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Abstract. The aim of this paper is to show that the topological interpretation of knowledge as 

the interior kernel operator K of a topological space (X, OX) comes along with a partially 

ordered family of belief modalities B that fit K in the sense that the pairs (K, B) satisfy all 

axioms of Stalnaker’s bimodal KB logic of knowledge and belief but the axiom of negative 

introspection (NI). The belief modalities B introduced in this paper are defined with the help 

of the dense nuclei of the Heyting algebra OX of the topological space (X, OX). The set 

NUC(OX)d of dense nuclei of OX is shown to have the structure of a complete Heyting 

algebra.1 The elements of NUC(OX)d define a family of belief operators B such that the 

bimodal logics (K, B) satisfy all axioms of Stalnaker’s KB system but (NI).   
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1. INTRODUCTION. Understanding the relation between knowledge and belief is an issue of 

central importance in formal epistemology. Especially after the birth of knowledge-first 

epistemology, the question of what exactly distinguishes an item of knowledge and an item of 

belief and how one can be determined in terms of the other has become even more pertinent. 

In the recent literature on the topological semantics of Stalnaker’s KB system, only one belief 

operator of a whole family of plausible operators has been considered (cf. Baltag et al. 2013, 

2017, 2019)), namely, the operator intclint (cl being the closure operator of (X, OX)). As will 

be explained in detail in section 3, this operator is defined by a very special nucleus (see (3.1) 

 
1 Many arguments concerning nuclei rely on the specific lattice-theoretical structures of Heyting algebras. 
Collections of useful formulas of the Heyting calculus can be found in Borceux (1994, chapter 1.2), Johnstone 
(1982, I, 1.10ff), and Picado and Pultr (2012, Appendix I, 7)). They are freely used in this paper. 
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Definition), namely, intclint is the largest dense nucleus of (X, OX). It should be emphasized, 

however, that this operator is not the only and arguably not the most plausible member of the 

family of belief operators B that are compatible with K.2 Thus, to obtain a more comprehensive 

understanding of the relationship between knowledge and belief, it seems to be expedient to 

discuss the whole group of options instead of restricting one’s attention only to rather special 

option. 

In Stalnaker’s KB system, the belief modality B turns out to be uniquely determined by the 

knowledge operator K. In this paper, a more complex and more flexible relation between 

knowledge K and belief B is proposed. In a nutshell, this relation may be described as follows. 

The topological structure (X, OX) defines a family of belief operators B that fit the knowledge 

operator defined by (X, OX) in a sense to be specified. The family of belief operators has the 

structure of a complete Heyting algebra NUC(OX)d. Stalnaker’s belief operator turns out to be 

just the top element of this Heyting algebra, its bottom element corresponds to the “ideal” or 

“optimal” belief operator K. 

In other words, for a given knowledge operator K, the Heyting algebra of admissible belief 

operators can be conceived as a kind of (intuitionistic) logic of belief operators: Different belief 

operators can be compared with each other according to their strengths and how far they deviate 

from the knowledge operator K. In this vein, Stalnaker’s belief operator BS is only a special 

case among many other consistent belief operators B related to K. The unimodal systems of 

belief logics based on B, which can be derived from the full KB systems turn out to be KD4 

logics in general. 

 
2 For general topological spaces (X, OX) with a knowledge operator K (defined by the topological interior kernel 
operator int), a well-behaved belief operator is defined by intclint. This belief operator is the only one that is dealt 
with in Stalnaker (2006) and the various papers of Baltag et alii. For a very special class of topological spaces, 
namely, extremally disconnected spaces, the definition of this operator can be simplified to clint. As will become 
clear in the following sections, for general spaces, it is more natural to consider more general belief operators that 
have the form Bint, where B is a nucleus, i.e., an element of the complete Heyting algebra NUC(OX) of nuclei of 
OX. 
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The relation between topology and modal logic is often described as a relation between classes 

of modal logical systems (such as S4, S4.1, S4.2, S4.Z, etc.) and classes of topological spaces 

that can serve as models for these modal systems. The first example of this correspondence can 

be found in McKinsey and Tarski’s trail-blazing paper of 1944, in which they proved such a 

correspondence between S4 and the class TOP of all topological spaces. More recent results in 

this area deal with the class WSC of weakly scattered spaces corresponding to S4.1, the class 

ED of extremally disconnected spaces corresponding to S4.2, the class of hereditarily 

extremally disconnected spaces (HED spaces) corresponding to S4.3, etc. Results of this kind 

have been obtained by Bezhanishvili and others (cf. (Bezhanishvili et al. (2004), (2015) Aiello 

et al. (2007)). 

Usually, the relation between belief and knowledge is conceptualized in a rather direct way: 

either knowledge is defined as a special kind of belief (e.g., knowledge is “justified” true belief, 

or “correctly justified” true belief, or the like, as in many received accounts of knowledge), or 

knowledge—having conceptual priority—defines belief in a unique way. An example of the 

latte approach is Stalnaker’s, who defines belief as the epistemic possibility of knowledge (cf. 

Stalnaker (2006), Baltag et al. (2017)). In a sense, this paper follows the knowledge-first 

approach but with a special twist. It is shown that for a given knowledge operator K, there 

exists a pool of different admissible belief operators B such that the pairs (K, B) all define well-

behaved systems of epistemic logic satisfying the axioms of Stalnaker’s KB system. Therefore, 

different cognitive agents who subscribe to the same knowledge operator K may use different 

agent-specific belief operators. 

The present paper pursues the following strategy. We propose using the topological structure 

of the space (X, OX) (encapsulated in the Heyting algebra OX and unfolded by the Heyting 

algebra NUC(OX)) as a means to construct a family of appropriate belief operators. Every 

knowledge operator K (= int) comes with a class of appropriate belief operators B in the sense 
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that the pairs (K, B) satisfy the axioms of Stalnaker’s KB system, with the exception of the 

axiom of “negative introspection” (NI). 

The organization of this paper is as follows: to set the stage, in the next section, we recall the 

axioms and rules of Stalnaker’s KB logic of knowledge and belief. In section 3, we introduce 

some basic topological concepts that are necessary for the topological semantics of knowledge 

and belief. In section 4 we define the concept of a (topological) nucleus that plays a central role 

for the definition of belief operators. In section 5, the relation between nuclei and belief 

modalities is studied in detail. In section 6, we calculate the Heyting algebra of consistent belief 

operators for some important topological universes. We conclude with some general remarks 

on the further elaboration of this nucleus-based approach in section 7. 

 

 

2. STALNAKER’S KB LOGIC OF KNOWLEDGE AND BELIEF. First, for the sake of 

definiteness, let us recall the axioms and the inference rules of Stalnaker’s system (cf. Stalnaker 

(2006), Baltag et al. (2017, 2019): 

 
(2.1) Definition (Stalnaker’s axioms and inference rules for knowledge and belief).  

(CL)  All tautologies of classical propositional logic. 

(K)   K(ϕ → ψ) → (Kϕ → Kψ)   (Knowledge is additive). 

(T)   Kϕ → ϕ      (Knowledge implies truth). 

(KK)   Kϕ → KKϕ      (Positive introspection for K) . 

(CB)   Bϕ →  ¬ B ¬ ϕ     (Consistency of belief). 

(PI)   Bϕ → KBϕ      (Positive introspection of B). 

(NI)  ¬ Bϕ → K¬ Bϕ    (Negative introspection of B). 

(KB)   Kϕ → Bϕ     (Knowledge implies belief). 

(FB)   Bϕ → BKϕ     (Full belief). 
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Inference Rules: 

(MP)   From ϕ and ϕ → ψ, infer ψ.   (Modus Ponens). 

(NEC)   From ϕ, infer Kϕ.    (Necessitation).¨ 

 
For the topological approach to knowledge and belief, the axiom (NI) plays a special role. It is 

easily shown that (NI) holds only for topological models of a very special kind, namely, models 

that are based on extremally disconnected spaces topological spaces.  For the systems of 

knowledge and belief considered in this paper we will only require that they are weak Stalnaker 

systems in the following sense:   

 
(2.2) Definition. A bimodal system based on the bimodal language LKB is a weak Stalnaker 

system iff it satisfies all of Stalnaker’s axioms and rules given in (2.1) for knowledge K and 

belief B but the axiom (NI) of negative introspection.¨ 

 
Now let us recall the basics of the interior semantics for modal epistemic logic as presented by 

Baltag, Bezhanishvili, Özgün, and Smets in various recent publications (cf. Baltag et al. (2013, 

2015, 2016, 2019)). In the rest of this paper this semantics will be used throughout. 

We start with a standard unimodal epistemic language LK with a countable set PROP of 

propositional letters, Boolean operators ¬, Ù, and a modal operator K to be interpreted as a 

knowledge operator. The formulas of LK are defined as usual by the grammar 

j::= p½¬p½fÙy½Kj      ,          p Î PROP. 

The abbreviations for the Boolean connectives Ú, ®, and <¾> are standard. Analogously to 

LK, a bimodal epistemological language LKB for operators K and B is defined. For a more 

detailed presentation of topological semantics, the reader may consult the recent papers of 

Baltag et alii. 
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3. ON THE TOPOLOGY OF KNOWLEDGE AND BELIEF OPERATORS. Now let us recall 

the basics of the interior semantics for epistemic logic of knowledge and belief as presented by 

Baltag, Bezhanishvili, Özgün, and Smets (cf. Baltag et al. (2013, 2015, 2016, 2019)). This 

semantics will be used throughout the rest of this paper. First of all, recall the definition of a 

topological space: 

 
(3.1) Definition. Let X be a set with power set PX. A topological space is an ordered pair (X, 

OX) with OX Í PX that satisfies the following conditions: 

(i)      Ø, X Î OX. 

(ii)     OX is closed under finite set-theoretical intersections Ç and arbitrary unions È.¨ 

 
The elements of OX are called the open sets of the topological space (X, OX). The set-

theoretical complement CA of an open set A is called a closed set. The set of closed subsets of 

(X, OX) is denoted by CX. The interior kernel operator int and the closure operator cl of (X, 

OX) are defined as usual: The interior kernel int(A) of a set A Î PX is the largest open set that 

is contained in A; the closure cl(A) of A is the smallest closed set containing A. For details, 

see Willard (2004), Steen and Seebach Jr. (1982), or any other textbook on set-theoretical 

topology). The operators int and cl are well-known to satisfy the Kuratowski axioms:   

 
(3.2) Proposition (Kuratowski Axioms). Let (X, OX) be a topological space, A, B ÎPX. The 

interior kernel operator int and the closure operator of (X, OX) satisfy the following 

(in)equalities  

(i)                  int(A Ç B) = int(A) Ç int(B).                                    cl(A È B) = cl(A) È cl(B). 

(ii)                 int(int(A)) = int(A).                                                   cl(cl(A)) = cl(A). 

(iii)                 int(A) Í  A.                                                              A  Í cl(A). 

(iv)                 int(X) = X.                                                                Ø = cl(Ø).¨ 
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In the following these axioms are used in the following without explicit mention. Moreover, 

we will use freely the fact that the operators int and cl are inter-definable:  

 
                                    int(A) = Ccl(CA)            and            cl(A) = Cint(CA)  

Further, it should be pointed out that often it is expedient to conceive the operators int and cl 

as operators PX¾¾int¾¾>PX and PX¾¾cl¾¾>PX defined on PX. Hence, the 

concatenation of these operators makes perfect sense. In the following, concatenations such as 

intcl, intclint will play an important role. 

The concept of a topological space (X, OX) is extremally general. For most applications it is 

expedient or even necessary to require that the topology must satisfy axioms in addition to 

those generally required of topological spaces. One such collection of conditions is given by 

means of axioms called separations axioms. Some very few axioms of this kind that are 

important for the purposes of the present paper are the following ones: 

 
(3.3) Definition (Separation Axioms for Topological Spaces). Let (X, OX) be a topological 

space, a, b Î X, and A, B Î OX. 

(i) X is a T0-space iff there exists an A such that either a Î A and b Ï A, or b Î A and a Ï A.  

(ii) X is a TD-space iff every a Î X has an open neighborhood A such that A–{a} is also open. 

(iii) X is a T1-space iff there exist A and B containing a and b respectively, such that b Ï A, 

and a Ï A. 

(iv) X is a T2-space iff there exist disjoint A and B containing a and b, respectively.¨  

Each of these axioms is independent of the axioms (3.1) of a topological space. In fact, there 

exist topological spaces which do not satisfy any of these separation axioms. More precisely, 

the following chain of implications hold:  
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(3.4) Proposition. The separation axioms Ti defined in (3.3)(i) – (iv) satisfy the following chain 

of implications: 

                                                                                     T2  ÞT1 Þ TD Þ T0.  
 

All implications of this chain are proper, i.e., they cannot be reversed. The axioms T2, T1, and  

T0 may be called classical. They are discussed (usually together with many other separation 

axioms) in full detail in all standard textbooks of topology (see also the particularly useful 

presentation in Steen and Seebach Jr. (1978)). The axiom TD is rather new.  It was first proposed 

in the 1960s by several authors for a variety of reasons. For a modern presentation of TD see 

Picado and Pultr (2012, I.2). The axiom TD will be especially useful for the calculation of the 

family NUC(OX) of belief operators.       

 
Dense subsets will be essential for the definition of consistent belief operators B:                                                                                                                                              

 
(3.5) Definition. Let (X, OX) be a topological space with interior operator int and closure 

operator cl, let Y, Z Î PX.  

(i) Y is a dense subset of X iff cl(Y) = X.  

(ii) Z is a nowhere dense in X iff int(cl(Z)) = Ø.¨ 

 
(3.6) Examples of dense and nowhere sets of topological spaces (X, OX). 

(i)1 For the trivial coarse topology (X, {Ø, X}) every non-empty subset A Î PX is dense and 

only Ø is nowhere dense; (i)2 For the discrete topology (X, PX) only X is dense, and only Ø is 

nowhere dense.   

(ii) Let (R, OR) be the real line endowed with the familiar Euclidean topology. Let F Í R be 

a finite set. Then F is nowhere dense and the complement CF of F is a dense open subset of 

(R, OR). Analogously, the infinite set of integer Z is a nowhere dense subset of (R, OR).   
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(iii) The set Q of rational numbers and the set CQ of irrational numbers are disjoint dense 

subsets of (R, OR), i.e., Q Ç CQ = Ø and cl(Q) = cl(CQ) = R. 

 (iv) Let Q = {q1, q2, …} be a linear ordering of Q and U(qi) the open neighborhood of qi of 

diameter 1/22i. Then the union U of the neighborhoods U(qi) is a proper dense open subset of 

(R, OR). Let l be the Lebesgue measure of R. As is well known, the set U is l-measurable 

and has Lebesgue-measure ¼ < l(U) < å1/4i  = 1/(4 -1) = 1/3. Hence U is much smaller than 

R. The complement CU is closed and nowhere dense. 

(v) A sophisticated example of a nowhere dense set is given by the Cantor set C of the real line 

(R, OR) defined as follows: From the unit interval [0,1] of R remove the middle open interval 

(1/3, 2/3) obtaining the union of the closed interval [0, 1/3] and [2/3, 1]. This set is denoted by 

C1. From C1 remove the open middle intervals (1/9, 2/9) and (7/9, 8/9) obtaining a set C2 that 

consists of the four closed intervals [0, 1/9], [2/9, 1/3], [2/3, 7/9], and [8/9, 1]. And so on. Then 

the Cantor set is defined as the infinite intersection C:= Ç Ci.  

The Cantor set is nowhere dense and perfect (= closed and having no isolated points) (cf. Steen 

and Seebach Jr. (1978, p. 57- 58), Edgar (1990, 1.1), van Mill (2001, Example 1.5.4., p. 42ff)). 

Hence the complement CC of the Cantor set C is a dense open subset of (R, OR). In section 6 

the complement CC of the Cantor set C will be used to define some interesting non-standard 

belief operators for the Euclidean space (R, OR).¨ 

 
After these preparations, topological models for the modal languages LK and LKB and LB can 

be defined as follows:   
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(3.7) Definition. Given a topological space (X, OX), we define a topo(logical) model for LK as 

M = (X, OX, v), where P¾v¾> PX is a valuation function from the set of propositional letters 

P to PX.¨ 

 
Given a topological model (X, OX, v), the interior semantics for the language LK is defined as 

usual. In particular, if a formula j of L is interpreted as v(j) = A Î PX, then the formula Kf 

of LK is interpreted as v(Kf):= int(A). Usually, it is not necessary to explicitly mention the 

interpretation v of a model (X, OX, v). Hence, we use a set-theoretical denotation and write A, 

K(A), or int(A) instead of v(j), Kv(j), for A = v(j), etc. 

Given a topological model M = (X, OX, v), the knowledge operator K of M is always 

interpreted as the topological interior kernel operator int of (X, OX). Belief operators B will be 

defined by using the topological structure (X, OX) underlying M in various ways that will be 

explained in detail in the next sections. 

 

 

4. NUCLEI OF TOPOLOGICAL SPACES (X, OX). In this section we introduce the concept 

of(topological) nuclei (cf. Johnstone (1982), Borceux (1994), Picado and Pultr (2012). Nuclei 

are the essential for the task of defining appropriate belief operators related to a topological 

knowledge operator K. The concept of a (topological) nucleus is basic for the rest of this paper. 

The literature on nuclei in (point-free) topology has reached a high level of technical 

sophistication. This paper does not aim to give a full-fledged introduction into the theory of 

nuclei. Instead, we intend to provide the basic definitions and facts so that the reader can 

understand that this theory has interesting applications regarding the modal theory of belief and 

knowledge. For a fuller account, the reader may consult Johnstone (1982), Borceux (1994), or 

Picado and Pultr (2012, 2021) and the extensive bibliographies mentioned there. 
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(4.1) Definition. Let (X, OX) be a topological space, and let A Î OX. A map OX¾¾j¾> OX 

is called a nucleus of (X, OX) if it satisfies the following properties: 

(i)  A Í j(A).                                     (Inflation) 

(ii)   j(j(A)) Í j(A).        (Idempotence) 

(iii)  j(A Ç B) = j(A) Ç j(B).      (Distributivity)
   
The set of nuclei of a topological space (X, OX) is denoted by NUC(OX).¨ 

 
The set of nuclei NUC(OX) is partially ordered in a natural way by defining j ≤ j’:= j(A) Í 

j’(A) for all AÎ OX. In the following, (NUC(OX), ≤) is always assumed to be endowed with 

this partial order. As is easily proved: 

 
(4.2) Proposition. The partial order (NUC(OX), ≤) is a complete lattice. 

 
Proof. Let Bl  Î NUC(OX) be a family of nuclei. Then it is easily proved that the operator B 

defined by B(D) :=  int(Ç Bl(D)) is still a nucleus. The operator B is the pointwise infimum of 

the Bl(D) (cf. Borceux 1994, p. 34).  Thus, (NUC(OX), ≤) is a complete inf-semilattice, and 

hence a complete lattice. Its bottom element 0 is the identity operator id, and its top element 1 

is the (trivial) nucleus that maps every D Î OX onto X.¨ 

 
Actually, more is true about (NUC(OX), ≤):  

 
(4.3) Proposition. The lattice (NUC(OX), ≤) is a complete Heyting algebra. The Heyting 

implication Þ  of NUC(OX) is defined by  

j Þ k(D) := INF{j(E) Þ k(E); E ≥ D}                           (D, E Î OX) 

Proof. (Johnstone 1982 (II, 2.4, Lemma), Borceux 1994 (Theorem 1.5.7).¨ 
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In the last decades, the investigation of NUC(OX) has turned out to be a fruitful pathway for 

studying topological problems of various kinds, particularly problems related to point-free 

topology (cf. Johnstone (1982), Borceux (1994), Picado and Pultr (2012)). In this paper, we 

conduct some modest steps to use the concept of nuclei to shed new light on the problems of 

modal systems that deal with the epistemological concepts of knowledge and belief. More 

precisely, we will deal with problems related to Stalnaker’s KB logic of knowledge and belief. 

Before answering the specific questions regarding this issue, it is expedient to give some 

examples of nuclei and to elucidate the structure of NUC(OX).   

 
(4.4) Examples (Johnstone 1982, Borceux 1994, Picado and Pultr 2012). Let (X, OX) be a 

topological space and A, B, D Î OX. Denote the join and the Heyting implication of OX by È 

and Þ, respectively. 

(i)  The identity map OX¾¾id¾¾>OX is a nucleus. 

(ii) The map kA defined by kA(D):= A È D is a nucleus. This nucleus is called the closed 

nucleus defined by A. 

(iii)  The map jA defined by jA(D) = (A Þ D) is a nucleus. This nucleus is called the open 

nucleus defined by A. 

(iv)  Let int and cl denote the interior kernel operator and the closure operator of (X, OX), 

respectively. The operator OX——j**——>OX defined by j**(D):= intcl((D)) is a 

nucleus. It is called the regular nucleus of OX and is denoted by j**.¨ 

  

(4.5) Definition. A nucleus j Î NUC(OX) is called a dense nucleus iff j(Ø) = Ø. The subset of 

dense nuclei of NUC(OX) is denoted by NUC(OX)d.¨ 
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Dense nuclei will play a central role in the following, since they define consistent belief 

operators. Hence, it may be expedient to provide some explicit (counter)examples of this kind 

of nucleus: 

 
(4.6) Examples of dense and not dense nuclei. 

(i) The identity map OX¾id¾>OX is a dense nucleus. 

(ii) For A ≠ Ø, the closed nucleus kA is not dense since kA(Ø) = A È Ø = A. 

(iii) Recall that A Î OX is dense in the topological sense iff A*:= (A Þ Ø) = Ø. The open 

nucleus jA defined by jA(D):= A Þ D is a dense nucleus iff A is dense, since jA(Ø) = 

int(A Þ Ø) = A* = Ø. 

(iv) Applying the Kuratowski axiom (3.2)(iv) yields that the regular nucleus j** is a dense 

nucleus: j**(Ø) = intcl(Ø) = Ø. 

(v) The constant nucleus 1 that maps each element of OX onto X is a nucleus. Clearly, 1 is 

not dense since 1(Ø) = X.¨ 

 
Now all ingredients are available to formulate the central definition of this paper: 

 
(4.7) Definition. Let (X, OX) be the topological space of a topological model with interior 

kernel operator int, and let j Î NUC(OX) be a nucleus OX¾j¾>OX and OX¾i¾>PX the 

canonical inclusion.  Denote the concatenation PX¾int¾>OX¾j¾>OX¾i¾>PX by Bj. For 

A Î PX, Bj is an operator PX¾Bj¾>PX that maps A onto Bj(A). The operator Bj is called a 

(nuclear) belief operator (related to K and defined by the nucleus j).¨ 

 
The rest of this paper is dedicated to the task of showing that (4.7) is a reasonable and fruitful 

definition that defines a family of well-behaved belief operators Bj for a knowledge operator 

K that enjoy all properties that one intuitively expects from “good” belief operators.  
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The task of justifying the predicate “belief operator” for Bj is naturally divided into two 

subtasks: First, it has to be shown that (4.7) is formally adequate in the sense that the belief 

operators defined by (4.7) satisfy appropriate formal conditions of adequacy. Second, it has to 

be shown that sufficiently many interesting belief operators B exist that fulfil the requirements 

of (4.7). Of course, there is no complete agreement of what “good properties for a belief 

modality” are, but the following properties are probably rather uncontroversial candidates: 

 

(4.8) Adequacy conditions for belief operators. A good, intuitively plausible, belief operator B 

related to a knowledge operator K should satisfy the following conditions: 

 
(i) A cognitive agent t who relies on B may have a false belief. Formally, there should exist 

propositions A Í X, such that w Î B(A) but wÏ A, i.e., t believes that w is an A-world, but w 

is not actually an A-world. 

(ii) A good concept of belief should be consistent, i.e., if t believes that w is an A-world, then 

t does not believe that w is not an A-world, i.e., w Î B(A) entails that wÏ B (CA). 

(iii) A good concept of belief should be compatible with the related concept of knowledge, i.e., 

if t knows that w is an A-world, then t believes A, i.e., w Î K(A) entails w Î B(A).¨ 

 
(4.9) Proposition. Let (X, OX) be a topological space, jÎ NUC(OX), j ≠ id. Then the dense 

belief operator Bj := jint is a good belief operator in the sense of (4.8). 

 
Proof. (i) In order to prove that Bj(A) may possibly be false one can argue as follows: By the 

definition of the partial order of nuclei (3.2), the smallest nucleus of OX is the identity id. Thus, 

according to our assumption id < j, there must be an open A such that A Ì j(A) and A ≠ j(A). 

This is equivalent to Bj(A) Ç CA ≠ Ø. In other words, there is a world w Î Bj(A) Ç CA. This 
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means that the epistemic agent who uses Bj believes w to be an A-world but in actuality, w is 

not an A-world. In other words, the agent’s belief is false. 

(ii) Due to the fact that the operator Bj is dense (by definition (4.5)) and distributive with respect 

to Ç (by Definition (4.1)(ii)) one calculates 0 = Bj(A Ç CA) = Bj(A) Ç Bj(CA) iff B(A) Í 

CBj(CA).    

(iii) This holds due to the axiom (KB) of (2.1).¨ 

 
More systematically, one may require that for good belief operators, the pairs (K, B) should 

satisfy the rules and axioms of a weak Stalnaker system in the sense of (2.2). In the next section, 

we will prove that this is indeed the case for nuclear belief operators defined by (4.7). For the 

moment, we are content to prove that the belief fragment of the KB system defines a well-

behaved logic of belief: 

 
(4.10) Proposition. Let (X, OX) be a topological space with an interior kernel operator int, and 

E, F Î OX. Then, a dense nuclear belief operator Bj: = jint, j Î NUC(OX), defines a KD4 logic 

of belief, i.e., the following axioms and rules are satisfied: 

(i)  (K)    Bj(E®F) ® (Bj(E) ®Bj(F)).              (Normality) 

(ii)  (D)  Bj(E) ®CBj(CE).             (Consistency) 

(iii)  (4)   Bj(E) ®Bj(Bj(E)).                                                 (Idempotence) 

(iv)  Inference Rules: 

(MP)   From E and E®F, infer F.           (Modus ponens) 

(NEC)  From E, infer Bj(E).             (Necessitation) 

 
Proof. (i) By definition (4.1), a nucleus j is distributive with respect to the intersection Ç. By 

Kuratowski (3.2)(i) the interior operator int is also distributive with respect to intersection Ç as 

well. Hence the belief operator Bj as the concatenation of j and int is distributive as well. 



 16 

Therefore, one has Bj(E) Ç Bj(E®F) = Bj(E Ç (E®F)) = Bj(E Ç F) Í Bj(F). Hence, we obtain 

Bj(E) Ç Bj(E®F) Í Bj(F). This is set-theoretically equivalent to Bj(E ® F) Í Bj(E) ® Bj(F). 

(ii) Using Ç-distributivity one calculates Ø = Bj(E Ç CE) = Bj(E) Ç Bj(CE) iff B(E) Í 

CBj(CE). In other words, axiom (D) holds for belief operator Bj. 

(iii) To prove axiom 4, one observes that the belief operator Bj is idempotent: BjBj = jintjint = 

jjint = jint = Bj.  

(iv) For (MP) there is nothing to show. The rule (NEC) of necessitation for Bj is valid since due 

to int(X) = X the rule of necessitation for K is valid. A fortiori one may infer from E that Bj(E) 

holds, since K(E) Í Bj(E). Hence, the operators Bj define KD4 logics.¨ 

 

 
 
5. NUCLEAR BELIEF OPERATORS AND THE LOGIC OF KNOWLEDGE AND BELIEF. 

After these preparations, we can state a main theorem of this paper. It describes, so to speak, 

the logic of belief operators Bj related to a knowledge topological operator K as an intuitionistic 

logic defined by the complete Heyting algebra NUC(OX)d of dense nuclei of (X, OX): 

 
(5.1) Theorem. Let (X, OX) be a topological space, and let j Î NUC(OX)d be a dense nucleus. 

For the belief operator Bj := jint, the pairs (K, Bj) of modal operators K and Bj satisfy all axioms 

of a weak Stalnaker system, i.e., the system (K, Bj) satisfies all axioms and rules of (2.1) but 

the axiom of strong negative introspection (NI). 

 
Proof. The axioms (K), (T), and (KK) involve only the interior kernel operator int and are 

classically known to hold for topological models of knowledge (cf. McKinsey and Tarski 

(1944)). Hence, it is sufficient to consider only axioms (CB), (PI), (KB) and (FB) that involve 

K and Bj. 
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(CB): Consistency of belief: Axiom (CB) is just axiom (D), which has already been proven in 

(3.7)(ii). 

(PI): Positive introspection of Bj: The set Bj(D) is, by the definition of Bj, open since j is a 

nucleus. Hence, Bj(D) Í int(Bj(D)), i.e., (PI) is satisfied. 

(KB): Knowledge implies belief: Clearly, int(D) Í jint(D) = Bj(D), since j as a nucleus is 

inflationary, i.e., id ≤ j. 

(FB): Full belief: This holds by the definition of Bj and the (KK) principle of K.  

In order to show that jint in general does not satisfy (NI) consider the following elementary 

example: Take (X, OX) = (R, OR). As is easily seen, for K = int and B = j**, the axiom (NI) 

of negative introspection is equivalent to cl**(D) Í j**int(D) for all D Î PR. Clearly, for the 

open intervals D = (a, b) Ì R this is false, since cl**(D) = [a, b]. Hence (NI) is not generally 

valid for the pair (K, B) = (int, j**int).3  

This finishes the proof that for dense nuclei jÎ NUC(OX) the belief operators Bj:= jint satisy 

all axioms and rules of a weak Stalnaker KB system.¨4 

 
To show that (5.1) is interesting for the logic of knowledge and belief, one must show that 

topological models (X, OX) do have a sufficient supply of interesting dense nuclei beyond j**. 

This is ensured by the following two propositions: 

 

 
3Later we will show that also other pairs (K, B) of operators do no satisfy (NI).  
4 The soundness of KB being obvious, with respect to the completeness of KB one observes that the 
axioms of KB, as given in (2.1), are all Sahlquist formulas: K satisfies the axioms of KT4, B satisfies 
the axioms of KD4, and the connecting axioms KBj ¾® Bj, Bj¾®KBj, and Kj¾®Bj are clearly 
Sahlquist formulas (cf. Blackburn et al. (2010, Definition 3.51)). Hence, by the Sahlquist Completeness 
Theorem for (multi)modal languages one obtains that the logic KB is strongly complete with respect to 
the class of frames FKB of KB (cf. Blackburn et al. (2010, Theorem 4.42)). 
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(5.2) Proposition. For (X, OX) let Y Í X be a subset of X. For D Î OX the operator jY defined 

by jY(D) := int(Y ® D) is a nucleus of OX. It is called a spatial nucleus defined by the subset 

Y of X. 

 
Proof. One has to show that jY satisfies requirements (4.1)(i) – (iii):   

(i): Clearly, D Í int(Y®D) = int(CYÈ D). Hence, D Í jY (D). 

(ii): By the Kuratowki axiom (3.2) (i) one obtains for the operator jY: 

jY(D Ç D’) =  int(CY È (D Ç D’)) = int(CY È D) Ç int(CY È D’) = jY (D) Ç jY (D’).   

(iii): Clearly, jY(D) = int(CY®D) Í int(CY®int(CY®D)). On the other hand,       

int(CY®int(CY®D)) Í int(CY®(CY®D)) = int(CY®D). Hence, jY(jY(D)) = jY(D). 

Thus, for all subsets Y of X the map OX¾jY¾>OX is a nucleus.¨ 

 
(5.3) Corollary. If Y is a dense subset of (X, OX), then the nucleus jY defined by (5.2) is a 

dense nucleus, i.e., jY(Ø) = Ø. For the belief jYint the pair (int, jYint) defines a weak Stalnaker 

system. 

Proof. Let Y be a dense subset, i.e., cl(Y) = X. Then one calculates  

                 jY(Ø) = int(CY È Ø) = int(CY) = CclCC(Y) = Ccl(Y) = CX = Ø.¨ 

 
Following David Lewis according to whom the subsets of a set are its parts (cf. Lewis 1991), 

one may characterize the account of the present paper as a mereological epistemology, since 

the belief operators Bj are mereologically defined in the sense that there are determined by the 

parts Y of X (and the topology of (X, OX)). It is important to note that the characterization of 

the topological epistemology as mereological is incomplete, however. In the next section we 

will show that for many spaces (X, OX) there are important (dense) nuclei that cannot be 

characterized mereologically, i.e., they cannot be characterized with the help of subsets aka 
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parts Y of X. Thus, the topological logic of belief operators is more complex than classical 

Boolean mereology. 

In order to keep things as simple as possible, from now on it will be assumed that all topological 

spaces (X, OX) are TD-spaces (cf. (3.4)). TD is a rather weak separation axiom satisfied by most 

topological spaces that “occur in nature”. For instance, Euclidean spaces and, more generally, 

all Hausdorff spaces and all T0 -Alexandroff spaces are TD-spaces. Thus, the restriction to TD-

spaces is a rather mild restriction.  

 

(5.4) PROPOSITION. If (X, OX) is a TD-space the map PX¾¾j¾¾>NUC(OX) defined in 

(5.2) by jY (D) := int(Y®D) is a monomorphism.   

Proof.  Suppose that Y and Y’ are two distinct subsets of X and jY = jY’. Suppose x Î Y – Y’. 

Since (X, OX) is a TD-space x has an open neighborhood D such that D – {x} is open as well. 

Then we obtain x Î int(Y È (D –{x}) but clearly x Ï int(Y’ – (D – {x}). This is a contradiction. 

Analogously, the assumption that there is an x Î Y’ – Y leads to a contradiction. Hence Y = 

Y’, i.e., j is a monomorphism.¨ 

 
It is well known that the requirement that (X, OX) is a TD -space is necessary to guarantee that 

j is a monomorphism. (5.4) can be strengthened as follows: 

 
 
(5.5) PROPOSITION. Let (X, OX) be a TD-space. Denote the Boolean algebra of regular 

elements of NUC(OX) by NUC(OX)*.5 Then the map P¾j¾>NUC(OX)* defined by 

j(Y)(E):= int(Y®E) ( = jY(E)) is a Boolean isomorphism. 

 
Proof. See Mcnab (1981, Theorem 6.5).¨ 

 
5 Recall that for a Heyting algebra H with Heyting implication Þ the regular elements are defined as elements b 
for which b = b** = (b Þ 0) Þ 0. 
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As is well-known, for topological spaces (X, OX) the intersection of dense subspaces Y and 

Y’ in general is not dense. A classic example is the real line (R, OR) for which the sets of 

rational numbers Q and of irrational numbers CQ are both dense, but the intersection Q Ç 

CQ is clearly not dense. Hence, in general a topological space (X, OX) has no smallest dense 

subset Y. This entails that a topological space in general has no greatest dense nucleus jY such 

that j ≤ jY for all dense nuclei j Î NUC(OX). In sharp contrast, for dense nuclei j Î NUC(OX) 

the situation is quite different. A famous theorem of Isbell asserts that every topological space 

(X, OX) has a smallest dense nucleus: 

 

(5.6) Theorem (Isbell’s Density Theorem). Let (X, OX) be any topological space. Then, the 

dense nucleus j** is the greatest element of NUC(OX)d, i.e., for all dense nuclei j one has j ≤ 

j**, i.e., j(D)  Í j**(D), D Î OX.   

Proof. (Johnstone (1982, II. 2.4 Lemma, p. 50/51), Picado and Pultr (2012, III, 8.3., p.40, also 

VI, 2.1, p. 101ff.)¨  

 
This is a very remarkable theorem, since it demonstrates that the dense nuclei of a topological 

space (X, OX) behave quite differently than the dense subspaces Y of X.  More precisely, a 

space has more dense nuclei j than those that are defined by dense subspaces. A pertinent 

example is the Euclidean line (R, OR) and its disjoint dense subsets Q and CQ. As has been 

pointed out by Johnstone and others, this difference may be considered as one of the great 

advantages of doing topology in the conceptual framework of “pointfree topology” based on 

“(sub)locales”, “nuclei”, and their relatives instead of traditional set-theoretical topology (cf. 

Johnstone 1991, p. 87-88). This paper is not the place to discuss this issue in any further depth. 

Just let us note the following elementary corollary of Isbell’s density theorem:  



 21 

  
(5.7) Corollary. The family of dense nuclei NUC(OX)d is a complete Heyting algebra.   

 
Proof. By definition, the set of dense nuclei NUC(OX)d is a subset of the complete Heyting 

algebra NUC(OX) of nuclei. By (5.6) the largest element of NUC(OX)d is the regular nucleus 

intcl. Hence, NUC(OX)d is the downset ¯j** of nuclei j, i.e.,  ¯j** := {j; j ≤ j**}. Thereby 

NUC(OX)d inherits canonically the structure of a complete Heyting algebra from NUC(OX).¨ 

  
The corollary (5.7) may be considered as a neat characterization of the intuitionist logic of 

belief operators B related to a given knowledge operator K.  

 

 

6. AN ASSORTED CHOICE OF NUCLEI FOR EUCLIDEAN AND OTHER SPACES. In 

this section we will calculate some concrete nuclei of a variety of concrete topological spaces. 

For this purpose, it is useful to have available several equivalent ways of how nuclei can be 

characterized. All these equivalences are well known (cf. Johnstone 1982, Borceux 1994, 

Picado and Pultr 2012).    

Let us start with the characterization of a nucleus j as a map OX¾¾j¾¾>OX that is 

inflationary, idempotent, and distributive with respect to intersection (cf. (4.1)(i) – (iii))). First 

of all, let us note that due to (4.1) a nucleus j can be equivalently characterized by its image 

j(OX) := {j(a); a ÎOX}. As is well known there is a canonical monomorphism j(OX)¾i¾>OX 

(the “adjoint” of j) for the epimorphism OX¾¾j’¾¾>j(OX) such that ij’ = idj(OX), since j’ is 

a frame map. Moreover, since j is idempotent the image j(OX) is just the fixed point set of j, 

i.e. Fj := {a; a = j(a) and a Î OX} of j (cf. Johnstone (2002, C1.1 481ff).). It is important to 

note that the join of two nuclei j Ú l corresponds to the intersection of their images j(OX) Ç 

l(OX) (or their fixsets Fj Ç Fl). 
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Now we will show that jQ and jCQ (and therefore jQ Ú jCQ) have fixed points that are not fixed 

points of j**. Thus, jQ v jCQ ≠ j**.   

Using different but equivalent characterizations of nuclei facilitates the calculation for 

Euclidean spaces and other spaces. In the first part of this section, we will deal with the 

Euclidean line and similar spaces. In the second part, which may be considered as 

complementary to the first one, we investigate a quite different type of topological spaces that 

exhibit a quite different behavior with respect to issues related to nuclei.  

First, let us observe that the real line (R, OR) and similar spaces possess many  dense nuclei. 

Since (R, OR) is a T1-space, for all x Î R the singletons {x} are closed and the complements 

R – {x} are dense and open. By (5.5) they give rise to different consistent belief operators Bx 

defined by Bx(D) = jX-{x}(D) = int({x}È D).                                                                                                                                                                                                                                                                                  

Admittedly, the open subsets X – {x} are not very interesting dense subspaces of T1 -topo–

logical spaces. They are very large and therefore almost trivial. At least they show that a large 

class of familiar topological spaces has plenty of different dense nuclei that may be used to 

define consistent belief operators. 

For more specific examples of topological spaces (X, OX) one obtains more interesting 

examples of dense subsets (and thereby of consistent belief operators). These examples indicate 

that in general the structure of NUC(OX) seems to be difficult to calculate. Take, for instance, 

the Euclidean line (R, OR). For this space the set of rational numbers Q and the set of irrational 

numbers CQ are well known to be two dense, disjoint complementary subsets, i.e., Q Ç CQ 
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= Ø, Q È CQ = R, and cl(Q) = cl(CQ) = R. By (5.6) one obtains for the dense nuclei jQ and 

jCQ that jQ Ù jCQ = 0 and jQ Ú* jCQ = 1.6   

Isbell’s density theorem (5.6), however, yields a result that clearly shows that subspaces and 

nuclei of topological spaces may show a quite different behavior: Since both jQ and jCQ are 

dense, by Isbell’s density theorem one has that jQ ≤ j** and jCQ ≤ j**. Therefore, the join jQ Ú 

jCQ ≤ j**. On the other hand, one has 1 = jQ Ú* jCQ. That is, the join jQ Ú jCQ of jQ and jCQ in 

NUC(OR)d is non-trivial and differs considerably from the trivial join jQ Ú*jCQ = jQÇCQ = 1 in 

NUC(OR)*.  

In the following it will be shown that it is well worth the effort to investigate the nuclei like jQ 

, jCQ, and j** a bit further. First of all, let us show that the nucleus j** for (R, OR) “has no 

points” in the following sense: 

 
(6.1) Proposition. For the Euclidean line (R, OR) there is no subset Y of R such that j** = jy.  

 
Proof. Assume the contrary, i.e., there is a Y Í R such that jY (D) = int(CY È D) = intcl(D) 

for all D Î OR. Clearly, Y ≠ Ø. Assume the contrary, i.e., Y = Ø, and consider D = (0,1) Î 

OR. Then one calculates jY((0,1)) = int(CØ È (0,1)) = int(R) = R, but j**((0,1)) = (0, 1). This 

is a contradiction. Hence, we may assume that Y ≠ Ø. Assume x Î Y. Take D = R – {x}. The 

set D is open in (R, OR) since (R, OR) is a T2-space (cf. (3.4) Proposition). Then, we get jY(D) 

 
6 It should be observed that Ú* is the join of the Boolean algebra NUC(OR)* and not the join Ú of the 
Heyting algebra NUC(OR)). Further, it should be noted that (Q, CQ) is not the only pair of disjoint 
dense (“equidense”) subsets of (R, OR). Let s > 0 be a real number such that Ös is irrational (ÖsQ, CÖsQ) 
are other pairs of this kind. 
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= int(CY È D) = int(D) = D, but j**(D) = R. Hence, the regular nucleus j** is different from 

any spatial nucleus of the type jY, Y being a subset of R.¨ 

 
The “non-spatiality” of j**, i.e., the fact that there is no subspace Y of R such that j** = jY is 

not thus exceptional as it may look like. There are other non-spatial operators as well. For 

instance, one obtains:   

 
(6.2) Proposition. The join jQ Ú jCQ of the spatial operators jQ and jCQ is non-spatial, i.e., it has 

no points. 

 
Proof. A point x Î R is either rational or irrational, i.e., x Î Q or x Î CQ. Define Dx := R – 

{x} and suppose x Î Q. One obtains jQ(Dx) = int(CQ È Dx) = int(R – {x}) = R – {x}. On the 

other hand, for jCQ one calculates jCQ(Dx) = int(CCQ È Dx) = (int(R) = R. Hence, for no x Î 

R, Dx is invariant under jCQ and jCQ, i.e., Dx   is not invariant under jQ Ú jCQ.  Analogously, one 

obtains that for x Î CQ the open sets Dx := R – {x} are not invariant under jQ Ú jCQ. In other 

words, the intersection of the fixed sets FQ and FCQ that characterizes jQ Ú jCQ does not contain 

any point. Therefore jQ Ú jCQ is (like j**) a dense nucleus that is not induced by a (dense) 

subspace Y of R since it has no points.¨ 

According to Isbell’s theorem j** is the greatest dense nucleus. Hence, it is natural to ask 

whether jQ Ú jCQ = j** or jQ Ú jCQ < j**. If jQ Ú jCQ = j** obtained, this would be equivalent to 

the fact that all D Î OR that are invariant under jQ and jCQ, are invariant under j** as well. The 

following example shows that this is not the case. Consequently, jQ Ú jCQ < j**. More precisely, 

we show that the complement D = CC of the Cantor dust C is a non-regular open subset of R 
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that is invariant under the nuclei jQ and jCQ, but not invariant under j**. This entails that jQ Ú 

jCQ is strictly smaller than j**.  

In order to show that CC is invariant under jQ and jCQ, the following topological lemma is 

needed: 

  
(6.3) Lemma. Let C be the Cantor dust as defined in (3.6)(v). Then C Ç Q and C Ç CQ are 

dense in C i.e., for all p Î C. all open neighborhoods U(p) of p contain elements q Î C Ç Q 

different from p, and all open neighborhoods U(p) contain elements r Î U(p) Ç CQ different 

from p.       

                    
Proof. Assume s Î C.  As is well known (cf. Steen and Seebach Jr. (1980, p. 57, Edgar (1990, 

Proposition 1.1.5, p. 4), s can be uniquely expressed to the base 3 without using the digit 1. If 

this representation is finite, then s is certainly rational, if the ternary representation is not finite, 

s may be irrational or rational. Now let p Î C be represented by an infinite series åak 1/3k. 

Then clearly p can be approximated arbitrarily closely by a finite sum ån ak 1/3k that is rational. 

Thus C Ç Q is dense in C.  On the other hand, if p is any element of C it can be approximated 

by a finite rational p’. This p’ can be approximated arbitrarily by an irrational q ÎC, since C is 

a complete metrical space. Hence any neighborhood U(p’) must contain irrational numbers q 

since C is uncountable.¨ 

Now we can show that the regular nucleus j** and the join jQ Ú jCQ are different by exhibiting  

elements of OR that are invariant under jQ Ú jCQ but are not invariant under the regular nucleus 

j**:  
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(6.4) Proposition. Let (R, OR) be the Euclidean line and CC the complement of the Cantor 

dust C as defined in (3.6)(v). Then CC is invariant under jQ and jCQ, i.e., jQ (CC) =  jCQ(CC) = 

CC, but CC is not invariant under j**, since j**(CC) = R. 

 
Proof. First, let us show that C is not invariant under j**. As is well known, the Cantor dust C 

is nowhere dense and closed in R. Hence, CC is open and one calculates 

           j**(CC) = int(cl(CC)) = intCintC(CC)) = int(Cint(C)) = int(C(Ø)) = int(R) = R. 

Hence, CC is not invariant under j**. In order to prove that CC is invariant under jQ and jCQ 

one proceeds as follows. First, consider jCQ(C) = int(Q È CC). Assume x Î ((Q È CC) Ç 

CCC) = (Q Ç C). We show that x Ï int(Q È CC). Suppose x Î int(Q È CC) and x Î Q. 

Thus, there exist an open neighborhood U(x) Í Q È CC. By Lemma (6.3) there is a y in U(x) 

such that y Î CQ and y Î C. This is a contradiction. Hence x Ï int(Q È CC). In other words, 

jCQ(CC) = int(Q È CC) = CC, i.e., CC is invariant under jCQ. Now consider jQ(C) = int(CQ 

È CC). Analogously, by (6.3) one shows that CC is invariant under jQ as well. Hence, CC is 

invariant under under jQ Ú jCQ . Thus, the nuclei j** and jQ Ú jCQ are different. More precisely, 

due to Isbell’s theorem one has jQ Ú jCQ < j**.¨ 

 
These calculations carried out so far should be sufficient to convince the reader that the 

structure of NUC(OX)d, i.e., the structure of the family of epistemological logics (K, B) 

definable with the aid of the topology of spaces such as the Euclidean line (R, OR) (and similar 

spaces), is far from trivial.   
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One reason for the complexity of NUC(OR) (and NUC(OR)d) seems to be that these spaces 

are resolvable in the sense that they possess disjoint dense subsets A and B that are 

complements of each other, i.e., A Ç B = Ø, AÈ B = X and cl(A) = cl(B) = X.7 

More directly this vague conjecture is confirmed by the examples to be discussed in the rest of 

this section, namely by spaces that are irresolvable in the sense that they do not possess disjoint 

dense subsets. At least for some of these spaces (X, OX) the Heyting algebras NUC(OX) seem 

to be more easily calculable than is the case for apparently elementary spaces such as (R, OR). 

The task of finding topological spaces (X, OX) whose Heyting algebra NUC(OX) (and 

NUC(OX)d) can be calculated more easily, has been treated in the literature (cf. Simmons 

(1980), Ávila, Bezhanishvili, Morandi, and Zaldívar (2021)). For the philosophical intentions 

of this paper, it is expedient to deal with spaces that are philosophically or logically relevant 

that fulfil this requirement. Fortunately, the recent literature contains some appropriate 

examples, for instance, Rumfitt’s polar spaces (cf. Rumfitt 2015, Bobzien 2015)8. The 

following examples indeed confirm the conjecture that the Heyting algebras NUC(OX) of 

nuclei of irresolvable spaces (X, OX) are more easily calculable. A very simple case is provided 

by polar spaces introduced by Rumfitt to deal with the Sorites paradox in the framework of 

classical Boolean logic (cf. Rumfitt 2015).9 

 

 
7 For some recent results that point in this direction, see Baboolal, Picado, Pillay, Pultr (2019). 
8 Polar spaces were introduced by Rumfitt to deal with the logic of vague concepts (cf. Rumfitt (2015)). 
In topology, polar spaces and related classes of spaces have been discussed for some time (although not 
under this name, of course) (cf. van Benthem, Bezhanishvili (2007), Bezhanishvili, Mines, and Morandi 
(2003), Bezhanishvili, Esakia, and Gabelaia (2004), and Gabelaia (2001)). The main example of a polar 
space discussed by Rumfitt (2015) is the so-called color circle: Given a set X of color experiences, a 
subset P of X is selected the elements of which are to be interpreted as prototypical or paradigmatic 
elements of X. For instance, the elements of P are to be taken as a “typically” blue object or a “typically” 
red object etc.  The elements of P are called poles of the color space X. The selection of poles is assumed 
to define a pole distribution in the sense of (5.8).  
9 Rumfitt’s polar spaces have been well known in topology. They may be characterized as submaximal 
Alexandroff spaces (cf. Bezhanishvili, Esakia, and Gabelaia (2004), Mormann (2021)). 
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(6.5) Definition. Let X be a set and P Í X be a (non-empty) set of distinguished elements to be 

interpreted as prototypes, paradigmatic cases, or poles. Assume that for all x Î X there is a 

non-empty set m(x) Í P of poles p. For all x Î X and all pÎ P the sets m(x) are assumed to 

satisfy two requirements: (i) Ø ≠ m(x) Í P, and (ii) m(p) = {p}. These assumptions define a 

map X¾m¾>2P in the obvious way. The map m is called a pole distribution and denoted by 

(X, m, P).¨ 

 
(6.6) Proposition. A pole distribution (X, m, P) defines a topology on X (cf. Rumfitt 2015, 

Mormann 2020): For A Í X define the operator PX¾int ¾>PX by x Î int(A) Û (x Î A and 

m(x) Í A). Then the operator int is a Kuratowski interior kernel operator and defines a topology 

OX on X. More precisely, (X, OX) turns out to be a (submaximal) Alexandroff space.¨ 

 
 More precisely, the topology of a polar spaces defined by (X, m, P) is calculated as follows:   

 
(6.7) Example (Topology of Polar spaces). Let (X, m, P) define the polar space (X, OX). Then 

for p Î P and x Î P – X the following holds: 

 
         int(p) = {p},                int(x) = Ø,             cl(x) = {x},             cl(p) = {x; p Î m(x)}                

         j**(p) = intcl(p) = {x; {p} = m(x)}, {x} È m(x) is the smallest open set that contains x.¨ 

 
From (6.7) one reads off that a polar space (X, OX) is a scattered TD-space (i.e., X contains no 

non-empty dense-in-itself subsets (cf. Steen and Seebach Jr. (1982, p. 33)). Hence, we may 

apply a famous theorem of Simmons according to which NUC(OX) is Boolean: 

 
(6.8) Theorem. (Simmons (1980), Picado and Pultr (2012)). Let (X, OX) be a scattered TD-

space. Then PX¾j¾>NUC(OX) is a Boolean isomorphism, i.e., all nuclei j are spatial, i.e., 

j(D) = jY(D):= int(Y®D), for some Y Í X.¨ 
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Clearly, by (6.7) a subset Y Í X is dense in a polar space (X, m, P) iff P Í Y. Hence, polar 

spaces are scattered TD-spaces and we obtain:    

 
(6.9) Proposition. Let (X, m, P) define a polar space (X, OX). Then NUC(OX)d = 2X-P.  The 

bottom element 0 of 2X-P corresponds to the largest dense subset of (X, OX), namely X, related 

to the nucleus id, and the top element 1 corresponds to the smallest dense subset of (X, OX), 

namely P. Clearly, P is related to the regular nucleus j** = jP.¨ 

 
In sum, for the special case of polar spaces (X, OX) one obtains that the family of consistent 

belief operators B related to the knowledge operator K has the structure of a complete Boolean 

algebra. This entails, in particular, that for every belief B there exists a “complementary” belief 

operator B* such that B Ù B* = int and B Ú B* = intclint.  

Proposition (6.9) may further be used to show that the logics of belief and knowledge of polar 

spaces and “ordinary” topological spaces (like Euclidean spaces) strongly differ: 

 
(6.10) Proposition. Let (X, OX) be a dense-in-itself T1-space. Then, the nucleus j** is not open, 

i.e., there is no A Î OX such that j**(D) ≠ A Þ D for all D. 

 
Proof. Assume the contrary, i.e., there is A Î DOX such that D** = A Þ D for all D Î OX. 

Consider Dx:= X – {x} for xÎ X. Clearly, Dx is dense, i.e., Dx** = X. Hence, A Í Dx for all x 

Î X according to Borceux (1.2.3 (1)). Thus, A Í Ç Dx = Ø. This is a contradiction since Ø is 

not dense. Hence, the regular nucleus j** is not open.¨ 

 
In sum, the family of belief operators related to a topological knowledge operator K may be 

used to exhibit the specific structures of universes of possible worlds that one is using. This 

capacity of distinguishing different possibilities is lost when attention is paid exclusively on 

Stalnaker’s operator intclint.  Admittedly, things become simpler. Following Stalnaker (2006), 
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Baltag et alii emphasize as an important feature of Stalnaker’s KB system that only one belief 

operator BS (= intcl), i.e., the belief operator can be defined in terms of the knowledge operator. 

According to them,  

this proposition constitutes one of the most important features of Stalnaker’s 
combined system KB. This equivalence allows us to have a combined logic of 
knowledge and belief in which the only modality is K and the belief modality B is 
defined in terms of the former. We therefore obtain “...a more economical 
formulation of the combined belief-knowledge logic... . (Stalnaker (2006, p. 179), 
Baltag et al. (2019, p.221)) 
 

“Economy” is certainly an important feature of logical systems, but one may ask whether such 

an “economy” for a logic of knowledge and belief is actually desirable.  It may be more 

plausible that for a given knowledge operator K a family of belief operators B exists that are 

compatible with K in the sense that all pairs (K, B) satisfy the axioms of weak Stalnaker 

systems, i.e., all of Stalnaker’s original axioms but (NI). In other words, the account of this 

paper may be said to maintain the “spirit” of Stalnaker’s logic of knowledge and belief, and, at 

the same time, adds to it a plausible dosage of epistemological pluralism that relates K and B 

in a more flexible manner. 

Formally, the account presented in this paper may be considered as a neat generalization of 

Stalnaker’s approach: Instead of the Boolean lattice of two elements {0, 1} corresponding, 

respectively, to the knowledge operator K - to be interpreted as “ideal belief “ -, and to 

Stalnaker’s belief operator B - to be interpreted as the “most error-prone”, but still consistent 

belief operator - we have a Heyting algebra NUC(OX)d of belief operators the bottom element 

of which corresponds to knowledge K (= int) and the top element of which corresponds to 

Stalnaker’s belief operator B (= intclint): 

 
(6.10) Theorem. Let (X, OX) be a TD-space and NUC(OX)d its Heyting algebra of dense nuclei. 

Then (NUC(OX)d, ≤) is a complete Heyting algebra that can be interpreted as an (intuitionist) 
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logic of belief operators B related to the topological knowledge operator K of the space (X, 

OX).   

 
  
 

7. CONCLUDING REMARKS. The main result of this paper has been the theorem that any 

one topological operator of knowledge K is compatible with many different belief operators Bj 

defined by dense nuclei j Î NUC(OX)d. Thereby, for any given knowledge operator K, 

depending on the underlying topological structure (X, OX) of the models, a wealth of 

“admissible” or “fitting” belief operators B related to K can be defined such that all pairs (K, 

B) satisfy all axioms and rules of Stalnaker’s KB system but (NI). This plurality may be 

interpreted as a formal argument for doxastic tolerance: two epistemic agents t1 and t2 may rely 

on the same knowledge operator K but subscribe to different nuclear belief operators B1 and 

B2 that are compatible with K in the sense that both (K, B1) and (K, B2) satisfy Stalnaker’s 

axioms. By subscribing to the strong axiom of negative introspection (NI), the possibility of a 

pluralism of different coexisting belief operators compatible with a given knowledge operator 

is eliminated in favor of one “dogmatic” system that allows only one acceptable belief operator. 

The topological approach to knowledge and belief presented in this paper is an essentially 

pluralistic “knowledge first” approach in the sense that for one knowledge operator K, a 

complete Heyting algebra NUC(OX)d of belief operators B is constructed such that the pairs 

(K, B) of modal operators satisfy all of Stalnaker’s axioms (but (NI) plus some other adequacy 

conditions for knowledge and belief.   

In sum, instead of Stalnaker’s KB system that only takes into account two epistemological 

operators of knowledge K (= int) and belief B (= intcl) the topological account presented in 

this paper conceptualizes the relation between knowledge and belief as a complete Heying 

algebra NUC(OX)d. The structure of this Heyting algebra of belief operators depends on the 
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structure of (X, OX) that underlies the topological models of the concepts of knowledge and 

belief. For polar spaces (X, m, P) NUC(OX)d has a rather simple structure, for others such as 

Euclidean spaces the structure of NUC(OX)d seems to be rather complicated.  

Thus, an essential task for a topological logic of knowledge and belief is the investigation of 

how the structure of the topological spaces (X, OX) that underlie the topo-models of our 

epistemological logic determines the structure of the Heyting algebra NUC(OX)d  of belief 

operators B related to K.   
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