N be a dense, open subset of P
and let q ≤ p∗ be such that q ∈ D.

(B). Next set q � N = (aq ∩N , Aq ∩N ). Note that Aq ∩N ⊆ Aq ∩N , but
that equality need not hold.

Claim 8. q � N ∈ P (and hence q ≤ q � N ). N

Proof. One has to show that q � N satisfies (a)-(c) of the definition of P.
Clearly q � N satisfies (a) since q does.

Now consider (b). Suppose I ∈ aq ∩ N and (β, φ) ∈ Aq ∩N , and let
ξ ∈ (Xq ∩N ) ∪ {ω2 } and (β, f) ∈ Aq ∩N , be such that φ = f � ξ.

If I− ∈ rge(φ) then I+ ∈ rge(φ) by (a) and (b.i) for q. So suppose
I− /∈ rge(φ) and I− < ςφ. Thus there is some J ∈ aq with J− = min(rge(φ))
by (b.ii) for q. But then J+ ∈ rge(φ) by (b.i) for q. As N is good one has
that rge(φ) ⊆ rge(f) ⊆ (rge(F )), so J ∈ N . Hence J ∈ aq ∩ N , showing
(b.ii) in this instance as required.

Next look at (c.i). Suppose (β, φ) ∈ Aq ∩N and set hq(β, φ) = ζ and
hq�N (β, φ) = ξ. Hence ζ ≤ ξ. Suppose ζ /∈ rge(F ) and ζ < ςF . So, by
(b.ii) for q, there is some J ∈ aq such that J− = min(rge(F ) \ ζ), and so
J ∈ N ∩ aq.

Recall that if τ ∈ rge(F ) and cf (τ) = ω then τ ∩ rge(F ) is unbounded in
τ ; so cf (J−) = ω1, and thus J− ∈ Xq�N . Hence J− = hq�N (β, φ), that is,
ξ = min(rge(F ) \ ζ). Note that this implies that [ζ, ξ) ∩ rge(F ) = ∅, and
that ξ < ω2.

Now suppose hq�N (β, φ) = hq�N (γ, ψ) < ω2 and hq(β, φ) < hq(γ, ψ). Write
ξ for hq�N (β, φ). Then there is some τ ∈ rge(ψ) ∩ [hq(β, φ), hq(γ, ψ)). But
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rge(ψ) ⊆ rge(F ) and so τ ∈ [hq(β, φ), ξ) ∩ rge(F ), a contradiction.

Hence if hq�N (β, φ) = hq�N (γ, ψ) < ω2 then hq(β, φ) = hq(γ, ψ), and so
(c.i) holds by (c.i) for q.

If, alternatively, ξ = ω2 then ζ is the least element of Xq ∪ {ω2 } \ ςF , and
again (c.i) holds by (c.i) for q.

Finally, (c.ii) for q � N is immediate from (c.ii) for q since Aq ∩N ⊆ Aq.
N(B)

Notation 9.

〈(βi, fi) | i < χ〉 enumerate 〈(α, f) ∈ Aq | α < δ 〉 for some χ < µ.Let
Yi = rge(fi) ∩ rge(h(fi)) for i < χ.Let
Yi = rge(fi) ∩ rge(F ) for all i < χ as well.Note that
ρi = ssup({ρ < θαi

| fi(ρ) = h(fi)(ρ)}).Let
Yi = rge(fi � ρi) = rge(ψ(αi,ρi),(κ,fi(ρi)) � ρi).Then
β∗ = ssup({βi | i < χ}).Let

Note that as Yi is an initial segment of rge(h(fi)) ⊆ rge(F ) = N for i < χ
(by Fact (1.4)), one has that Yi ⊆ N for each i < χ. Note also that Yi ∈ N
and as N<µ ⊆ N one has that 〈Yi | i < χ〉 ∈ N .

Let Φ(x) be the conjunction of the following:

(i) x ∈ D, (ii) x ≤ q � N , and

(iii) ∃(α∗, h∗) ∈ Ax with β† < α∗ such that

∀(β, f) ∈ Ax
(
β < β∗ −→ ∃i < χ (rge(f) ∩ rge(h∗) = Yi)

)
,(1)

∀i < χ ∃(βi, f) ∈ Ax
(
rge(f) ∩ rge(h∗) = Yi & ∃f ′′ ∈ Fα∗κ(2)

∃f ′ ∈ Fβα∗f = f ′′ · f ′ −→ rge(h∗ · f ′) ∩ rge(f) = Yi
)
,

aq�N ⊆ rge(h∗),(3)
(ax \ aq�N ) ∩ rge(h∗) = ∅,(4)

(C). Then Hκ++ |= “Φ(q)”. So by the elementarity of N in Hκ++ there is
some s ∈ N with N |= Φ(s). Set ar = as ∪ aq and Ar = As ∪Aq.

Claim 10. r ∈ P (and so r ≤ q, s). N

Proof. (a). The only new cases to verify are when {I, J } /∈ [as]2 ∪ [aq]2.
So let I ∈ as \ aq and J ∈ aq \ as. Note that I−, I+ ∈ rge(F ).
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If J− ≥ ςF then clearly I+ < J−. Otherwise J− /∈ rge(F ) and J− < ςF .
So, by (b.ii) for q, if J− ≤ I+ then J+ < min(rge(F ) \ J−) ≤ I−. N(a)

(b). Let I ∈ ar and let (β, φ) ∈ Ar, with (β, φ) = (β, f) � ξ for some
(β, f) ∈ Ar and ξ ∈ Xr ∪ {ω2 }.

There are four cases to consider for each clause of (b):

I ∈ as and (β, f) ∈ As(1)
I ∈ aq and (β, f) ∈ Aq(2)
I ∈ aq \ as and (β, f) ∈ As \Aq(3)
I ∈ as \ aq and (β, f) ∈ Aq \As(4)

(b.i) Suppose that I− ∈ rge(φ). Note, by (a), that I+ < ξ.

Case (1). Since φ = f � ξ one has I− ∈ rge(f). Thus I+ ∈ rge(f), by (b.i)
for s and I, and hence I+ ∈ rge(φ) = rge(f) ∩ ξ, as required.

Case (2). Exactly the same argument, with s replaced by q, also shows (b.i)
holds here.

Case (3). One has I− ∈ rge(φ) ⊆ rge(f) ⊆ rge(F ), since all maps in As
factor through (δ, F ). So, by (b.i) for q applied to I and (δ, F ), one has
that I+ ∈ rge(F ) ⊆ N . Hence I ∈ aq ∩ N ⊆ as, contradicting the case
hypothesis. Thus this case cannot occur.

Case (4). As I ∈ as one has that I−, I+ ∈ rge(F ), since s ∈ N . Let ζ be
least in Xq \ (I− + 1). By (a) one has that ar is linearly ordered and so
I+ < ζ. Thus hq(δ, F � ζ) = hq(β, f � ζ) = ζ. So rge(F � ζ) ⊆ rge(f � ζ) or
vice versa, by (c) for q.

In the former case I+ ∈ rge(f). Hence I+ ∈ rge(φ), = rge(f)∩ξ, as required.

Otherwise one has that β < δ. Hence there is some (β, g) ∈ As such that
(β, g) � ζ = (β, f) � ζ by clauses (iii.1) and (iii.2) of Φ, since there is some
i < χ such that rge(f)∩ζ ⊆ Yi. As I− ∈ as∩rge(g) one has that I+ ∈ rge(g)
by (b.i) for s. So, again, I+ ∈ rge(g) ∩ ξ ∩ ζ ⊆ rge(φ). N(b.i)

(b.ii) Now suppose that I− /∈ rge(φ) and I− < ςφ(< ξ).

Case (1). One has I− < ςf�ξ and I− /∈ rge(f), since φ = f � ξ. So, by (b.ii)
for s, there is some J ∈ as with J− = min(rge(f) \ I−) = min(rge(φ) \ I−),
as required.

Case (2). Exactly the same argument, with s replaced by q, again shows
that (b.ii) holds.
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Case (3). As I /∈ aq ∩ as it must be the case that I−, I+ /∈ rge(F ),
by (b) for q, since ςφ ≤ ςf < ςF . So there is some J ∈ aq such that
min(rge(F ) \ I−) = J−.

As J− ∈ rge(F ) one has that J+ ∈ rge(F ) by (b.i) for q applied to J and
(δ, F ), and hence that J ∈ aq ∩ N , = aq ∩ as. Clearly, as rge(φ) ⊆ N , one
has that J− ≤ min(rge(φ) \ I−).

If equality holds there is nothing more to prove.

Otherwise, J− /∈ rge(φ) and J− < ςφ. So there is some K ∈ as such that
K− = min(rge(φ) \ J−) = min(rge(φ) \ I−), by (b.ii) for s applied to (β, φ)
and J , and this K witnesses (b.ii) for I and (β, φ).

Case (4). As I ∈ as one has that I−, I+ ∈ rge(F ). Let ζ be least in
Xq \ (I+ + 1) and let J ∈ aq be such that ζ = J−.

If ζ = min(rge(φ) \ I−) there is nothing more to prove.

If ζ < min(rge(φ) \ I−) then there is some K ∈ aq such that K− =
min(rge(f) \ J−) = min(rge(φ) \ J−) = min(rge(φ) \ I−), by (b.ii) for q
applied to J and (β, f).

Finally, if ζ > min(rge(φ) \ I−) then hq(F � ζ) = hq(f � ζ). So one has that
rge(F � ζ) ⊆ rge(f � ζ) or vice versa, by (c) for q.

The former is impossible since I− ∈ rge(F � (ζ ∩ ξ)) \ rge(φ). Hence, as in
the proof of the corresponding case of (b.i), there is some (β, g) ∈ As such
that f � ζ = g � ζ. By (b.i) for s applied to (β, g) and I there is some J ∈ as
such that J− = min(rge(g) \ I−) = min(rge(φ) \ I−), as required. N(b.ii)

(c.i) Let (β, f), (γ, g) ∈ Ar, and let ξ ∈ Xr ∪ {ω2 } be such that h(β, f � ξ),
h(γ, g � ξ) = ξ. Let φ = f � ξ and ψ = g � ξ.

I start with a few useful elementary remarks.

Firstly, note that if ζ ∈ Xt, where t is any of r, q and s, then ht(β, f � ζ) ≤ ζ,
and (β, f) � (ht(β, f � ζ)) = (β, f) � ζ.

Next, note that if ξ ∈ Xs then hs(β, φ) = hs(γ, ψ) = ξ. Similarly, if ξ ∈ Xq

then hq(β, φ) = hq(γ, ψ) = ξ. Thus if all of the data comes from s or it all
comes from q one has (c.i) by (c.i) for s or q, respectively.

Thirdly, note that if ξ ∈ Xs then hq(β, φ) = hq(γ, ψ) = min((Xq∪{ω2 })\ξ).
Similarly, if ξ ∈ Xq then one hs(β, φ) = hs(γ, ψ) = min((Xs ∪ {ω2 }) \ ξ).
Thus in each case one has both hq(β, φ) = hq(γ, ψ) and hs(β, φ) = hs(γ, ψ).
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Eliminating duplicates and the two cases dealt with by (c) for s and for q
respectively by using the second observation above, leaves (without loss of
generality) the following four cases.

(β, f), (γ, g) ∈ As and ξ ∈ Xq(1)
(β, f), (γ, g) ∈ Aq and ξ ∈ Xs(2)
(β, f) ∈ Aq & (γ, g) ∈ As and ξ ∈ Xs(3)
(β, f) ∈ Aq & (γ, g) ∈ As and ξ ∈ Xq(4)

Case (1). Let hs(β, φ) = hs(γ, ψ) = η. Clearly one has ξ ≤ η = hs(β, φ) ≤
hs(β, f � η) ≤ η and similary ξ ≤ η = hs(γ, g � η). So one can apply (c.i)
for s to (β, f � η), (γ, g � γ) and η.

Case (2). Identical to Case (1) with the rôles of s and q exchanged.

Case (3). Let η = hq(β, φ) = hq(γ, ψ). Then η = hq(δ, F � η) since
rge(ψ) ⊆ rge(F ) ∩ η. By (c.i) for q one has rge(F ) ∩ η ⊆ rge(f) ∩ η or
rge(f) ∩ η ( rge(F ) ∩ η.

In the former case rge(ψ) = rge(ψ) ∩ ξ ⊆ rge(F ) ∩ η ⊆ rge(f) ∩ η ⊆ rge(φ).
In the latter case, by the properties of Φ, there is some (β, f ′) ∈ As such
that f � η = f ′ � η. Now one can finish the proof by applying Case (2).

Case (4). Let hs(β, φ) = hs(γ, ψ) = η. If η = ξ then φ = f � η
and ψ = g � η and one may apply Case (3). Otherwise ξ < η. Then
ξ = hq(δ, F � ξ) since rge(ψ) ⊆ rge(F ). As in Case (3), by (c.i) for q, this
gives rge(F ) ∩ ξ ⊆ rge(f) ∩ ξ or rge(f) ∩ ξ ( rge(F ) ∩ ξ. The remainder of
the argument is now as in Case (3). N(c.i)

(c.ii) In the cases where all of the data comes from s or from q one can
simply apply (c.ii) for the relevant condition to obtain the required instance
of (c.ii) for r. The remaining cases follow a similar pattern to those for (c.i).

Case (1). (β, f), (γ, g) ∈ Aq and ξ ∈ Xs \Xq.

Let ζ = min(Xq \ ξ), so that ζ = hq(β, φ) = hq(γ, ψ). One has that
ξ < hq(β, f � ζ), hq(γ, g � ζ) ≤ ζ. So ζ = hq(β, f � ζ) = hq(γ, g � ζ). Hence
one can apply (c.ii) for q for (β, f � ζ), (γ, g � ζ) and ζ to obtain for each
ν < α some ε ∈ (ν, α) ∩ (rge(g) \ rge(f)).

Case (2). (β, f), (γ, g) ∈ As and ξ ∈ Xq \Xs.

Identical to Case (1) with the rôles of s and q reversed.

Case (3). (β, f) ∈ Aq, (γ, g) ∈ As.

13



Since β < γ one has that β < δ. As s satisfies properties (iii.1) and (iii.2)
of the definition of Φ, and since rge(f � ξ) ⊆ (rge(g � ξ) ⊆ N , there is some
(β, f ′) with (β, f) � ξ = (β, f ′) � ξ. Now apply either (c) for s or Case (2)
to (β, f ′), (γ, g) and ξ to obtain the instance of (c.ii) required.

Case (4). (β, f) ∈ As, (γ, g) ∈ Aq.

Note that f(αβ) ∈ rge(g) and that f(αβ) ∈ N ∩ ω2 = rge(F ).

If δ ≤ γ this immediately gives that rge(F ) ∩ f(αβ) ⊆ rge(g) ∩ f(αβ).

As f , αβ ∈ N one has ςf�αβ
∈ N ∩ ω2 = rge(F ), and thus the required

instance of (c.ii) holds.

Finally, suppose that γ < δ. Thus rge(g) ∩ f(αβ) ⊆ rge(F ) ∩ f(αβ). As in
Case (3), use the definition of Φ and hence s to obtain some (γ, g′) ∈ Aq
such that rge(g) ∩ f(αβ) = rge(g′) ∩ f(αβ).

Then ξ = hr(β, φ) ≤ hr(γ, g′ � ξ) ≤ ξ. Thus one can apply (c.ii) for s or
Case (2) as appropriate to (β, f), (γ, g′) and ξ to obtain the instance of
(c.ii) required. N((c.ii)). N(Claim (10), (C) / Proposition (7))

I next show that forcing with P presrves ω2. The proof is similar to the
proof of Proposition (7), but considerably simpler because the analogue of
the crucial argument in Claim (10) now concerns a ‘head-tail-tail’ amalga-
mation.

(D). Proposition 11. P preserves ω2. N

Proof. Let p, D and N be as in Fact (13). Let p∗ = (ap∪{δ}, Ap). Lemma
(6) shows that p∗ ∈ P and so p∗ ≤ p. Let q ≤ p∗ be such that q ∈ D. With-
out loss of generality assume that q is pointed. Set q � N = (aq∩N , Aq∩N ).

Claim 12. q � N ∈ P and q ≤ q � N .

Proof. The proof is very similar to the proof of Claim (8). In fact the
proofs that q � N satisfies (a) and (b.i) go through verbatim. For (b.ii)
one can also argue exactly as in Claim (11) to get that if I− /∈ rge(φ) and
I− < ssup(rge(φ)) there is some J ∈ aq such that J− = min(rge(φ)) and
J+ ∈ rge(φ). But rge(φ) ⊆ rge(f) ⊆ N ∩ ω2, so J ∈ N .

Ad (c) for q � N note that Xq�N = Xq ∩ N = Xq ∩ δ. So if (β, φ),
(γ, ψ) ∈ Aq ∩N and hq�N (β, φ) = hq�N (γ, ψ) then hq(β, φ) = hq(γ, ψ).
Hence (c.i) holds by (c.i) for q. As in Claim (8), (c.ii) holds for q � N since
Aq ∩N ⊆ Aq. N(Claim (12))
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Notational definition 13. Noting that θβ is countable, that cf (δ) = ω1,
and that {δ} ∈ aq so that there is no I ∈ aq with I− < δ ≤ I+, make the
following definition in order to introduce notation in which to discuss some
of the properties of q.

Let (β, Fq) be the apex of Aq and let ν < θβ be least such that Fq(ν) ≥ δ.
Let F = fδ � ν. Let ε < δ, n < k < ω, B ⊆ k, 〈Ii | i < k 〉, m < ω,
〈fj | j < m〉 and 〈γj | j < m〉 be such that

(
⋃
aq) ∩N , rge(F ) ⊆ ε,•

〈Ii | i < n〉 enumerates aq ∩N in increasing order,•
aq = k and if 〈Ii | i < k 〉 enumerates aq in increasing order,•

then 〈min(Ii) | i ∈ B 〉 enumerates Xq,

〈(γj , fj) | j < m〉 enumerates {(γ, f) | (γ, Fq · f) ∈ Aq },•
where fj ∈ Fγjβ for each j < m.

Let Ψ(x) be the conjunction of the following four items:

x ∈ P, x ∈ D and x ≤ q � N ;
x is pointed with apex (β, Fx) ∈ F , such that

(β, Fx) � ν = F , and Ax = {(γi, Fx · fi) | i < m};
ax = k, 〈Ii | i < n〉 is an initial segment of the increasing

enumeration 〈Ji | i < k 〉 of ax (by least elements),
Xx = {min(Ji) | i ∈ B } and

⋃
〈Ii | i < n〉 = (

⋃
ax) ∩ ε; and

Fx(ν) = min(Xx) \ ε.

Clearly Hω3 |= Ψ(q). Note that F is a countable set of pairs of ordinals
less than ε, and so, by the closure of N is an element of N . Let s ∈ P ∩ N
be such that N |= Ψ(s). Note that N computes cofinalities of ordinals less
than δ correctly, so, in particular, N |= ξ ∈ Xs if and only if ξ ∈ Xs.

Set r = (as ∪ aq, As ∪Aq). Proposition (11) will be proved on showing that
r ∈ P.

That r satisfies (a) is clear since as ∩ aq = aq ∩ N and
⋃
as ⊆ δ while⋃

aq \ aq∩N ∩ δ = ∅.

Now suppose that (β, f) ∈ As and ξ ∈ Xq. Write (β, φ) for β, f) � ξ.
One has ξ ∈ Xs ∩ Xq or δ ≤ ξ. In either case (β, f) � ξ ∈ As. More-
over, if ξ ∈ Xs ∩ Xq then (β, f) � ξ ∈ Aq as well, while clearly if δ ≤ ξ
then (β, φ) = (β, f). Also, hr(β, φ) = hs(β, φ) if hs(β, φ) < ω2, while
hr(β, φ) = δ if hs(β, φ) = ω2. Further, if (β, f) ∈ As and ξ ∈ Xs then,
again, hr(β, φ) = hs(β, φ).
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On the other hand, if (β, f) ∈ Aq and ξ ∈ Xs\Xq then (β, f) � ξ = (β, f) � δ,
so (β, f) � ξ ∈ Aq. Moreover, as (β, f) ∈ Aq then there is some i < m such
that f = Fq · fi and one has that (β, f) � ξ = (β, Fs · fi) � min(Xs \ Xq),
and so (β, f) � ξ ∈ As.

Again writing (β, φ) for (β, f) � ξ, one has that hr(β, φ) = hs(β, φ).

Now suppose that I ∈ ar and (β, φ) ∈ Ar. By the observations of the
previous paragraphs, (b) holds immediately for I and (β, φ) unless either
I ∈ as \ aq and (β, φ) = (β, f) � ξ for some (β, f) ∈ Aq and ξ ∈ Xq \Xs or
if I ∈ aq \ as and (β, φ) = β, f) for some (β, f) ∈ As \Aq.

In the first of these two outstanding cases one has that I− /∈ rge(φ) and
I− < ssup(rge(φ)). Let ζ = min(rge(φ) \ I−). One has that δ ≤ ζ. If
equality holds then (b.ii) is establised. On the other hand if δ < ζ one
has that δ /∈ rge(φ) and δ < ssup(rge(φ)). Recalling that {δ} ∈ aq
and applying (b.ii) for q one gets that there is some J ∈ aq such that
J− = min(ssup(rge(φ)) \ δ) = min(ssup(rge(φ)) \ I−), as required

In the other outstanding case one has that ssup(rge(f)) < δ ≤ I−, and so
(b) holds vacuously.

Finally, (c) will be dealt with by reducing each possible case to an instance
of (c) for either s or q.

Suppose (β, φ), (γ, ψ) ∈ Ar and hr(β, φ) = hr(γ, ψ), = τ , say. If τ ∈ Xs∩Xq

then (β, φ), (γ, ψ) ∈ As ∩ Aq and (c) holds by (c) for s or for q. If δ < τ
then (β, φ), (γ, ψ) ∈ Aq and (c) holds by (c) for q.

Now, as N |= Ψ(s), one has Xs \ Xq 6= ∅. So if (β, φ) = (β, f) � δ
for some (β, f) ∈ Aq and hq(β, φ) = δ one has that rge(φ) ⊆ ε and
hr(β, δ) ≤ min(Xs \ Xq). And, similarly to when one cuts down such at
map (β, f) ∈ Aq at some ξ ∈ Xs \Xq, one has that (β, φ) ∈ As.

Hence, if τ = δ then hs(β, φ) = hs(γ, ψ) = ω2, (β, φ), (γ, ψ) ∈ As and (c)
holds for (β, φ), (γ, ψ) by (c) for s.

Lastly, if ε ≤ τ < δ then (β, φ), (γ, ψ) ∈ As again, so (c) holds by (c) for s.

N(D, Proposition (11))

Corollary 14. Forcing with P preserves cardinals. N

Proof. Propositions (7) and (11), respectively, show that ω1 and ω2 are
preserved. Fact (1.7) shows that each map (β, f) ∈ F is uniquely determined
by the ordinals β and ssup(rge(f)), so P is ω2. N
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It remains only to show that forcing with P does indeed add a club subset
of ω2.

(E). Let G be P-generic and set CG = {I− | ∃p ∈ G I ∈ ap}. Clearly, by
Lemma (6), CG is unbounded in ω2. Let Lim(CG)

Proposition 15. CG is club in ω2. N

Proof. Suppose not and, towards a contradiction, that p ∈ P is such that
p ‖– “α ∈ Lim(CG) & α /∈ Cg.” For (β, φ) ∈ Ap write α(φ) for min(rge(φ)\α)
if rge(φ) \ α 6= ∅. It is useful to start by giving a couple of simple auxiliary
lemmas.

Lemma 16. For all q ≤ p and I ∈ aq one has α /∈ [I−, I+]. N

Proof. Otherwise q ‖– “α ∈ CG” or q ‖– “α /∈ Lim(CG).” N

The main part of the proof divides into three cases, (I)-(III) below, dis-
tinguished by using the following definitions. Set ξ = min(Xp \ α) and
define

S = {(β, f) � ξ | (β, f) ∈ Ap & rge(f) ∩ [α, ξ) 6= ∅}.

Clearly if (β, φ), (γ, ψ) ∈ S then hp(β, φ) = hp(γ, ψ) = ξ and so, by (c) for
p, S is linearly ordered by inclusion of ranges of second co-ordinates.

Let Y = {α(φ) | (β, φ) ∈ S & ςφ�α = α}. Note that if (β, φ) and (γ, ψ) ∈ Ap,
α(φ) < α(ψ) and there is some I ∈ ap such that α(φ) = I− then there
is some J ∈ ap such that α(ψ) = J−, by (b.ii) for p, I and ψ. So
Y0 = {α(φ) ∈ Y | ¬∃I ∈ ap α(φ) = I−} is an initial segment of Y . Notice
also that the same argument shows that max(Y0) is less than the least I−

such that α < I− and I ∈ Ap. Let Y1 = Y \ Y0. The three cases are: (I)
Y = ∅, (II) Y 6= ∅ but Y0 = ∅, and (III) Y0 6= ∅.

Lemma 17. One may as well assume that p is such that for all (β, φ) ∈ S
either there is some I ∈ ap such that α(φ) = I− or p ‖– “α(φ) /∈ CG.” N

Proof. As ‖– P“α(φ) ∈ CG or α(φ) /∈ CG”, if p = p0 ‖– α ∈ CG there is
some p1 ≤ p0 such that there is some I ∈ ap0 with I− = α(φ). Write Si
and ξi for S, ξ as calculated in i. Note that ξ1 ≤ ξ0.

Since S0 is linearly ordered by inclusion of ranges of second co-ordinates one
has that {α(φ) | (β, φ) ∈ S }. is a descending sequence under the linear order
on S. So after finitely many steps the process of constructing pi+1 from pi
stabilises, i.e., ξi+1 = ξi and {α(φ) | (β, φ) ∈ Si+1 } = {α(φ) | (β, φ) ∈ Si }.

N
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Lemma 18. If (β, f) ∈ S, ssup(rge(f) ∩ α) < α < ssup(rge(f)) then there
is some I ∈ ap such that α(f) = I− (and hence α < α(f)). N

Proof. Let ssup(rge(f) ∩ α) = τ . One has p ‖– “CG ∩ (τ, α) 6= ∅.” Let
q ≤ p be such that there is some I ∈ aq with I−, I+ ∈ (τ, α). By (b.ii)
for q, I and (β, f) there is some J ∈ aq with J− = min(rge(f) \ I−) =
min(rge(f) \ α) = α(f).

So p 6‖– “α(f) /∈ CG.” Thus, by Lemma (17), there is some K ∈ ap such that
α(f) = K−. (And as α(f) ∈ CG is witnessed by p one has α 6= α(f).) N

(I). First of all, suppose Y = ∅, that is, that there is no (β, φ) ∈ S such
that ssup(rge(φ) ∩ α) = α. Let ν = ssup(

⋃
{rge(φ) ∩ α | (β, φ) ∈ Ap}∪⋃

{I+ | I ∈ ap & I+ < α}). Then I claim that for any γ ∈ (ν, α) one has
(ap ∪ {γ, α}, Ap) ∈ P.

(a) is clear by construction and Lemma (16).

(b.i) is vacuously true. For if (β, f) ∈ Ap and (β, f � ξ) /∈ S then either
hp(β, f � ξ) < α, or hp(β, f � ξ) = ξ, and rge(f) ∩ α is a (proper) subset of
rge(ψ) for any (γ, ψ) ∈ S, by (c.i) for p. In either case one has ςf�ξ < α.

The proof for (b.i) shows that if γ < ςφ for (β, φ) ∈ Ap then either (β, φ) ∈ S
or else min(rge(φ) \ γ) ≥ ξ. In the former case (b.ii) holds by Lemma (18).
In the latter case there are two possibilities. Either ξ ∈ rge(φ), in which
case ξ is a witness to (b.ii) as required. Or ξ /∈ rge(φ) and ξ < ςφ, in which
case one can obtain a J as required by applying (b.ii) to ξ and φ, since one
has min(rge(φ) \ ξ) = min(rge(φ) \ γ).

And (c) holds since it does for p.

Next suppose that there are (β, φ) ∈ S such that ssup(rge(φ) ∩ α) = α, so
Y 6= ∅.

(II). If Y 6= ∅ but Y0 = ∅ then I claim that (ap ∪{α}, Ap) ∈ P. (a) holds by
construction, (b.i) is trivially true, and (b.ii) is true by the case hypothesis
if (β, f) ∈ S and is true if (β, f) /∈ S and α < ssup(rge(f)) since then either
ξ ∈ rge(f) or one can apply (b.ii) for p, (β, f) and the I ∈ ap such that
ξ = I−. (c) is true because it is true for p.

(III). Lastly suppose Y0 6= ∅. Let φ0 be such that α(φ0) = max(Y0)
and φ1 be such that α(φ1) = min(Y1). Add {γ, α(φ0)} to ap for some
γ ∈ rge(φ0) \ rge(φ1) such that γ ∈ (ν, α], where

ν = ssup(
⋃
{rge(f) ∩ α | (β, f) ∈ Ap & ssup(rge(f) ∩ α) < α}

∪ ((
⋃
ap) ∩ α)).
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There is such a γ by (c.ii) of the definition of what it is to be an element
of P. It is once more clear (similarly to the previous case, using the defi-
nitions of Y0 and Y1) that (ap ∪ {γ, α(φ0)}, Ap) ∈ P and this contradicts
p ‖– “α ∈ Lim(CG)” if γ < α, and contradicts p ‖– “α /∈ CG” if γ = α.

§3. Adding a club subset through a very stationary subset of
ω2.

Thus far a forcing has been given that adds a club subset of ω2 with con-
ditions with finite working parts. I now make cosmetic changes (which are
essentially orthogonal to the bulk of the proof) to show that the club subset
can be added through a very stationary subset D of ω2.

What alterations are needed? The forcing to add a club subset of D, Q,
will be a refinement of P. Before giving its formal definition and checking
that it works as advertised, I try to give some motivation as to how the
refinements are used.

The simplest change that one needs to make is to insist that if p ∈ Q
and I ∈ ap then I− ∈ D. This will ensure that if G is Q-generic then
CG ⊆ D. (In this discussion names, such as CG, refer to analogues for Q of
objects used in the proof that P adds a club subset of ω2 without collapsing
cardinals.)

Focus, first of all, on the problem of ensuring that CG is club. It is again
clear that CG will be unbounded by the analogue of Lemma (2.6), so one
can concentrate on the changes necessary for the cases of the analogue of
Proposition (2.15) that prove CG is closed.

The case Y = ∅ does not, in fact, compell any changes. However, noting
that the case Y0 = ∅ could have been treated in a similar way to the case
Y0 6= ∅ above, in order to deal with the case Y 6= ∅ one needs the following.

Suppose ξ ∈ Xp and α < ξ is such that D is unbounded in α. Let
E = {(β, φ) ∈ Ap | ςφ�α = α and φ(αβ) < ξ}, and suppose E 6= ∅. Set
E0 = {(β, φ) ∈ E | ¬∃I ∈ ap φ(αβ) = I−} and E1 = E \ E0. Let
H0 =

⋂
{rge(φ) | (β, φ) ∈ E0 } ∩ α and H1 =

⋃
{rge(φ) | (β, φ) ∈ E1 }.

Then for all ν < α there is some τ ∈ (ν, α] ∩D ∩H0 \H1.

(Observe that the demand in the definition of E1 that there is some I ∈ ap
such that I− = ψ(αγ) conceals a demand that ψ(αγ) ∈ D.)

The natural way to modify the definition of P to ensure that this will be
true is to refine (c.ii) appropriately. One then needs to check that the
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modification holds at each step of the proof in which one is checking that
something is a condition, i.e., p∗, q � N , and r in the proof on M-properness,
the r in the proof of the preservation of ω2, and the extensions on p in the
proof of Proposition (2.15) itself. At first sight this looks like a huge number
of places where something could go wrong and cause a cascade of further
modifications.

Fortunately, things are not as horrid as they seem because the only place
that checking (c.ii) holds is not simply a case of reducing to instances of
(c.ii) known from the initial data is for p∗, where one has a reasonable
amount of liberty in the choice of (δ, F )/N . Exploiting this one only needs
to change (c.ii) a little, weakening it to insisting that it holds only when the
map (β, f) ∈ E1.

Finally, perhaps a moment should be devoted to defusing the worry that
when in Proposition (2.15) one adds {τ, α(φ0)} to ap one then has to check
(c.ii) for ςφ0�τ , which will require another elaboration, further checking and
so on recursively. In order to check (c.ii) for ςφ0�τ only one extra map
needs to be avoided and since (the modification of) (c.ii) deals with all
pairs of maps rather than just the analogues of φ0, φ1 it appears that there
is actually nothing to worry about. However, sadly the additional demand
that will be needed in the hypothesis of the analogue of (c.ii), mentioned
in the previous paragraph, conflicts with this convenient ignore-everything-
and-the-problem-will-go away “solution.” So one does have to take some
remedial action. The next most obvious/easiest attempt is to cut off the
recursion bluntly at the first step by insisting that φ0(τβ) = ςφ0�τ , when
what one would have to check would (at worst) be that τ ∈ D, but already
knowing that τ ∈ D(!). And this does, it turns out, work. Well, so much
for the discusion, now on with the proof.

I start with a (full) definition of Q and then discuss where the proofs for P
need to be embroidered.

Definition 1. Let D1 = {α ∈ D |D ∩ α contains a club subset of α}.
(Note that D0 ⊆ D1.)

Definition 2. p ∈ Q if p = (ap, Ap), where ap ∈ [[ω2]1 ∪ [ω2]2]<ω and
Ap ∈ [F ]<ω, and, writing Xp and hp for Xap

and hXap
respectively, the

following properties hold.

(a) If I, J ∈ ap then either I+ < J− or J+ < I−. Also if I ∈ ap then
I− ∈ D, and if, further, cf (I−) = ω1 then I− ∈ D0.
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(b) If I ∈ ap and (β, φ) ∈ Ap then

I− ∈ rge(φ) =⇒ I+ ∈ rge(φ), and(i)
I− /∈ rge(φ) & I− < ςφ =⇒ ∃J ∈ ap J− = min(rge(φ) \ I−).(ii)

(So when I− /∈ rge(φ) and I− < ςφ, one has, using (a), that I+ /∈ rge(φ).)

(c) Suppose (β, f) and (γ, g) ∈ Ap and ξ ∈ Xp ∪ {ω2 } are such that
hp(β, f � ξ), hp(γ, g � ξ) = ξ. Let α < ξ be such that

⋃
D ∩ α = α.

Then

rge(f � ξ) ⊆ rge(g � ξ) or rge(g � ξ) ⊆ rge(f � ξ),(i)
if ςf�α = α and ∃I ∈ ap (I− = f(αβ) & α < I− < ξ)(ii)

then α ∈ D1,

if ςf�α = α and f(αβ) ∈ D1 then α ∈ D and(iii)
if f is as in (ii), α = ςg�α, and g(αγ) < f(αβ)(iii)

then ∀ν < α ∃τ ∈ (ν, α] ∩D ∩ (rge(g) \ rge(f)) g(τγ) = ςg�τ .

If q, p ∈ Q then q ≤ p if ap ⊆ aq and Ap ⊆ Aq.

The apparent asymetricality of (c.ii) provokes the query, “What happens
when ‘Y1’ = ∅?”. The answer is that a special argument will take care of
this situation the only time that it arises – in the proof of the analogue of
Proposition (2.15) – and so fortunately one can avoid having to try to take
care of it through the definition of Q.

The conclusion of (c.iii), reading “then α ∈ D,” could be replaced by an
unboundedness condition similar to the conclusion of (c.iv). This is briefly
discussed at the end of the proof.

Lastly, even though (c.iv), the equivalent of the clause (c.ii) of the definition
of P, has been slightly mangled by the introduction of the requirement that
f(αβ) is some I−, the idea is essentially the same as before.

Theorem 3. Q adds a club through D.

Proof. Now I go through the proof of showing where alterations to the proof
of Theorem (2.1) or further arguments are necessary. Start by considering
the proof that P is M-proper.

(A). The first step is to show p∗ ∈ Q. For α ∈ D1 let Γα be a club subset
of D∩α. Make sure in choosing N that D, D0, D1 and 〈Γα | α ∈ D1 〉 ∈ N .
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The new points to check are that (δ, F ) satisfies (c.ii) and (c.iii), and that
if (β, f) ∈ Ap then it and (δ, F ) satisfy (c.iii).

Suppose that I ∈ ap and ε < θδ are such that F (ε) = I− and ςF �ε < F (ε).
Recall that by the choice of N this implies that cf (F (ε)) = ω1. So, by (a)
for p, one has F (ε) ∈ D0, ⊆ D1, and hence (c.ii) holds for (δ, F ).

If F (ε) ∈ D1 one has that N |= “ΓF (ε) is club in F (ε)”. So ΓF (ε) ∩ N is
club in ςF �ε. But ΓF (ε) ∩ N ⊆ ΓF (ε), so

⋃
ΓF (ε) ∩ N = ςF �ε ∈ ΓF (ε) ⊆ D.

Thus (c.iii) holds for (δ, F ).

Now suppose (β, f) ∈ ap, α = ςf�ε, and α < f(ε) = I− for some I ∈ ap.
Then, by (c.ii) for p applied to (β, f), one α ∈ D. As α ∈ rge(F ) (and so
ςF � αδ = α) by the definition of F , α is an appropriate witness for (c.iv).

(B). Next consider the proof that q � N ∈ Q. Again (c.ii) and (c.iii) are
immediate from fact that Aq�N ⊆ Aq and aq�N ⊆ aq. The rest of the proof
is as before.

(C). Move on to the proof that r, the amalgamation of q and s, is a con-
dition. The first thing to consider is whether (c.ii) can be reduced to (c.ii)
for s and q.

Suppose that (β, f) ∈ As and I ∈ aq \ As. Then, as observed in Case (3)
of the checking of (b.i), I− /∈ rge(f). So no new instances of (c.ii) arise for
(β, f).

On the other hand, suppose (β, f) ∈ Aq \As and I ∈ as\aq and I− ∈ rge(f)
then I− ∈ rge(F ). As observed in Case (4) of the checking of (b.i), if β < δ
then there is (β, g) ∈ As such that f � I− + 1 = g � I− + 1. Thus in this
case no new instances of (c.ii) that are not covered by (c.ii) for s arise.

If δ ≤ β and ςf�I− < I− then ςF �I− < I− as well. But then by the properties
of F one has that cf (I−) = ω1 and, by (a) for s, hence I− ∈ D0, so (c.ii)
holds.

The proof that (c.iv) holds is exactly as in the proof that the (c.ii) in the
sense of P holds in Claim (2.10).

(D). Next comes the analogue of the proof of Proposition (2.11) which will
show that ω2 is preserved. Work as there, but, by the stationaryness of
D0, assume that the ordinal δ, = N ∩ ω2, is an element of D0. The entire
proof then goes through with no essential changes (on noting that there is
no problem about assuming that q is pointed – the proof is just as in the
proof that the p∗ of Proposition (2.7) is a condition.)
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(E). Lastly consider the analogue of Proposition (2.15) Again assume to-
wards a contradiction that p ‖– “α ∈ Lim(CG) & α /∈ CG. Define S as in
Proposition (2.15).

Observe that as p ‖– “α ∈ Lim(CG)” one has that p ‖– “α ∈ Lim(D)”. Hence
D is unbounded in α. So in dealing with the case that there is no (β, f) ∈ S
such that ςφ�α = α simply choose τ ∈ (ν, α) ∩D.

If Y 6= ∅ and Y0 = ∅, then work exactly as in the proof of Proposition
(2.15), exploiting the fact that Y1 6= ∅, so there is some map to which one
can apply (c.ii) and then (c.iii) for p to ensure that α ∈ D. Similarly, if Y0,
Y1 6= ∅ apply (c.iv) for p.

Finally consider the case Y 6= ∅ and Y1 = ∅. Now the proof is completed by
the following lemma.

Lemma 4. If (β, φ) ∈ S and ςφ�α = α then
⋃
D ∩ rge(φ � α) = α.

Proof. Suppose τ ∈ D∩α but τ /∈ rge(φ) and there is some q ≤ p such that
q ‖– “∃I ∈ aq τ = I−”. Then, by (b.ii), q ‖– “∃J ∈ aq min(rge(φ)\τ) = J−”.
But aq ⊆ D and rge(φ) ∩ (τ, α) 6= ∅, so min(rge(φ) \ τ) ∈ D ∩ α. N

So one can choose τ ∈ (ν, α] ∩ rge(φ0) ∩ α where ν is as in the case Y0,
Y1 6= ∅. N

Alternative definition of Q. The conclusion of (c.iii) in the definition of
Q, reading “then α ∈ D,” could be replaced by an unboundedness condition
similar to the conclusion of (c.iv), specifically: “α ∈ D or D ∩ α \ rge(f)
is unbounded in α.” However then one would have to make the (harmless)
assumption that successor elements of D have cofinality less than ω1 and
to add to the definition of Q the requirement that if (β, f) ∈ ap then rge(f)
is closed under taking predecessors in D. One of these is necessary in order
to be able to check that the (δ, F ) in the proof of M-properness satisfies
the last clause of the conclusion of (c.iv) – that ςF �τ = F (τ). I give the
argument in case someone can spot a way of eliminating the additional
closure requirement in this alternative definition.

There is some more work to be done here since the alternative version of
(c.iii) also gives the possibility that D ∩ α \ rge(f) is unbounded in α.
By elementarity and the facts that α, D and (β, f) ∈ N one has that
N |= “D ∩ α \ rge(f)” is unbounded in α. Hence rge(F ) ∩D ∩ α \ rge(f) is
unbounded in α.

So far, so good. However one needs to be able to check that there are
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unboundedly many elements τ of this set such that ςF �τ = τ . If this fails
then cf (τ) = ω1, by the assumption on F used above in the proof that
(δ, F ) satisfies (c.ii). By elementarity again, rge(F ) is closed under both
predecessors and successors in D. So one can wander forward through D
(at least for up to ω many paces) looking to find a suitable replacement for
τ in which rge(F ) is unbounded.

With the auiliary closure requirement and the assumption that successor
elements of D have countable cofinality in hand one can now finish the
proof by merely taking one pace forward. For then this element of D is still
in rge(F ), is less than α, has countable cofinality as the successor of τ , and
cannot be in rge(f) for otherwise τ would also be in rge(f) by the closure
of rge(f) under predecessors.

Thus if F (αδ) < f(αβ then (c.iv) is satisifed.

Finally, as observed, rge(F ) itself is closed under predecessors in D by ele-
mentarity. N

§4. Forthcoming attractions in the same area.

For the next version of this paper:

Theorem. Suppose κ is a sucessor cardinal, (κ++)<κ = κ++ and there
is a stationary (κ, 1)-simplified morass. Then there is an κ-M-proper, κ+-
preserving, κ-closed forcing of size κ+ (and which is thus preserves all car-
dinals) which adds a new club subset to any stationary subset of κ+ which
is closed under < κ− sequences and is very stationary.

(”Proof” notes Conditions consist of pairs (a,A) with a ∈ [[κ++]1∪κ++]2]<κ

and A ∈ [F ]<κ. One only needs the cardinal arithmetic assumption that
(κ++)<κ = κ++ by the δ-system Lemma for morass maps.

One has a small difficulty to overcome in the analogue of Proposition (15)
attacking the case that ςφ�α < α for all (β, φ) ∈ S.

If ν = ssup(
⋃
{rge(φ) ∩ α | (β, φ) ∈ Ap}∪

⋃
{I+ | I ∈ ap & I+ < α}) then

one cannot necessarily show ν < α when cf (α) is not greater than the
size of the working parts of the conditions. That isn’t too bad for simply
adding club subsets (one simply adds the singleton {α} to ap), but does
cause problems when trying to shoot clubs through stationary (or even club)
subsets of κ since one needs some way of proving that α is in the stationary
set.

So I also insist that if the simplified morass, M, is such that if (α, f) ∈ F and
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ςf�α < f(α) then cf (α) = κ− (and cf (f(α)) ≥ κ−). This avoids the above
difficulty, is necessary for the < κ-closure argment and is unproblematic
(the adjustment to ensure this is already presented in [V84]). N

Key open question. Is it possible to add a club subset of ω3 with condi-
tions with finite working parts?

In a separate paper:

Theorem. For any ordinal ζ < ω3 there is a cardinal preserving forcing
which adds a pcf structure on ζ.

Proof. I integrate the forcings from this paper, [M3] (which illustrates the
M-proper forcing version of adding a structure where the ordering matters
and one is aiming for length less than ω3 in place of a known forcing for
length exactly ω2) and [M2] (in which I force to add a pcf structure on ω2).
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