A NEIGHBOURHOOD SEMANTICS FOR THE LOGIC TK

CEZAR A. MORTARI Universidade Federal de Santa Catarina HÉRCULES DE ARAÚJO FEITOSA Universidade Estadual Paulista

Abstract. The logic **TK** was introduced as a propositional logic extending the classical propositional calculus with a new unary operator which interprets some conceptions of Tarski's consequence operator. TK-algebras were introduced as models to **TK**. Thus, by using algebraic tools, the adequacy (soundness and completeness) of **TK** relatively to the TK-algebras was proved. This work presents a neighbourhood semantics for **TK**, which turns out to be deductively equivalent to the non-normal modal logic **EMT4**.

Keywords: Consequence operator; TK algebra; TK logic; neighbourhood semantics.

Introduction

Considering algebraic aspects of the notion of Tarski's consequence operator, Nascimento and Feitosa (2005) defined an algebra that rescues these conceptions in an algebraic context, the TK-algebra. So Feitosa, Grácio and Nascimento (2007) introduced a propositional logic which has as models exactly these TK-algebras. This logical system was presented in the Hilbert-style, with axioms and rules of inference, and the adequacy between the axiomatic system and the TK-models was proved. As the new operator was introduced to interpret the characteristics of the Tarski's operator, this propositional logic turns out to be a modal logic. In this paper, we present a neighbourhood semantics for this new logical system.

1. Tarski's consequence operator

In what follows, we consider the concept of a consequence operator in a way a little more general than was introduced by Tarski, in 1935.

Definition 1.1. A consequence operator on S is a function $C : \mathscr{P}(S) \to \mathscr{P}(S)$ such that, for every $A, B \subseteq S$:

- (C₁) $A \subseteq C(A);$
- (C₂) $A \subseteq B \Rightarrow C(A) \subseteq C(B);$
- (C_3) $C(C(A)) \subseteq C(A).$

Principia 15(2): 287-302 (2011).

Published by NEL — Epistemology and Logic Research Group, Federal University of Santa Catarina (UFSC), Brazil.

Of course, in view of (C_1) and (C_3) , for every $A \subseteq S$, the equality C(C(A)) = C(A) holds.

Definition 1.2. A consequence operator *C* on *S* is *finitary* when, for every $A \subseteq S$:

 $C(A) = \bigcup \{ C(A_0) : A_0 \text{ is a finite subset of } A \}.$

Definition 1.3. A *Tarski space* (a *deductive system* or a *closure space*) is a pair (S, C) such that S is a set and C is a consequence operator on S.

Definition 1.4. Let *C* be a consequence operator on *S*. The set *A* is *closed* in (S, C) if C(A) = A; and *A* is *open* in (S, C) if its complement relative to *S*, denoted by *A*', is closed.

2. TK-algebras

The definition of a TK-algebra puts in the context of algebraic structures the notions of consequence operator.

Definition 2.1. A *TK*-algebra is a sextuple $\mathscr{A} = (A, 0, 1, \lor, \sim, \bullet)$ such that $(A, 0, 1, \lor, \sim)$ is a Boolean algebra and \bullet is a new operator, the *Tarski operator*, such that:

(i) $a \lor \bullet a = \bullet a$;

(ii)
$$\bullet a \lor \bullet (a \lor b) = \bullet (a \lor b);$$

(iii) $\bullet(\bullet a) = \bullet a$.

Since we are working with a Boolean algebra, the item (i) of the above definition asserts that, for every $a \in A$, $a \leq \bullet a$ and we can define in a TK-algebra:

$$a \mapsto b =_{\mathrm{df}} \sim a \lor b.$$

Proposition 2.2. In any TK-algebra the following conditions are valid:

(i) $\sim \bullet a \leq \sim a \leq \bullet \sim a;$

- (ii) $a \leq b \Rightarrow \bullet a \leq \bullet b$.
- (iii) $\bullet(a \land b) \leq \bullet a \land \bullet b;$
- (iv) $\bullet a \lor \bullet b \le \bullet (a \lor b).$
- (v) $\bullet (\bullet a \land \bullet b) = \bullet a \land \bullet b.$

Naturally we can define a dual operation of • in any TK-algebra:

$$\circ a =_{\mathrm{df}} \sim \bullet \sim a.$$

Proposition 2.3. In any TK-algebra, the following conditions hold:

- (i) $\circ a \leq a;$
- (ii) $\circ(a \wedge b) \leq \circ a;$
- (iii) $\circ a \leq \circ \circ a$;
- (iv) $a \leq b \Rightarrow \circ a \leq \circ b$.

An element $a \in \mathscr{A}$ is closed when $\bullet a = a$ and $a \in \mathscr{A}$ is open when $\circ a = a$.

Proposition 2.4.

- (i) If a is open, then $a \le b \Leftrightarrow a \le \circ b$;
- (ii) If b is closed, then $a \le b \Leftrightarrow \bullet a \le b$.

3. TK Logic

The propositional logic **TK** is the logical system associated to the TK-algebras. **TK** is determined over a propositional language $L(\neg, \lor, \rightarrow, \blacklozenge, p_1, p_2, p_3, ...)$ as follows:

Axiom Schemas:

(CPC) φ , if φ is a tautology; (TK₁) $\varphi \rightarrow \blacklozenge \varphi$; (TK₂) $\blacklozenge \blacklozenge \varphi \rightarrow \blacklozenge \varphi$.

Inference Rules:

 $\begin{array}{ll} (\mathrm{MP}) & \varphi \to \psi, \, \varphi \; / \; \psi; \\ (\mathrm{RM}^{\blacklozenge}) & \varphi \to \psi \; / \; \blacklozenge \varphi \to \blacklozenge \psi. \end{array}$

As usual, we write $\vdash_{\mathbf{S}} \varphi$ to indicate that φ is a theorem of some axiomatic system **S**, and we drop the subscript if there is no danger of confusion.

Definition 3.1. Let $\Gamma \cup \{\varphi\}$ a set of formulas of some system **S**. We say that Γ *deduces* φ , what is denoted by $\Gamma \vdash_{\mathbf{S}} \varphi$, if there is a finite subset ψ_1, \ldots, ψ_n of Γ such that $\vdash (\psi_1 \land \ldots \land \psi_n) \rightarrow \varphi$.

Notice that with the notion of syntactic consequence here presented the Deduction Theorem holds; the inference rules are understood as rules of proof.

Proposition 3.2. $\vdash \blacklozenge \varphi \rightarrow \blacklozenge (\varphi \lor \psi).$

Proposition 3.3. $\varphi \vdash \blacklozenge \varphi$.

As in the case of a TK-algebra, we can define the dual operator of \blacklozenge in the following way:

$$\varphi =_{\mathrm{df}} \neg \blacklozenge \neg \varphi$$

Proposition 3.4. $\varphi \rightarrow \psi \vdash \blacksquare \varphi \rightarrow \blacksquare \psi$.

Corollary 3.5. $\varphi \leftrightarrow \psi \vdash \blacksquare \varphi \leftrightarrow \blacksquare \psi$.

Proposition 3.6. $\vdash \blacksquare \varphi \rightarrow \varphi$.

Proposition 3.7. $\vdash \blacksquare \varphi \rightarrow \blacksquare \blacksquare \varphi$.

Proposition 3.8. $\vdash \blacksquare(\varphi \land \psi) \rightarrow \blacksquare \varphi$.

Corollary 3.9. $\vdash \blacksquare(\varphi \land \psi) \rightarrow (\blacksquare \varphi \land \blacksquare \psi).$

We could, alternatively, consider the operator \blacksquare as primitive and substitute the axioms TK_1 and TK_2 by the following ones:

 $\begin{array}{ll} (\mathrm{TK}_1^*) & \blacksquare \varphi \to \varphi, \\ (\mathrm{TK}_2^*) & \blacksquare \varphi \to \blacksquare \blacksquare \varphi, \end{array}$

and the rule RM^{\blacklozenge} by the rule RM^{\blacksquare} :

(RM[•]) $\varphi \to \psi / \blacksquare \varphi \to \blacksquare \psi$.

Feitosa, Grácio and Nascimento (2007) showed the adequacy of **TK** relative to TK-algebras.

4. A neighbourhood semantics for TK

In this section we introduce a new semantic for **TK** and prove, in later section, its adequacy.

We can show that **TK** is deductively equivalent to the classical modal system **EMT4** when considering the operators \blacksquare and \blacklozenge to be identical to the necessity and possibility operators \square and \diamondsuit . Taking \square as primitive, \diamondsuit can be defined in the usual way:

(Df \diamond) $\diamond \varphi =_{df} \neg \Box \neg \varphi$.

EMT4 can be axiomatized by adding to the classical propositional calculus the following axiom schemes and rule of inference:

(M) $\Box(\varphi \land \psi) \rightarrow (\Box \varphi \land \Box \psi);$

Principia 15(2): 287-302 (2011).

A Neighbourhood Semantics for the Logic TK

(T) $\Box \varphi \rightarrow \varphi;$ (4) $\Box \varphi \rightarrow \Box \Box \varphi;$ (RE) $\varphi \leftrightarrow \psi / \Box \varphi \leftrightarrow \Box \psi.$

Proposition 4.1. Every theorem of EMT4 is a theorem of TK.

Proof. It follows directly from the definition of \blacksquare , TK_1^* , TK_2^* , and Corollaries 3.5 and 3.9.

Proposition 4.2. Every theorem of TK is a theorem of EMT4.

Proof. We only need to show that **EMT4** provides RM[■].

1.	$\varphi ightarrow \psi$	hypothesis
2.	$\varphi ightarrow (\varphi \land \psi)$	CPC in 1
3.	$(\varphi \land \psi) \rightarrow \varphi$	CPC
4.	$\varphi \leftrightarrow (\varphi \land \psi)$	CPC in 2 and 3
5.	$\Box\varphi\leftrightarrow\Box(\varphi\wedge\psi)$	RE in 4
6.	$\Box(\varphi \land \psi) \to (\Box \varphi \land \Box \psi)$	М
7.	$\Box \varphi \rightarrow (\Box \varphi \land \Box \psi)$	CPC in 5 and 6
8.	$(\Box \varphi \land \Box \psi) \rightarrow \Box \psi$	CPC
9.	$\Box \varphi \to \Box \psi$	CPC in 7 and 8.

Definition 4.3. A *frame* for **TK** is a structure $\mathfrak{F} = \langle U, S \rangle$ such that *U* is a nonempty set of possible worlds and *S* is a function that associates to each $x \in U$ a set of subsets of *U* (that is, $S(x) \subseteq \mathscr{P}(U)$) that satisfies the following conditions:

- (m) $X \cap Y \in S(x) \Rightarrow X \in S(x)$ and $Y \in S(x)$;
- (t) $X \in S(x) \Rightarrow x \in X$;
- (4) $X \in S(x) \Rightarrow \{y \in U : X \in S(y)\} \in S(x).$

Definition 4.4. A *valuation V* on *U* is a function from the set of atomic formulas to $\mathcal{P}(U)$.

Definition 4.5. Let $\mathfrak{F} = \langle U, S \rangle$ be a frame and *V* a valuation in *U*. A *model* for **TK** is a pair $\mathfrak{M} = \langle \mathfrak{F}, V \rangle$ or, equivalently, a triple $\mathfrak{M} = \langle U, S, V \rangle$.

Definition 4.6. Let $\mathfrak{M} = \langle U, S, V \rangle$ be a model and *x* an element of *U*. A formula φ is *true* in the world *x*, what is denoted by $(\mathfrak{M}, x) \models \varphi$, when:

 $(\mathfrak{M}, x) \vDash p_i \Leftrightarrow x \in V(p_i)$, if p_i is a propositional variable;

 $(\mathfrak{M}, x) \vDash \neg \varphi \Leftrightarrow (\mathfrak{M}, x) \nvDash \varphi;$

Principia 15(2): 287–302 (2011).

$$(\mathfrak{M}, x) \vDash \varphi \to \psi \Leftrightarrow (\mathfrak{M}, x) \nvDash \varphi \text{ or } (\mathfrak{M}, x) \vDash \psi;$$
$$(\mathfrak{M}, x) \vDash \Box \varphi \Leftrightarrow \|\varphi\|^{\mathfrak{M}} \in S(x), \text{ with } \|\varphi\|^{\mathfrak{M}} = \{x \in U : (\mathfrak{M}, x) \vDash \varphi\}$$

Definition 4.7. The set $\|\varphi\|^{\mathfrak{M}}$ from the above definition is called the *truth set* of φ in \mathfrak{M} .

When there is no risk of confusion, we will drop the superscript and write simply $\|\varphi\|$.

Definition 4.8. A formula φ is *valid in a model* $\mathfrak{M} = \langle U, S, V \rangle$ when it is true in every $x \in U$, and it is *valid* if it is true in any model \mathfrak{M} . We denote that a formula φ is valid in a model \mathfrak{M} by $\mathfrak{M} \models \varphi$, and that φ is valid by $\models \varphi$.

If Γ is a set of formulas and $\mathfrak{M} = \langle U, S, V \rangle$ a model, then we write $\mathfrak{M} \models \Gamma$ if and only if $\mathfrak{M} \models \varphi$, for each $\varphi \in \Gamma$. For every $x \in U$, we say that $(\mathfrak{M}, x) \models \Gamma$ if and only if $(\mathfrak{M}, x) \models \varphi$, for each $\varphi \in \Gamma$.

Definition 4.9. Let $\Gamma \cup \{\varphi\}$ be a set of formulas. We say that Γ *implies* φ , or that φ is a *local semantic consequence* of Γ , what is denoted by $\Gamma \vDash \varphi$, when, for every model $\mathfrak{M} = \langle U, S, V \rangle$ and every $x \in U$, we have: if $(\mathfrak{M}, x) \vDash \Gamma$ then $(\mathfrak{M}, x) \vDash \varphi$.

5. Soundness

Since we have shown that **TK** and **EMT4** are the same logic, we will work, in what follows, with the **EMT4** axiomatization.

Lemma 5.1. Let $\mathfrak{M} = \langle U, S, V \rangle$ be a TK-model, and φ and ψ any formulas. Then:

- (i) $\|\neg\varphi\| = -\|\varphi\|;$
- (ii) $\|\varphi \wedge \psi\| = \|\varphi\| \cap \|\psi\|;$
- (iii) $\|\varphi \lor \psi\| = \|\varphi\| \cup \|\psi\|;$
- (iv) $\|\varphi \rightarrow \psi\| = -\|\varphi\| \cup \|\psi\|;$
- (v) $\|\varphi \leftrightarrow \psi\| = (-\|\varphi\| \cup \|\psi\|) \cap (-\|\psi\| \cup \|\varphi\|);$
- (vi) $\|\Box\varphi\| = \{x \in U : \|\varphi\| \in S(x)\}.$

Proof. Items (i) to (v) are straightforward; we only show (vi). Now, for every $x \in U$, $x \in \{x \in U : \|\varphi\| \in S(x)\}$ iff $\|\varphi\| \in S(x)$ iff $x \models \Box \varphi$ iff $x \in \|\Box \varphi\|$. It follows that $\{x \in U : \|\varphi\| \in S(x)\} = \|\Box \varphi\|$.

Theorem 5.2. *If* $\vdash \varphi$ *, then* $\models \varphi$ *.*

Proof. By induction on theorems. Let $\mathfrak{M} = \langle U, S, V \rangle$ be a TK-model.

(A) Let φ be an axiom. If it is a tautology, the proof is straightforward owing to the fact that every tautology is true in every state of a model, and thus in the model. So suppose φ is one of the modal axioms.

For M: Let *x* be an element of *U* such that $x \models \Box(\varphi \land \psi)$. It follows that $\|\varphi \land \psi\| \in S(x)$ and, since $\|\varphi \land \psi\| = \|\varphi\| \cap \|\psi\|$ by the preceding lemma, then $\|\varphi\| \cap \|\psi\| \in S(x)$. Given that (m) holds in \mathfrak{M} , it follows that S(x) contains $\|\varphi\|$ and $\|\psi\|$. But then $x \models \Box \varphi$ and $x \models \Box \psi$, from what it follows that M holds.

For T: Let *x* be an element of *U* such that $x \models \Box \varphi$. By definition, S(x) contains $\|\varphi\|$ and thus, because (t) holds, $x \in \|\varphi\|$. But if *x* belongs to the truth set of φ , we have that $x \models \varphi$, and it follows that T is valid.

For 4: Let *x* be an element of *U* such that $x \models \Box \varphi$. By definition, S(x) contains $\|\varphi\|$ and thus, because (4) holds, $\{y \in U : \|\varphi\| \in S(y)\} \in S(x)$. By Lemma 5.1 (vi), $\{y \in U : \|\varphi\| \in S(y)\} = \|\Box \varphi\|$. Thus, $\|\Box \varphi\| \in S(x)$, so $x \models \Box \Box \varphi$, and it follows that 4 is valid.

(B) If φ was obtained by MP, the proof is immediate, since *modus ponens* is validitypreserving. So let us consider RE, and suppose $\vdash \varphi \leftrightarrow \psi$. Then (inductive hypothesis) $\varphi \leftrightarrow \psi$ is valid. So φ and ψ are equivalent, hence $\|\varphi\| = \|\psi\|$. It follows that, for every $x \in U$, $\|\varphi\| \in S(x)$ iff $\|\psi\| \in S(x)$. Thus $x \models \Box \varphi$ iff $x \models \Box \psi$, from what it follows that $x \models \Box \varphi \leftrightarrow \Box \psi$. Hence RE preserves validity. \Box

Corollary 5.3. *If* $\Gamma \vdash \varphi$ *, then* $\Gamma \models \varphi$ *.*

Proof. Suppose $\Gamma \vdash \varphi$, and let \mathfrak{M} be some model, and x a world in \mathfrak{M} , such that $(\mathfrak{M}, x) \models \Gamma$. Since $\Gamma \vdash \varphi$, by definition there is a finite subset ψ_1, \ldots, ψ_n of Γ such that $\vdash (\psi_1 \land \ldots \land \psi_n) \rightarrow \varphi$. By the preceding theorem, $(\psi_1 \land \ldots \land \psi_n) \rightarrow \varphi$ is valid and so true at x. Since $(\mathfrak{M}, x) \models \Gamma$, and every $\psi_i \in \Gamma$, it follows that $(\mathfrak{M}, x) \models \varphi$ and, thus, that $\Gamma \models \varphi$.

6. Completeness

Definition 6.1. A set of formulas Δ is *maximal consistent* if Δ is consistent, and no proper extension of it is consistent.

Theorem 6.2 (Lindenbaum). Every consistent set of formulas Γ can be extended to a maximally consistent set Δ .

Proof. The proof is standard; see, for instance, Fitting and Mendelsohn 1998, p. 76.

Principia 15(2): 287-302 (2011).

Completeness will be proved using canonical models. Let \mathfrak{S} be the set of all TK-maximal consistent sets of formulas (TK-MCS).

Definition 6.3. The *proof set* of φ is the set $|\varphi| = {\Gamma \in \mathfrak{S} : \varphi \in \Gamma}$.

Lemma 6.4. Let φ and ψ any formulas. Then:

(i)
$$|\neg \varphi| = -|\varphi|;$$

- (ii) $|\varphi \land \psi| = |\varphi| \cap |\psi|;$
- (iii) $|\varphi \lor \psi| = |\varphi| \cup |\psi|;$
- (iv) $|\varphi \rightarrow \psi| = -|\varphi| \cup |\psi|;$
- (v) $|\varphi \leftrightarrow \psi| = (-|\varphi| \cup |\psi|) \cap (-|\psi| \cup |\varphi|);$
- (vi) $|\varphi| \subseteq |\psi| \Leftrightarrow \vdash \varphi \rightarrow \psi;$
- (vii) $|\varphi| = |\psi| \Leftrightarrow \vdash \varphi \leftrightarrow \psi$.

Definition 6.5. $\mathfrak{M} = \langle U, S, V \rangle$ is a *canonical model* for **TK** if it satisfies the following conditions:

- (i) $U = \mathfrak{S};$
- (ii) $|\varphi| \in S(\Gamma) \Leftrightarrow \Box \varphi \in \Gamma$, for all $\Gamma \in U$;
- (iii) $V(p_i) = |p_i|$, for every propositional variable p_i .

Lemma 6.6. Let \mathfrak{M} be a canonical model. Then, for every formula φ and every $\Gamma \in U$: $(\mathfrak{M}, \Gamma) \vDash \varphi \Leftrightarrow \varphi \in \Gamma$.

Proof. The proof proceeds by induction on formulas. Let Γ be some element of *U*:

(a) $\varphi = p_i$, for some $i \in \mathbb{N}$. By definition, $(\mathfrak{M}, \Gamma) \models p_i$ iff $\Gamma \in V(p_i)$ iff $\Gamma \in |p_i|$. By construction of $|p_i|$, Γ is a set in $|p_i|$ iff $p_i \in \Gamma$.

(b) $\varphi = \neg \psi$. $(\mathfrak{M}, \Gamma) \vDash \varphi$ iff $(\mathfrak{M}, \Gamma) \nvDash \psi$ iff (by induction hypothesis) $\psi \notin \Gamma$ iff $\varphi \in \Gamma$. (c) $\varphi = \psi \rightarrow \sigma$. By definition, $\Gamma \vDash \psi \rightarrow \sigma$ iff $(\mathfrak{M}, \Gamma) \nvDash \psi$ or $(\mathfrak{M}, x) \vDash \sigma$. By the inductive hypothesis, $(\mathfrak{M}, \Gamma) \nvDash \psi$ iff $\psi \notin \Gamma$, and $(\mathfrak{M}, x) \vDash \sigma$ iff $\sigma \in \Gamma$. Now $\psi \notin \Gamma$ or $\sigma \in \Gamma$ iff $\psi \rightarrow \sigma \in \Gamma$. Thus $(\mathfrak{M}, \Gamma) \vDash \psi \rightarrow \sigma$ iff $\psi \rightarrow \sigma \in \Gamma$.

(d) $\varphi = \Box \psi$. By definition, $(\mathfrak{M}, \Gamma) \vDash \Box \psi$ iff $||\psi|| \in S(\Gamma)$. By the inductive hypothesis, for every $\Delta \in U$ we have that $(\mathfrak{M}, \Delta) \vDash \psi$ iff $\psi \in \Delta$, that is, $||\psi|| = |\psi|$. So $||\psi|| \in S(\Gamma)$ iff $|\psi| \in S(\Gamma)$. Now, by definition of *S*, $|\psi| \in S(\Gamma)$ iff $\Box \psi \in \Gamma$. Hence, $(\mathfrak{M}, \Gamma) \vDash \Box \psi$ iff $\Box \psi \in \Gamma$.

It is well known with regard to monotonic logics that the smallest canonical model — that is, the model where, for every Γ , $S(\Gamma)$ contains only proof sets — does not satisfy condition (m). Fortunately we can show that there are other canonical models in which this condition holds.

Definition 6.7. The *supplementation* of \mathfrak{M} is the model $\mathfrak{M}^+ = \langle U, S^+, V \rangle$ such that for every $\Gamma \in U$ and every $X \subseteq U$:

$$X \in S^+(\Gamma) \Leftrightarrow Y \subseteq X$$
 for some $Y \in S(\Gamma)$.

It follows from this definition that $S^+(\Gamma) = \{X \subseteq U : |\varphi| \subseteq X \text{ for some } \Box \varphi \in \Gamma\}$ and, obviously, for every $\Gamma \in U$, $S(\Gamma) \subseteq S^+(\Gamma)$.

We need to prove that \mathfrak{M}^+ is a canonical model for **TK**.

Lemma 6.8. $\mathfrak{M}^+ = \langle U, S^+, V \rangle$ is a canonical model for TK.

Proof. It is enough to show that condition (ii) of the definition is satisfied, that is, for every φ and every $\Gamma \in U$:

$$|\varphi| \in S^+(\Gamma) \Leftrightarrow \Box \varphi \in \Gamma.$$

(⇐) If $\Box \varphi \in \Gamma$, then $|\varphi| \in S(\Gamma)$ and since \mathfrak{M} is a canonical for **TK** so $|\varphi| \in S^+(\Gamma)$.

(⇒) Let $|\varphi| \in S^+(\Gamma)$. Thus, for some $Y \subseteq |\varphi|$, $Y \in S(\Gamma)$. Since \mathfrak{M} is the smallest canonical model, this means that $Y = |\psi|$, for some ψ . It follows that $|\psi| \subseteq |\varphi|$, and $\Box \psi \in \Gamma$. By Lemma 6.4 we have that $\vdash \psi \to \varphi$, and from RM that $\vdash \Box \psi \to \Box \varphi$. Hence, $\Box \varphi \in \Gamma$.

So \mathfrak{M}^+ is a canonical model for **TK**.

Lemma 6.9. Let \mathfrak{M} be the smallest canonical model for **TK**, and \mathfrak{M}^+ its supplementation. Then the conditions (m), (t) and (4) hold in \mathfrak{M}^+ .

Proof. (a) For (m): We have from the previous lemma that \mathfrak{M}^+ is a canonical model for **TK**. Let Γ be an element of U, and X and Y be subsets of U such that $X \cap Y \in S^+(\Gamma)$. By construction, there must be some Z such that $Z \subseteq X \cap Y$ and $Z \in S(\Gamma)$. It follows that $Z \subseteq X$ and $Z \subseteq Y$ and, again by construction, $X \in S^+(\Gamma)$ and $Y \in S^+(\Gamma)$.

(b) For (t): Let Γ be an element of U, and X a subset of U such that $X \in S^+(\Gamma)$. Suppose that X is a proof set, that is, $X = |\varphi|$, for some φ . By definition, we have that $\Box \varphi \in \Gamma$. Since Γ is an MCS, and **TK** has T, it follows that $\varphi \in \Gamma$. But then $\Gamma \in |\varphi|$, and (t) holds. Suppose now that X is not a proof set. By construction, for some φ , $|\varphi| \in S(\Gamma)$, $|\varphi| \subseteq X$. But if $|\varphi| \in S(\Gamma)$, $\Box \varphi \in \Gamma$, $\Gamma \vdash \varphi$, $\Gamma \in |\varphi|$, $\Gamma \in X$, and again (t) holds.

(c) For (4): Let Γ be an element of U, and X a subset of U such that $X \in S^+(\Gamma)$. We have to show that $\{\Delta \in U : X \in S^+(\Delta)\} \in S^+(\Gamma)$.

Principia 15(2): 287–302 (2011).

Suppose first that *X* is a proof set, that is, $X = |\varphi|$, for some φ . By definition, we have that $\Box \varphi \in \Gamma$. Since Γ is an MCS, and **TK** has 4, it follows that $\Gamma \vdash \Box \Box \varphi$ and that $\Box \Box \varphi \in \Gamma$. By canonicity of the model, $|\Box \varphi| \in S(\Gamma)$ and, by construction of \mathfrak{M}^+ , $|\Box \varphi| \in S^+(\Gamma)$. We must now show that $|\Box \varphi| = \{\Delta \in U : \Box \varphi \in S^+(\Delta)\}$. Now, $|\Box \varphi| = \{\Delta \in U : \Box \varphi \in \Delta\}$. Since the model is canonical, $\Box \varphi \in \Delta$ iff $|\varphi| \in S(\Delta)$ iff (by construction) $|\varphi| \in S^+(\Delta)$. So $|\Box \varphi| = \{\Delta \in U : |\varphi| \in S^+(\Delta)\}$. It follows that $\{\Delta \in U : |\varphi| \in S^+(\Delta)\} \in S^+(\Gamma)$, and (4) holds.

Suppose now that *X* is not a proof set. By construction of \mathfrak{M}^+ , however, there is some formula φ such that $|\varphi| \subseteq X$ and $|\varphi| \in S(\Gamma)$. As above, we can show that $|\Box \varphi| \in S^+(\Gamma)$, and that $\{\Delta \in U : |\varphi| \in S^+(\Delta)\} \in S^+(\Gamma)$. Now, for every $\Delta \in U$, if $\varphi \in S^+(\Delta)$, then $X \in S^+(\Delta)$. So $\{\Delta \in U : |\varphi| \in S^+(\Delta)\} \subseteq \{\Delta \in U : X \in S^+(\Delta)\}$. But $\{\Delta \in U : |\varphi| \in S^+(\Delta)\} = |\Box \varphi|$, so it is a proof set. By construction of \mathfrak{M}^+ , $\{\Delta \in U : X \in S^+(\Delta)\} \in S^+(\Gamma)$, and (4) holds. \Box

Theorem 6.10 (Completeness). *If* $\Gamma \vDash \varphi$ *, then* $\Gamma \vdash \varphi$ *.*

Proof. Suppose that $\Gamma \nvDash \varphi$. Thus, $\Gamma \nvDash \neg \neg \varphi$, and it follows that $\Gamma \cup \{\neg \varphi\}$ is consistent. By Lindenbaum's Theorem, there exists an **TK**-MCS Δ such that $\Gamma \cup \{\neg \varphi\} \subseteq \Delta$, that is, $\neg \varphi \in \Delta$, and $\varphi \notin \Delta$. Let now \mathfrak{M} be the smallest canonical model for **TK**, and \mathfrak{M}^+ its supplementation. By the preceding lemma, conditions (m), (t) and (4) hold in \mathfrak{M}^+ , so it is a model for **TK**. Now Δ is a **TK**-MCS and $\Gamma \subseteq \Delta$, so Δ is a state in \mathfrak{M}^+ such that, by Lemma 6.6, $(\mathfrak{M}^+, \Delta) \vDash \Gamma$ and $(\mathfrak{M}^+, \Delta) \nvDash \varphi$; hence $\Gamma \nvDash \varphi$.

7. Decidability

We show the decidability of TK using filtrations.

Definition 7.1. Let Γ be a set of formulas closed under subformulas, and \mathfrak{M} a model. For any states *x* and *y* in \mathfrak{M} , we say that

$$x \equiv_{\Gamma} y$$
 iff for every $\varphi \in \Gamma$, $(\mathfrak{M}, x) \models \varphi$ iff $(\mathfrak{M}, y) \models \varphi$.

In other words, if $x \equiv_{\Gamma} y$ then x and y are equivalent with regard to the formulas in Γ . We can easily show that \equiv_{Γ} is indeed an equivalence relation, partitioning the set U of states into disjoint equivalence classes.

Definition 7.2. Let Γ be a set of formulas closed under subformulas and $\mathfrak{M} = \langle U, S, V \rangle$ a model. Then:

- (i) if $x \in U$, $[x]_{\Gamma} = \{y \in U : x \equiv_{\Gamma} y\};$
- (ii) if $X \subseteq U$, $[X]_{\Gamma} = \{ [x] : x \in X \}$.

Again, we will usually drop the subscript and write \equiv , [x], and [X].

Definition 7.3. Let $\mathfrak{M} = \langle U, S, V \rangle$ be some model, and Γ a set of formulas closed under subformulas. A *filtration of* \mathfrak{M} *through* Γ is any model $\mathfrak{M}^* = \langle U^*, S^*, V^* \rangle$ such that:

- (a) $W^* = [W];$
- (b) for every $x \in U$, and every formula $\Box \varphi \in \Gamma$,
 - (i) $\|\varphi\|^{\mathfrak{M}} \in S(x) \Leftrightarrow [\|\varphi\|^{\mathfrak{M}}] \in S^{*}([x]);$
 - (ii) $\|\Box\varphi\|^{\mathfrak{M}} \in S(x) \Leftrightarrow [\|\Box\varphi\|^{\mathfrak{M}}] \in S^{*}([x]);$
- (c) $V^*(p_i) = [V(p_i)]$, for every $i \in \mathbb{N}$ such that $p_i \in \Gamma$.

Notice that the above definition leaves room for different filtrations of a model.

Definition 7.4. A filtration is the *finest filtration* if, for every $x \in U$, $S^*([x])$ contains only the sets $[\|\varphi\|^{\mathfrak{M}}]$ and $[\|\Box\varphi\|^{\mathfrak{M}}]$ such that, respectively, $\|\varphi\|^{\mathfrak{M}} \in S(x)$ and $\|\Box\varphi\|^{\mathfrak{M}} \in S(x)$, for every $\Box\varphi \in \Gamma$.

This is what is needed for a model to be a filtration. Coarser filtrations will allow $S^*([x])$ to contain other sets besides the minimum required.

Theorem 7.5. Let $\mathfrak{M}^* = \langle U^*, S^*, V^* \rangle$ be a Γ -filtration of a model $\mathfrak{M} = \langle U, S, V \rangle$. Then, for every $\varphi \in \Gamma$ and every $x \in U$:

$$(\mathfrak{M}, x) \vDash \varphi \Leftrightarrow (\mathfrak{M}^*, [x]) \vDash \varphi,$$

that is, $[\|\varphi\|^{\mathfrak{M}}] = \|\varphi\|^{\mathfrak{M}^*}$.

Proof. The proof is by induction on formulas. Let *x* be any state in \mathfrak{M} , and *p* some variable in Γ :

$(\mathfrak{M}, x) \vDash p$	iff	$x \in V(p)$	(by 4.6)
	iff	$[x] \in [V(p)]$	(by 7.2(ii))
	iff	$[x] \in V^*(p)$	(by 7.3(c))
	iff	$(\mathfrak{M}^*, [x]) \vDash p$	(by 4.6).

The boolean cases are straightforward; we show only the case in which $\varphi = \Box \psi$, for some ψ . Let again *x* be any state in \mathfrak{M} :

$(\mathfrak{M}, x) \vDash \Box \psi$	iff	$\ \psi\ ^{\mathfrak{M}} \in S(x)$	(by 4.6)	
	iff	$[\ \psi\ ^{\mathfrak{M}}] \in S^*([x])$	(by 7.3(b))	
	iff	$\ \psi\ ^{\mathfrak{M}^*} \in S^*([x])$	(inductive hypothesis)	
	iff	$(\mathfrak{M}^*, [x]) \vDash \Box \psi$	(by 4.6).	

Corollary 7.6. Let \mathfrak{M}^* be a Γ -filtration of a model \mathfrak{M} . Then \mathfrak{M} and \mathfrak{M}^* are equivalent modulo Γ , that is, for every $\varphi \in \Gamma$, $\mathfrak{M} \models \varphi$ iff $\mathfrak{M}^* \models \varphi$.

A well-known result says that if a logic is axiomatizable and has the finite model property—that is, every nontheorem fails in some finite model—, then it is decidable. **TK** is axiomatizable, as we have shown before. All we need to show is that **TK** is determined by the class of finite models satisfying conditions (m), (t) and (4).

Lemma 7.7. Let \mathfrak{M} be a model, Γ a set of formulas closed under subformulas, and \mathfrak{M}^* a Γ -filtration of \mathfrak{M} . Then, for every $\varphi \in \Gamma$:

- (i) $\|\Box\varphi\|^{\mathfrak{M}} = \{x \in U : \|\varphi\|^{\mathfrak{M}} \in S(x)\};$
- (ii) $[\|\Box \varphi\|^{\mathfrak{M}}] = \{[x] \in U^* : [\|\varphi\|^{\mathfrak{M}}] \in S^*([x])\}.$

Proof.

(i)
$$x \in \|\Box \varphi\|^{\mathfrak{M}}$$
 iff $x \models \Box \varphi$; [Def. truth-set]
iff $\|\varphi\|^{\mathfrak{M}} \in S(x)$; [Def. 4.6]
iff $x \in \{x \in U : \|\varphi\|^{\mathfrak{M}} \in S(x)\}$.
(ii) $[x] \in [\|\Box \varphi\|^{\mathfrak{M}}]$ iff $[x] \in \|\Box \varphi\|^{\mathfrak{M}^*}$;
iff $[x] \models \Box \varphi$;
iff $\|\varphi\|^{\mathfrak{M}^*} \in S^*([x])$;
iff $[\|\varphi\|^{\mathfrak{M}}] \in S^*([x])$;
iff $[x] \in \{[x] \in U^* : [\|\varphi\|^{\mathfrak{M}}] \in S^*([x])\}$.

Theorem 7.8. Let \mathfrak{M} be a model satifying conditions (m), (t) and (4), and, for some set of formulas Γ closed under subformulas, let \mathfrak{M}^* be the finest Γ -filtration of \mathfrak{M} . Then its supplementation, \mathfrak{M}^{*+} , is a Γ -filtration of \mathfrak{M} and satisfies (m), (t) and (4).

Proof. We first show that \mathfrak{M}^{*+} is a Γ -filtration of \mathfrak{M} . That is, we must show that, for every $x \in U$ and every $\Box \varphi \in \Gamma$,

- (i) $\|\varphi\|^{\mathfrak{M}} \in S(x) \Leftrightarrow [\|\varphi\|^{\mathfrak{M}}] \in S^{*+}([x])$, and
- (ii) $\|\Box\varphi\|^{\mathfrak{M}} \in S(x) \Leftrightarrow [\|\Box\varphi\|^{\mathfrak{M}}] \in S^{*+}([x]).$

(i). Suppose first that $\|\varphi\|^{\mathfrak{M}} \in S(x)$. Then $[\|\varphi\|^{\mathfrak{M}}] \in S^*([x])$, since \mathfrak{M}^* is a Γ -filtration of \mathfrak{M} . Thus $[\|\varphi\|^{\mathfrak{M}}] \in S^{*+}([x])$ by supplementation.

Suppose now that $[\|\varphi\|^{\mathfrak{M}}] \in S^{*+}([x])$. By the definition of a supplementation, there must be some ψ (eventually $\psi = \varphi$) such that $\Box \psi \in \Gamma$, $[\|\psi\|^{\mathfrak{M}}] \in S^{*}([x])$ and $[\|\psi\|^{\mathfrak{M}}] \subseteq [\|\varphi\|^{\mathfrak{M}}]$. It follows that $\|\psi\|^{\mathfrak{M}} \in S(x)$, since \mathfrak{M}^{*} is the finest Γ -filtration of \mathfrak{M} . Now \mathfrak{M} satisfies condition (m), which means that every superset of $\|\psi\|^{\mathfrak{M}}$ belongs to S(x). We just need to show that $\|\psi\|^{\mathfrak{M}} \subseteq \|\varphi\|^{\mathfrak{M}}$.

Now, $[\|\psi\|^{\mathfrak{M}}] \subseteq [\|\varphi\|^{\mathfrak{M}}]$ means that $\{[x] : x \in \|\psi\|^{\mathfrak{M}}\} \subseteq \{[x] : x \in \|\varphi\|^{\mathfrak{M}}\}$. Let $y \in \|\psi\|^{\mathfrak{M}}$. Hence $[y] \in \{[x] : x \in \|\psi\|^{\mathfrak{M}}\}$, and $[y] \in \{[x] : x \in \|\varphi\|^{\mathfrak{M}}\}$. It follows that $y \in \|\varphi\|^{\mathfrak{M}}$. So $\|\psi\|^{\mathfrak{M}} \subseteq \|\varphi\|^{\mathfrak{M}}$, and from this we have that $\|\varphi\|^{\mathfrak{M}} \in S(x)$.

(ii). If $\|\Box \varphi\|^{\mathfrak{M}} \in S(x)$, then $[\|\Box \varphi\|^{\mathfrak{M}}] \in S^*([x])$ because \mathfrak{M}^* is a Γ -filtration of \mathfrak{M} , and, by the definition of a supplementation, $[\|\Box \varphi\|^{\mathfrak{M}}] \in S^{*+}([x])$.

Suppose now that $[|\Box \varphi||^{\mathfrak{M}}] \in S^{*+}([x])$. By the definition of a supplementation, there must be some ψ such that $\Box \psi \in \Gamma$ and

- (a) $[\|\psi\|^{\mathfrak{M}}] \in S^*([x])$ and $[\|\psi\|^{\mathfrak{M}}] \subseteq [\|\Box\varphi\|^{\mathfrak{M}}]$, or
- (b) $[\|\Box\psi\|^{\mathfrak{M}}] \in S^*([x])$ and $[\|\Box\psi\|^{\mathfrak{M}}] \subseteq [\|\Box\varphi\|^{\mathfrak{M}}].$

(a). Since \mathfrak{M}^* is a Γ -filtration of \mathfrak{M} , we have $\|\psi\|^{\mathfrak{M}} \in S([x])$. Suppose now $y \in \|\psi\|^{\mathfrak{M}}$. Hence $[y] \in \{[x] : x \in \|\psi\|^{\mathfrak{M}}\}$, and $[y] \in \{[x] : x \in \|\Box\varphi\|^{\mathfrak{M}}\}$ by the second part of (a) above. But then $y \in \|\Box\varphi\|^{\mathfrak{M}}$. Thus $\|\psi\|^{\mathfrak{M}} \subseteq \|\Box\varphi\|^{\mathfrak{M}}$. Since \mathfrak{M} is supplemented, $\|\Box\varphi\|^{\mathfrak{M}} \in S([x])$.

(b). Since \mathfrak{M}^* is a Γ -filtration of \mathfrak{M} , we have $\|\Box\psi\|^{\mathfrak{M}} \in S([x])$. Suppose now $y \in \|\Box\psi\|^{\mathfrak{M}}$. Hence $[y] \in \{[x] : x \in \|\Box\psi\|^{\mathfrak{M}}\}$, and $[y] \in \{[x] : x \in \|\Box\varphi\|^{\mathfrak{M}}\}$ by the second part of (b) above. But then $y \in \|\Box\varphi\|^{\mathfrak{M}}$. Thus $\|\Box\psi\|^{\mathfrak{M}} \subseteq \|\Box\varphi\|^{\mathfrak{M}}$. Since \mathfrak{M} is supplemented, $\|\Box\varphi\|^{\mathfrak{M}} \in S([x])$.

Thus, \mathfrak{M}^{*+} is a Γ -filtration of \mathfrak{M} . Does it satisfy conditions (m), (t) and (4)? Since \mathfrak{M}^{*+} is a supplementation, it automatically satisfies (m).

Let us consider (t). We need to show, for any $[x] \in U^*$ and any subset X of U^* , that $[x] \in X$, if $X \in S^{*+}([x])$. Suppose first that $X \in S^*([x])$. Since \mathfrak{M}^* is the finest filtration, $X = [\|\varphi\|^{\mathfrak{M}}]$, for some formula φ such that $\Box \varphi \in \Gamma$ and $\|\varphi\|^{\mathfrak{M}} \in S(x)$. Now condition (t) holds in \mathfrak{M} , so $x \in \|\varphi\|^{\mathfrak{M}}$, and $[x] \in [\|\varphi\|^{\mathfrak{M}}] = X$.

If now $X \notin S^*([x])$ then, by the definition of a supplementation, X is a superset of some $[\|\varphi\|^{\mathfrak{M}}]$ such that $\Box \varphi \in \Gamma$ and $\|\varphi\|^{\mathfrak{M}} \in S(x)$. As above, it follows that $[x] \in [\|\varphi\|^{\mathfrak{M}}]$, and, thus, that $[x] \in X$. Thus (t) holds in \mathfrak{M}^{*+} .

With regard to condition (4), we show first that \mathfrak{M}^* has (4). Let [x] be an element of U^* , and X a subset of U^* such that $X \in S^*([x])$. We have to show that

$$\{[y] \in U^* : X \in S^*([y])\} \in S^*([x]).$$

Since \mathfrak{M}^* is the finest filtration, there must be some formula $\Box \varphi \in \Gamma$ such that

(i) $X = [\|\varphi\|^{\mathfrak{M}}]$ and $\|\varphi\|^{\mathfrak{M}} \in S(x)$, or (ii) $X = [\|\Box\varphi\|^{\mathfrak{M}}]$ and $\|\Box\varphi\|^{\mathfrak{M}} \in S(x)$.

Suppose it is (i). Since $[\|\Box \varphi\|^{\mathfrak{M}}] = \{[y] \in U^* : [\|\varphi\|^{\mathfrak{M}}] \in S^*([y])\}$ (Lemma 7.7), what we have to show is that $[\|\Box \varphi\|^{\mathfrak{M}}] \in S^*([x])$.

Now condition (4) holds in \mathfrak{M} , so $\{y \in U : \|\varphi\|^{\mathfrak{M}} \in S(y)\} \in S(x)$. But (Lemma 7.7) $\|\Box \varphi\|^{\mathfrak{M}} = \{y \in U : \|\varphi\|^{\mathfrak{M}} \in S(y)\}$; thus $\|\Box \varphi\|^{\mathfrak{M}} \in S(x)$. By condition (b.ii) of the definiton of filtration, we immediately have $[\|\Box \varphi\|^{\mathfrak{M}}] \in S^*([x])$.

Now consider (ii). We now have to show that

$$\{[y] \in U^* : [\|\Box \varphi\|^{\mathfrak{M}}] \in S^*([y])\} \in S^*([x]).$$

By Lemma 7.7, $[\|\Box\Box\varphi\|^{\mathfrak{M}}] = \{[y] \in U^* : [\|\Box\varphi\|^{\mathfrak{M}}] \in S^*([y])\}$. So what we have to show is that $[\|\Box\Box\varphi\|^{\mathfrak{M}}] \in S^*([x])$.

Since condition (4) holds in \mathfrak{M} , $\{y \in U : ||\Box \varphi||^{\mathfrak{M}} \in S(y)\} \in S(x)$. By Lemma 7.7, $||\Box \Box \varphi||^{\mathfrak{M}} = \{y \in U : ||\Box \varphi||^{\mathfrak{M}} \in S(y)\}$; thus $||\Box \Box \varphi||^{\mathfrak{M}} \in S(x)$.

Now $\vdash \Box \varphi \leftrightarrow \Box \Box \varphi$ (it follows from T and 4), so $\models \Box \varphi \leftrightarrow \Box \Box \varphi$. But then, for every $x \in U$, $x \models \Box \varphi$ iff $x \models \Box \Box \varphi$. Thus $\|\Box \varphi\|^{\mathfrak{M}} = \|\Box \Box \varphi\|^{\mathfrak{M}}$.

From this it follows that $\|\Box \varphi\|^{\mathfrak{M}} \in S(x)$, and also that $[\|\Box \varphi\|^{\mathfrak{M}}] = [\|\Box \Box \varphi\|^{\mathfrak{M}}]$. By conditon b.ii of the definition of filtration, we immediately have $[\|\Box \varphi\|^{\mathfrak{M}}] \in S^*([x])$, and $[\|\Box \Box \varphi\|^{\mathfrak{M}}] \in S^*([x])$.

It follows from (i) and (ii) above that \mathfrak{M}^* has (4). We now show that \mathfrak{M}^{*+} has (4).

Let [x] be an element of U^* , and X a subset of U^* such that $X \in S^{*+}([x])$. We thus have to show that $\{[y] \in U^* : X \in S^{*+}([y])\} \in S^{*+}([x])$.

Since \mathfrak{M}^{*+} is the supplementation of \mathfrak{M}^* , there must be some formula φ such that $\Box \varphi \in \Gamma$, $[\|\varphi\|^{\mathfrak{M}}] \in S^*(x)$ and $[\|\varphi\|^{\mathfrak{M}}] \subseteq X$ (eventually $[\|\varphi\|^{\mathfrak{M}}] = X$, of course). But as we have shown above, \mathfrak{M}^* has (4), so $\{[y] \in U^* : [\|\varphi\|^{\mathfrak{M}}] \in S^*([y])\} \in S^*([x])$. Now, for every $[y] \in U^*$, if $[\|\varphi\|^{\mathfrak{M}}] \in S^*([y])$ then $X \in S^{*+}([y])$ by supplementation. So we have:

$$\{[y] \in U^* : [\|\varphi\|^{\mathfrak{M}}] \in S^*([y])\} \subseteq \{[y] \in U^* : X \in S^{*+}([y])\}.$$

Finally, since $\{[y] \in U^* : [\|\varphi\|^{\mathfrak{M}}] \in S^*([y])\}$ belongs to $S^*([x]), \{[y] \in U^* : X \in S^{*+}([y])\} \in S^{*+}([x])$ by supplementation and we are done.

Theorem 7.9. *TK* is determined by the class of finite models satisfying conditions (m), (t) and (4).

Proof. If φ is a theorem of **TK**, then it is valid in the class of all models satisfying conditions (m), (t) and (4); in particular, in the class of finite models satisfying these conditions.

For the other direction, suppose φ is not a theorem of **TK**. Then φ fails in some world x of some model \mathfrak{M} for **TK**. Let Γ be any finite set of formulas closed under subformulas such that $\varphi \in \Gamma$, and let \mathfrak{M}^{*+} be the supplementation of a finest Γ -filtration \mathfrak{M}^* of \mathfrak{M} . By Theorem 7.8, \mathfrak{M}^{*+} , is a Γ -filtration of \mathfrak{M} and satisfies (m),

(t) and (4). Since Γ is a finite set, \mathfrak{M}^{*+} is a finite model. By Theorem 7.5, x and [x] agree on every formula in Γ ; thus $(\mathfrak{M}^{*+}, [x]) \nvDash \varphi$.

In view of the preceding result, every nontheorem of **TK** fails in some finite model, from what it follows that **TK** has the finite model property. Since it is also axiomatizable, **TK** is decidable.

Acknowledgements

This work has been sponsored by FAPESP through the Projects 2004/14107-2. The article was written while Hércules Feitosa was at UFSC doing post-doctoral research.

References

- Bell, J. L. & Machover, M. 1977. A course in mathematical logic. Amsterdam: North-Holland.
- Blackburn, P.; Rijke, M.; Venema, Y. 2001. *Modal logic*. Cambridge: Cambridge University Press.
- Carnielli, W. A.; Pizzi, C. 2001. Modalità e multimodalità. Milano: Franco Angeli.
- Chagrov, A. & Zakharyaschev, M. 1997. Modal logic. Oxford: Clarendon Press.
- Chellas, B. F. 1980. Modal Logic: an introduction. Cambridge University Press.
- Ebbinghaus, H. D.; Flum, J.; Thomas, W. 1984. *Mathematical logic*. New York: Springer-Verlag.
- Feitosa, H. A.; Grácio, M. C. C.; Nascimento, M. C. 2007. A propositional logic for Tarski's consequence operator. Campinas: CLE E-prints, p.1–13.
- Fitting, M. & Mendelsohn, R. L. 1998. First-order modal logic. Dordrecht: Kluwer.
- Hamilton, A. G. 1978. Logic for mathematicians. Cambridge: Cambridge University Press.
- Mendelson, E. 1987. *Introduction to mathematical logic*. 3. ed. Monterey, CA: Wadsworth & Brooks/Cole Advanced Books & Software.
- Miraglia, F. 1987. Cálculo proposicional: uma interação da álgebra e da lógica. Campinas: UNICAMP/CLE. (Coleção CLE, v.1)
- Nascimento, M. C. & Feitosa, H. A. 2005. As álgebras dos operadores de conseqência. São Paulo: *Revista de Matemática e Estatística* **23**(1): 19–30.
- Rasiowa, H. 1974. An algebraic approach to non-classical logics. Amsterdam: North-Holland.
- Rasiowa, H. & Sikorski, R. 1968. *The mathematics of metamathematics*. 2. ed. Waszawa: PWN Polish Scientific Publishers.
- Vickers, S. 1990. Topology via logic. Cambridge: Cambridge University Press.
- Wojcicki, R. 1988. *Theory of logical calculi:* basic theory of consequence operations. Dordrecht: Kluwer. (Synthese Library, v.199)

CEZAR A. MORTARI Departamento de Filosofia Universidade Federal de Santa Catarina Campus Universitário – Trindade 88040-010 Florianópolis, SC

Cezar A. Mortari & Hércules de Araújo Feitosa

BRASIL cmortari@cfh.ufsc.br Hércules de Araújo Feitosa Departamento de Matemática Universidade Estadual Paulista (UNESP) Campus de Bauru 17033-360 Bauru, SP BRASIL haf@fc.unesp.br

Resumo. A lógica **TK** foi introduzida como uma lógica proposicional estendendo o cálculo proposicional clássico com um novo operador unário que interpreta algumas concepções do operador de consequência de Tarski. TK-álgebras foram introduzidas como modelos para **TK**. Assim, usando ferramentas algébricas, foi demonstrada a adequação (correção e completude) de **TK** relativamente às TK-álgebras. Este trabalho apresenta uma semântica de vizinhanças para **TK**, lógica que resulta ser dedutivamente equivalente à lógica modal não normal **EMT4**.

Palavras-chave: Operador de consequência; álgebra TK; lógica TK; semântica de vizinhanças.

Notes

¹ Of course, one can also define deduction *locally*: we say that $\Gamma \vdash \varphi$ if there is a finite subset ψ_1, \ldots, ψ_n of Γ such that $\vdash (\psi_1 \land \ldots \land \psi_n) \rightarrow \varphi$. With this definition, obviously, the Deduction Theorem holds.