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Abstract
The first aim of this paper is to prove a topological completeness theorem for a weak
version of Stalnaker’s logic KB of knowledge and belief. The weak version of KB is
characterized by the assumption that the axioms and rules of KB have to be satisfied
with the exception of the axiom (NI) of negative introspection. The proof of a
topological completeness theorem for weak KB is based on the fact that nuclei (as
defined in the framework of point-free topology) give rise to a profusion of topo-
logical belief operators that are compatible with the familiar topological knowledge
operator Int. Thereby a canonical topological model for weak KB can be constructed.
For this canonical model a truth lemma for the modal operators K and B holds such
that a completeness theorem for weak KB can be proved in the familiar way. The
second aim of this paper is to show that the topological interpretation of knowledge
Int comes along with a complete Heyting algebra of belief operators N° that all fit the
knowledge operator Int in the sense that the pairs (Int, N°) satisfy all axioms of weak
KB. This amounts to a pluralistic relation between knowledge and belief: Knowledge
does not fully determine belief, rather it designs a conceptual space for belief
operators where different (competing) belief operators coexist that can be compared
with each other.

1 Introduction

Understanding the relation between knowledge and belief is an issue of central
importance in formal epistemology. Especially after the birth of knowledge-first
epistemology, the question of what exactly distinguishes an item of knowledge and
an item of belief and how one can be determined in terms of the other has become
even more pertinent.
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In the recent literature on the topological semantics of epistemological concepts such
as knowledge and belief one may find two especially popular accounts. On the one
hand, there is Stalnaker’s combined logic KB of knowledge and belief that can be
elegantly topologized as has been shown by the works of Baltag et al. (2017, 2019) and
others. On the other hand, there is the work of Steinsvold and others that offers a formal
account of belief and related epistemological concepts in a framework based on the
notion of topological derivation (cf. Bezhanishvili& van der Hoek (2014); Parikh et al.
(2007), Steinsvold (2006)). It is not quite clear, however, how these two accounts of a
topological epistemology are related to each other. In this paper, it will be shown that
both may be conceived as two special cases of a more general account based on the
notion of (topological) nucleus. More precisely, Stalnaker’s concept of belief can be
characterized as one kind of nucleus, Steinsvold’s concept of belief as another. To be
specific, Stalnaker’s account is characterized by a nucleus that can be described
mathematically as the (unique) regular nucleus and Steinsvold’ account is closely
related to a nucleus that in this paper is called perfect nucleus. Beside these
distinguished nuclei many others exist that give rise to their own concepts of belief.1

Thus, to obtain a more comprehensive understanding of the relationship between
knowledge and belief, it seems expedient to discuss the whole manifold of belief
operators instead of restricting one’s attention to the special operatorNS. In otherwords,
for a given knowledge operator the doxastic plurality of correlated belief operators
should be taken into account.

In Stalnaker’s KB system, the belief modality B turns out to be uniquely defined
by the knowledge modality K. For this unique determination of B by K essentially
the axiom of negative introspection (NI) is responsible. By abandoning (NI), as is
done in this paper, a more complex and more flexible relation between the modalities
K and B arises. In a nutshell, this relation may be described as a one-many-relation.
The topological structure (X, OX) defines a family of belief operators N° that fit the
knowledge operator Int in the sense that all pairs (Int, N°) satisfy the axioms of KB
except (NI). The family of belief operators N° compatible with Int has the structure
of a complete Heyting algebra. Stalnaker’s belief operator NS° turns out to be the top
element of this Heyting algebra, its bottom element corresponds to Int that can be
interpreted as the “ideal” or “optimal” belief operator that by definition cannot err.

For a given knowledge operator Int, the Heyting algebra of admissible belief
operators can be conceived as an intuitionistic logic of belief operators: Different
belief operators N° can be compared with each other according to their strengths and
how far they deviate from the knowledge operator Int.

Traditionally, the relation between belief and knowledge has been conceptualized in a
rather simple way: Either knowledge is defined as a special kind of belief, e.g.,
knowledge is “justified” true belief, or “correctly justified” true belief, or the like, as in
many received accounts of knowledge, or, as in contemporary knowledgefirst accounts,
knowledge is given conceptual priority and is used to define belief in a unique way. In a
sense, this paper follows the knowledge-first approach but with a special twist. It is

1 In topological terms Stalnaker’s operator NS is defined as the concatenation IntClInt, where, as usual, the
interior kernel operator of a topological space (X, OX) is denoted by Int and the topological closure is
denoted by Cl. In this paper this (more or less standard) topological terminology is used throughout. In
more detail it is explained in Sect. 3.
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shown that for a given knowledge operator Int, there exists a pool of different admissible
belief operators N° such that the pairs (Int, N°) all define well-behaved systems of
epistemic logic satisfying the axioms of a weak KB system. Therefore, different
cognitive agents who subscribe to the same knowledge operator Int may use different
agent-specific belief operators that may be compared with each other according to their
deviation from common knowledge. This amounts to a doxastic plurality of a multitude
of belief operators based on a common root of one knowledge operator Int.

The organization of this paper is as follows: to set the stage, in Sect. 2 we recall the
axioms and rules of Stalnaker’s KB logic of knowledge and belief. In Sect. 3, we
introduce the topological concepts that are necessary for defining a topological
semantics of knowledge and belief. In Sect. 4 we introduce the concept of
(topological) nuclei that plays a central role for the definition of belief operators and
their semantics. In Sect. 5 nuclei are used to prove a topological completeness theorem
for weak KB. The plurality of belief operators related to one topological knowledge
operator is studied in more detail in Sect. 6. In particular, we calculate (partially) the
Heyting algebras of (consistent) belief operators for some important topological
spaces. The structure of these algebras heavily depends on the topological structure of
the underlying topological spaces. In Sect. 7 we study the relation of the theory of
nuclei and the theory of belief operators based on the topological notion of derived set
operator (cf. Steinsvold et alii). It is shown that the dual t of the derived set operator d
is “almost” a nucleus. More precisely, t can be characterized as pre-nucleus, i.e., a
slight generalization of the concept of nucleus for the rather comprehensive class of
TD-spaces. Even more, for the very special class of DSO-spaces, the pre-nucleus t
turns out to be an honest nucleus. With respect to the other way round, the nucleus
defined by the perfect kernel of a set (already defined in Sect. 6) can be shown to be
the nucleus defined in natural way by the pre-nucleus defined by t. In sum, the
framework of topological nuclei sheds new light not only on Stalnaker’s account of
belief and knowledge but also on the topological epistemology based on the
topological concept of derived set. We conclude with some general remarks on the
further elaboration of this nucleus-based approach formal epistemology in Sect. 8.

2 Stalnaker’s Logic KB of Knowledge and Belief

First, for the sake of definiteness, let us recall the axioms and the inference rules of
Stalnaker’s system (cf. Baltag et al., 2017, 2019; Stalnaker, 2006). For this purpose,
we start with a standard unimodal epistemic language LK with a countable set PROP
of propositional letters, Boolean operators :, ^, and a modal operator K to be
interpreted as knowledge. The formulas of LK are defined as usual by the grammar.

u ::¼ p :pj j/ ^ wjKu; p 2 PROP: ð2:1Þ

The abbreviations for the Boolean connectives _, → , and ↔ are standard.2

Occasionally we use the abbreviations ⊥ for φ ^ : φ and ⊤ forφ _ : φ.

2 For a more detailed presentation of LK, the reader may consult the recent papers of Baltag et al.,
(2017, 2019) and Aiello et al. (2003)).
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Analogously to LK, a bimodal epistemological language LKB for modal operators
K and B as an extension of LK is defined. The grammar of LKB is defined as usual:

u ::¼ p :pj j/ ^ w Kuj jBu; p 2 PROP: ð2:2Þ

Stalnaker’s combined logic KB of knowledge and belief is defined as follows:

Definition 2.3 (Stalnaker’s axioms and inference rules for modal operators K
(knowledge) and B (belief)) A bimodal logic KB based on the bimodal language LKB

is a Stalnaker system iff it satisfies the following rules and axioms:

(CL) All tautologies of classical propositional logic CL.

(K) K(φ→ψ)→(Kφ→Kψ) (Knowledge is additive)

(T) Kφ → φ (Knowledge implies truth)

(KK) Kφ→KKφ (Positive introspection for K)

(CB) Bφ→: B:φ

`

(Consistency of belief)

(PI) Bφ→KBφ (Positive introspection of B)

(NI) :Bφ→K:Bφ (Negative introspection of B)

(KB) Kφ→Bφ ( Knowledge implies belief)

(FB) Bφ→BKφ (Full belief)

Inference rules:

(MP) From φ and φ→ψ, infer ψ. (Modus Ponens)

(NEC) From φ, infer Kφ (Necessitation for K)

For the topological3 approach to knowledge and belief, the axiom (NI) of negative
introspection plays a special role as will be explained now. Let M=(X, OX, μ) be a
topological model of LK in the familiar sense (cf. Baltag et al., 2019). Then for
formulas Kφ we have μ(Kφ)=Int(μ(φ)). A semantics for LKB is defined by setting for
formulas Bφ the interpretation μ(Bφ):=IntClInt(μ(φ)). Then we can prove:

3 The topological terminology used in this paper is standard. Nevertheless, for the sake of definiteness, the
topological concepts to be used will be explained in full detail in Sects. 3 and 4.
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Proposition 2.4 Let (X, OX) be any topological space. Under the semantics μ just
given the topological model (X, OX, μ) validates all axioms and rules of Stalnaker’s
logic KB except the axiom of (NI) of negative introspection.

Proof Check the definitions (2.3) and the standard definitions of the topological
operators Int and Cl (see Sect. 3). Elementary examples of the real line (ℝ, Oℝ) and
other familiar spaces show that (NI) fails to hold in general.4

In Baltag et al. (2019) (and elsewhere) the following has been proved:

Proposition 2.5 (Baltag et al., 2019, Proposition 6) Under the semantics given
above a topological space (X, OX) validates all axioms and rules of Stalnaker’s
system KB ((NI) included) iff it is extremally disconnected.

Thus, when we give up (NI) we gain greater generality:. The very special class of
extremally disconnected spaces can be replaced by arbitrary topological spaces. On
the other had, we have to give up some “conceptual economy”: The familiar proof
that B is uniquely determined by K as B↔: K : K is no longer available. Indeed, as
will be shown in the following, the interpretation of the belief modality B is no
longer uniquely determined by K.5 Depending on the topological structure of models,
there are many different possibilities for interpreting the belief modality B, not only
the one that interprets belief as the “epistemic possibility of knowledge” as
Stalnaker’s KB-logic does. Giving up (NI) thereby amounts to obtaining a greater
amount of conceptual flexibility with respect to B. This should be considered as a
real virtue for a more comprehensive formal epistemology of knowledge and belief,
or so I want to argue. A unique determination of belief by knowledge is not very
plausible, or so I want to argue.

As a consequence, for the systems of knowledge and belief to be considered in
this paper, the validity of (NI) will not be required. Rather, we will require only that
our systems are weak Stalnaker systems in the following sense:

Definition 2.6 (Weak KB logic). A bimodal logic (with modal operators K and B)
based on the bimodal language LKB is a weak KB-logic iff it satisfies the following
two conditions:

(i) The modal operator B satisfies the axioms
(K)B K(φ→ψ)→(Kφ→Kψ) and (4)* BBφ↔Bφ.

4 The topological reason for the failure of (NI) in general spaces may be informally described as the fact
that (NI) requires that many clopen (=open and closed) subsets exist. General topological spaces, however,
may lack sufficiently many clopen sets. For instance, connected spaces such as the Euclidean line (ℝ, Oℝ)
have only Ø and ℝ as clopen subsets.
5 That is, the elegant equivalence of Stalnaker (2006) and Baltag et al. (2019) that B : K : K is no longer
valid. In contrast, weak KB turns out to be a truly bimodal extension of CL, i.e., B cannot uniquely be
defined in terms of K.
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(ii) All of Stalnaker’s axioms and rules given in (2.3) except the axiom (NI) of
negative introspection.

The axiom (4)* is stronger than the well-known axiom (4) Bφ→BBφ that holds
for the B-fragment of weak KB logic due to the axioms (PI) and (KB). More
precisely, the B-fragment of weak KB is a special normal logic.6

Corollary 2.7 The B-fragment of weak KB-logic is a KD4*-logic. More precisely, the
following axioms hold in weak KB:

(K)B B(φ→ψ)→(B(φ)→B(ψ)).
(D) Bφ→:B:φ.
(4)* Bφ↔BBφ.

This result may be compared with the corresponding result for full KB logic
according to which the B-fragment of full KB logic is a KD45 system (cf. Baltag
et al., 2019, Proposition 4; Stalnaker, 2006).7

Proposition 2.8 Weak KB logic is (strictly) weaker than KB logic.

Proof We have to show that the modal operator B of KB logic satisfies the Kripke
axiom (K)B of (2.6)(i). According to Stalnaker (2006) and Baltag et al. (2019) in KB-
logic one has B↔: K:K↔K :K: K. As is easily checked, K: K:K is a normal
operator, i.e., satisfies (K)B. Hence, as it should be, KB logic is a weak KB logic. In
order to show that weak KB is strictly weaker than KB, one has to find a formula that
is valid for the system KB but not for the system weak KB. The formula :K:K(φ ^
ψ)=:K:Kφ ^ :K:Kψ will do.

In the following Sects. 3 and 4 a properly bimodal topological semantics for LKB

will be constructed that will be used to prove a topological completeness theorem for
weak KB-logic and help elucidate the notion of doxastic plurality that is
characteristic for weak KB. This semantics for weak KB is a bimodal extension of
the familiar topological semantics of the unimodal topological semantics for K.

3 On the Topology of Knowledge Operators

In order to define a topological semantics for knowledge and belief operators, in this
section we will recall the necessary rudiments of set-theoretical topology for
topological epistemology. For a more detailed presentation, the reader may consult
the recent works of Baltag et al., (2017, 2019).

First of all, recall the definition of a topological space:

Definition 3.1 Let X be a set with power set PX. A topological space is an ordered
pair (X, OX) with OX � PX that satisfies the following conditions:

6 For various equivalent definitions of a normal modal logic, see Chellas (1980, Theorem 4.3, p. 115).
7 Elementary examples based on the Euclidean line (ℝ, Oℝ) show that there are models of weak KB logic
the B-fragment of which are not KD45 models (cf. Proposition (4.11)).
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(i) Ø, X∈OX.
(ii) OX is closed under finite set-theoretical intersections ∩ and arbitrary set-

theoretical unions ∪.

The elements of OX are called the open sets of the topological space (X, OX). The
set-theoretical complement AC of an open set A is called a closed set. The set of
closed subsets of (X, OX) is denoted by CX. The interior kernel operator Int and the
closure operator Cl of (X, OX) are defined as usual: The interior kernel Int(A) of a set
A∈PX is the largest open set that is contained in A; the closure Cl(A) of A is the
smallest closed set containing A. For details, see Willard (2004), Steen and Seebach
Jr. (1982), or any other textbook on set-theoretical topology. The operators Int and Cl
are well-known to satisfy the Kuratowski axioms:

Proposition 3.2 (Kuratowski Axioms) Let (X, OX) be a topological space, A, B ∈PX.
The interior kernel operator Int and the closure operator Cl of (X, OX) satisfy the
following (in)equalities.

(i) Int(A∩B)=Int(A)∩Int(B). Cl (A∪B)=Cl(A)∪Cl(B).
(ii) Int(Int(A))=Int(A). Cl(Cl(A))=Cl(A).
(iii) Int(A)� A. A � Cl(A).
(iv) Int(X)=X. Ø=Cl(Ø).

These axioms are used in the following without explicit mention. Moreover, we
will use freely the fact that the operators Int and Cl are inter-definable: Int(A)=Cl
(AC)C and Cl(A)=Int(AC)C. Further, it is expedient to conceive the operators Int and
Cl as operators Int: PX→PX and Cl: PX→PX defined on PX. Hence, the
concatenation of these operators makes perfect sense. Thus, the following definition
makes sense: A subset A of X is called regular open iff Int(Cl(A))=A. The set of
regular open subsets of a topological space is denoted by O*X. Dually, a subset A of
X is called a regular closed set iff Cl(Int(A))=A. In the following, concatenations of
Int and Cl such as IntCl and IntClInt will play an important role.

The concept of a topological space (X, OX) is extremally general. For most
applications it is expedient or even necessary to require that the topology satisfies
axioms in addition to those generally required of topological spaces. One such
collection of conditions is given by means of axioms called separations axioms.
Some axioms of this kind that are important for the purposes of the present paper are
the following ones:

Definition 3.3 (Separation Axioms for Topological Spaces). Let (X, OX) be a
topological space.

(i) X is a T0-space if, for every distinct a, b∈X there exists an open set A such
that either a∈A and b∉A, or b∈A and a∉A.

(ii) X is a TD-space if, for every a∈X, there exists an open set A such that a∈A
and that A–{a} is also open.

(iii) X is a T1-space if, for every distinct a, b∈X there exist open sets A and B
such that a∈A and b∈B, such that b∉A, and a∉B.

123

Completeness and Doxastic Plurality for Topological…



(iv) X is a T2-space if, for every distinct a, b∈X, there exist disjoint A and B
containing a and b, respectively.

Each of these axioms is independent of the Kuratowski axioms of a topological
space. In fact, there exist topological spaces which do not satisfy any of the
separation axioms T0–T2. More precisely, the following chain of implications hold:

Proposition 3.4 The separation axioms Ti defined in (3.3) satisfy the following chain
of implications: T2 ⇒T1 ⇒ TD ⇒ T0. All implications of this chain are proper, i.e.,
they cannot be reversed.

Proof Cf. Steen/Seebach Jr. (1978, p. 12) and Picado/Pultr (2012, p. 5).

The axioms T2, T1, and T0 are classical. They are discussed (usually together with
many other separation axioms) in full detail in most standard textbooks of topology
[see also the particularly useful presentation in Steen and Seebach Jr. (1978)]. The
axiom TD is rather new. It was first proposed in the 1960s by several authors for a
variety of reasons (cf. Aull & Thron, 1963). For a modern presentation of many
equivalent formulations of TD see Picado and Pultr (2012, I.2). The axiom TD will be
especially useful for the calculation of the lattice NUC(OX) of nuclei (belief
operators) for a wide class of topological spaces. Further, TD turns out to be essential
for dealing with nuclei and belief operators related to the derived set operator [cf.
Sect. 7 and Steinsvold (2006)].

For the definition of consistent belief operators, the concept of a dense subset of
topological spaces will be important:

Definition 3.5 Let (X, OX) be a topological space with interior operator Int and
closure operator Cl, let Y, Z∈PX.

(i) Y is a dense subset of X iff Cl(Y)=X.
(ii) Z is a nowhere dense in X iff Int(Cl(Z))=Ø.
(iii) A point x∈X is isolated iff {x}∈OX.
(iv) A space (X, OX) is dense-in-itself iff it has no isolated points.

(3.6) Examples of dense and Nowhere dense sets of topological spaces.

(i) For the trivial coarse topology (X, {Ø, X}) every non-empty subset A∈PX
is dense and only Ø is nowhere dense. For the discrete topology (X, PX)
only X is dense, and only Ø is nowhere dense.

(ii) Let (ℝ, Oℝ) be the real line endowed with the familiar Euclidean topology.
Let F � ℝ be a finite set. Then F is nowhere dense and the complement FC

of F is a dense open subset of (ℝ, Oℝ). More generally, the infinite set of
integers ℤ is a nowhere dense subset of (ℝ, Oℝ).
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(iii) The sets ℚ of rational numbers and ℚC of irrational numbers are disjoint
dense subsets of (ℝ, Oℝ), i.e., ℚ∩ℚC=Ø and Cl(ℚ)=Cl(ℚC)=ℝ.

(iv) A more sophisticated example of a nowhere dense set is given by the
Cantor dust D of the real line (ℝ, Oℝ) defined as follows: From the unit
interval [0,1] of ℝ remove the open middle interval (1/3, 2/3) obtaining the
union of the closed intervals [0, 1/3] and [2/3, 1]. This set is denoted by D1.
From D1 remove the open middle intervals (1/9, 2/9) and (7/9, 8/9)
obtaining a set D2 that consists of the four closed intervals [0, 1/9], [2/9, 1/
3], [2/3, 7/9], and [8/9, 1]. And so on. Then the Cantor dust D is defined as
the infinite intersection D:=\i2NDi.♦

The Cantor dust is nowhere dense and perfect (=closed and having no isolated
points) (cf. Steen and Seebach Jr., 1978, p. 57–58). Hence the complement DC of the
Cantor dust D is a dense open subset of (ℝ, Oℝ).

In Sect. 6 the complement DC of the Cantor dust D will be used to define some
interesting belief operators for the Euclidean space (ℝ, Oℝ).

After these preparations, topological models for the modal language LK can be
defined as usual [cf. Section 2 and Baltag et al., (2019, 2.2.1)].

Definition 3.7 Given a topological space (X, OX), a topo(logical) model for LK is
given by M=(X, OX, μ), μ a valuation function in the sense of McKinsey and Tarski.
In particular, μ maps the propositional letters p∈PROP onto elements of PX. The
interior semantics for the model (X, OX, μ) is defined as usual. In particular, if a
formula φ of L has the truth set ||φ||, then the formula Kφ of LK has the truth set ||
Kφ||:=Int(||φ||).

As will be shown in the next section, the topological structure of topological

models (X, OX, μ) can be used not only to define a semantics for the knowledge
modality K, but also for the belief modality B. For this purpose, it is necessary,
however, to introduce some further topological apparatus, in particular the concept of
(topological) nuclei of OX.8 This will be done in the next section.

8 The necessity of introducing nuclei for defining the semantics of belief operators distinguishes weak KB
logic from original KB logic. Since for KB systems the belief modality B can be defined in terms of K, in
these systems the excursion into the theory of nuclei can be avoided, since the semantics of B can be
defined in terms of the semantics of K. This is not the case for weak KB. Then, the modal operator B need
not be definable in terms of K.
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4 Nuclei of Topological Spaces

In this section we introduce the concept of (topological) nuclei (cf. Borceux, 1994;
Johnstone, 1982;; Picado& Pultr, 2012). As already said nuclei will be essential for the
definition of belief operators B compatible with topological knowledge operators K.9

Definition 4.1 Let (X, OX) be a topological space, and let A, D∈OX. A map N:
OX→OX is called a nucleus of (X, OX) if it satisfies the following properties:

(i) A � N(A). (Inflation)
(ii) N(N(A)) = N(A). (Idempotence).
(iii) N(A∩D)=N(A)∩N(D). (Distributivity).

The set of nuclei of a topological space (X, OX) is denoted by NUC(OX).

Definition 4.2 A partial order≤on NUC(OX) is defined by the relation.

N � N0 iff N Að Þ � N0 Að Þ; for all A 2 OX

In the following, NUC(OX) is always endowed with this partial order. As is easily
proved, the partial order≤renders NUC(OX) a complete lattice. Its bottom element 0
is the identity operator idOX:OX→OX, and its top element 1:OX→OX is the trivial
nucleus that maps every A∈OX onto X.

Actually, much more can be said about (NUC(OX),≤). In order to express this in
an appropriate way, one needs the following definition:

Definition 4.3 [cf. Borceux (1994, Definition 1.3.1, Proposition 1.3.2(2)] Let L be a
complete lattice. For M � L denote the supremum of M by SUP(M). L is a complete
Heyting algebra iff the following infinite distributive law holds: For all a∈L and M
� L one has

a ^ SUP(M)=SUP(a ^ M),

For every complete Heyting algebra L a binary operation ⇒ is defined by

a ) c :¼ SUPfb 2 L; a ^ b � cg:

for a, c∈L. The operation ⇒ is called the Heyting implication of L.
The Heyting implication ⇒ has many interesting properties (cf. Borceux, 1994,

chapter 1.2; Johnstone, 1982, I.1.10, p. 13), Picado/Pultr (2012, Appendix I,
Section 7) that have been studied by many authors.

The best-known examples of complete Heyting algebras are the lattices OX of
open sets of topological spaces (X, OX) with A ⇒ D:=Int(AC∪D), A, D∈OX. For
the purposes of this paper, however, another more general class of complete Heyting
algebras plays an important role:

9 The literature on nuclei in point-free topology has reached a high level of technical sophistication. This
paper does not aim to give a full-fledged introduction into the theory of nuclei. Instead, we intend to
provide the basic definitions and facts so that the reader can understand that this theory has interesting
applications regarding the modal theory of belief and knowledge. For a fuller account, the reader may
consult Johnstone (1982), Borceux (1994), or Picado and Pultr (2012, 2021) and the extensive
bibliographies on point-free topology mentioned there.
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Proposition 4.4 Let (X, OX) be a topological space. Then the lattice NUC(OX) of
nuclei of OX is a complete Heyting algebra. The Heyting implication⇒ of NUC(OX)
is defined by

N ) N0 Dð Þ :¼ INFfN Eð Þ ) N0 Eð Þ; E � Dg D; E 2 OX:

Proof (Johnstone, 1982, II, 2.4, Lemma), Borceux (1994, Theorem 1.5.7).

In the last decades, the investigation of NUC(OX) has turned out to be a fruitful
pathway for studying topological problems of various kinds, particularly problems
related to point-free topology (cf. Borceux, 1994; Johnstone, 1982;; Picado & Pultr,
2012). In this paper, we conduct some modest steps to use the concept of nuclei to shed
new light on the problems ofmodal systems that deal with the epistemological concepts
of knowledge and belief. More precisely, we will deal with problems related to
Stalnaker’s KB logic of knowledge and belief and the theory of doxastic operators of
Steinsvold and others. Before dealing with specific problems regarding this issue, it is
expedient to give some examples of nuclei and to elucidate the structure of NUC(OX).

The following special class of nuclei will be the most important one for the
purposes of this paper:

Definition 4.5 A nucleus N∈NUC(OX) is called a dense nucleus iff N(Ø)=Ø. The
subset of dense nuclei of NUC(OX) is denoted by NUC(OX)d.

Examples 4.6 (Borceux, 1994;; Johnstone, 1982; Picado & Pultr, 2012). Let (X, OX)
be a topological space and A, D 2 OX. Denote the join and the Heyting implication
of OX by [ and ⇒, respectively.

(i) The map kA:OX—>OX defined by kA(D) := A [ D is a nucleus. The
nucleus kA is called the closed nucleus defined by A. Clearly, for A ≠ Ø the
nucleus kA is not a dense nucleus.

(ii) The map jA : OX→OX defined by jA(D) := (A ⇒ D) is a nucleus. The
nucleus jA is called the open nucleus defined by A. If A is a dense subset of
X then jA is a dense nucleus.10

(iii) The operator NS: OX→OX defined by NS(D):= IntCl((D)) is a nucleus. It
is usually called the regular nucleus of OX.11 Due to the Kuratowski
axioms (3.2)(iii) and (3.2)(iv) for Int and Cl the nucleus NS is a dense
nucleus, i.e., NS(Ø) = Int(Cl(Ø)) = Int(Ø) = Ø. Only for few topological
spaces the nucleus NS is an open nucleus, for most spaces (X, OX) there is
no A∈ OX, such that NS(D) = IntCl(D) = jA(D) = A ⇒ D.

Dense nuclei will play a central role in the following, as they define consistent belief
operators.Nowall ingredients are available to formulate a central definitionof this paper.

10 The reader should not be confused by this (established) terminology: every open subset A of X (as an
element of OX) defines a closed nucleus and an open nucleus, namely, kA and jA, respectively.
11 In this paper the regular nucleus IntCl is also called the Stalnaker nucleus and denoted by NS, since it
has played such a prominent role in the topological interpretation of Stalnaker’s logic KB, cf. Baltag et al.
(2017, 2019).

123

Completeness and Doxastic Plurality for Topological…



Definition 4.7 Let (X, OX) be the topological space of a topological model with
interior kernel operator Int, let N∈NUC(OX), and i:OX→PX the canonical
inclusion. Denote the concatenation of the maps i:OX→PX, N:OX→OX, and Int:
PX→OX by N°. Then this operator N°: PX→PX is called the belief operator
(related to Int and corresponding to the nucleus N).12

The natural next step is to show that (4.7) is a reasonable and fruitful definition
that defines a family of well-behaved belief operators N° for a knowledge operator
Int that enjoy all properties that one intuitively expects from “good” belief operators.

The task of justifying the predicate “belief operator” for N° is naturally divided
into two subtasks:

(i) It has to be shown that (4.7) is formally adequate in the sense that the belief
operators defined by (4.7) satisfy appropriate formal conditions of adequacy.

(ii) It has to be shown that sufficiently many philosophically interesting belief
operators N° exist that fulfil the requirements of (4.7).

Epistemologists do not fully agree on what “good properties” for a belief operator
are, of course, but the following qualities are rather uncontroversial candidates:

Definition 4.8 (Good belief operators). A good belief operator N° (related to a
knowledge operator Int and corresponding to N) should satisfy the following
conditions:

(i) A good belief operator N° may produce a false belief. Formally this means
that there should exist a proposition A � X, such that w∈N°(A) but w∉A,
i.e., a cognitive agent who uses N° believes that w is A-world, but actually
w is not an A-world.

(ii) A good belief operator N° should be consistent, i.e., if the cognitive agent
believes that w is an A-world, then he does not believe that w is not an A-
world, i.e., w∈N°(A) entails that w∉N°(AC).

(iii) A good belief operator N° should be minimally compatible with its related
knowledge operator Int, i.e., if it is known that w is an A-world, then it
should be believed that w is an A-world, i.e., w∈Int(A) entails w∈N°(A).

Proposition 4.9 Let (X, OX) be a topological space and N ∈NUC(OX)d, N ≠ idOX.
Then the belief operator N° corresponding to N is a good belief operator in the sense
of (4.8).

Proof We have to prove that N° satisfies the conditions (4.8)(i–iii).

(i) In order to show that there exists a proposition A such that N°(A) is
possibly false one can argue as follows: By the definition of the partial
order≤of nuclei (4.2), the smallest dense nucleus of OX is the identity idox
with corresponding belief operator Int. Thus, according to the assumption
idOX≠N, we may assume idOX<N. Hence, there must be an A∈OX � PX

12 Clearly, a nucleus N and its corresponding belief operator N° determine each other uniquely: N=iN°Int
and N°=IntNi. Here, i is, of course, the canonical inclusion i: OX→PX.
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such that A⊂N(A). By definition of N° and the fact that A is assumed to be
open this entails that A is properly contained in N°(A), i.e., A⊂N°(A). This
is equivalent to N°(A)∩AC≠Ø. In other words, there is a world w∈N°
(A)∩AC. This means that an epistemic agent who uses N° believes that w
is an A-world but actually w is not an A-world. In other words, the agent’s
belief is false. This proves (4.8)(i).

(ii) Due to the fact that N is dense and distributive with respect to∩ , for all A∈
PX one has Ø=N°(Ø)=i(N(Int(A∩AC)))=i(N(Int(A)))∩ i(N(Int(AC)))=N°
(A)∩N°(AC).
Hence N°(A) � N°(AC)C, i.e., the belief operator N° is consistent. This
proves (4.8)(ii)

(iii) Since for all nuclei, by definition Int(A) � N(Int(A)) one obtains that w∈
Int(A) entails w∈N°(A). This proves (4.8)(iii).

In sum, for all N∈NUC(OX)d with N≠ id, the corresponding belief operator N° is
a good belief operator.

The condition (4.8)(i) is generally accepted as a necessary condition in order that
an operator may be considered “as suitable for defining a doxastic logic” (cf.
Bezhanishvili & van der Hoek, 2014, p. 373; Parikh et al., 2007, p. 329). The
conditions (4.8)(ii) and(iii) are also rather unanimously accepted among epistemol-
ogists. Thus, proposition (4.8) ensures that at least prima facie, nuclei may be
considered as a promising source for a semantics of doxastic logic.

More systematically, one may require that good belief operators are those
operators that define topological model of weak KB-logic. This can be carried out as
follows. Let (X, OX) be a topological space and N∈NUC(OX)d a dense nucleus.
Relying on a classical idea of McKinsey and Tarski we may use (X, OX, N) to define
a valuation of weak LKB by putting.

● μN(p) � X.

● μN(: φ)=X—μN(φ).

● μN(φ ^ ψ)=μN(φ)∩μN(ψ).
● μN(φ _ ψ)=μN(φ)∪μN(ψ).
● μN(φ→ψ)=μN(φ)

C∪μN(ψ).
● μN(Kφ)=Int(μN(φ)).

● μN(Bφ)=iN(μN(Kφ))=iNInt(μN(φ)).

Clearly, this definition is an extension of the classical definition of a valuation of
the unimodal language LK (cf. Aiello et al., 2003, p. 891). Moreover, it should be
noted that for the smallest dense nucleus N=idOX the last clause boils down to the
penultimate one, i.e., μN(Bφ)=idOX(μN(Kφ))=μN(Kφ)).

Now we can define the notion of a topological model of weak KB as follows.
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Definition 4.10 A topological model of weak KB is given by a quadruple M=(X,
OX, N, μN), N∈NUC(OX)d.

As usual, for topological models (X, OX, N, μN) the truth of a formula φ at a
world w∈X is inductively defined as follows:

● M, w ⊨ p iff w∈μN(p).

● M, w ⊨ : φ iff NOT(M, w ⊨ φ).

● M, w ⊨ φ ^ ψ iff (M, w ⊨ φ) AND (M, w ⊨ ψ).

● M, w ⊨ φ _ ψ iff (M, w ⊨ φ) OR (M, w ⊨ ψ).

● M, w ⊨ φ→ψ iff NOT(M, w ⊨ φ) OR (M, w ⊨ ψ)).

● M, w ⊨ Kφ iff ∃U(U∈OX(w∈U AND ∀v∈U(M, v ⊨ φ)).

● M, w ⊨ Bφ iff ∃U(U∈OX(w∈N(U) AND ∀v∈U(M, v ⊨ Kφ)).

Then a formula φ is said to be true in the model M=(X, OX, N, μN) if μN(φ)=X. A
formula φ is said to be topologically valid if it is true in every topological model.
Then we can easily prove:

Proposition 4.11 The weak KB logic of knowledge and belief defined in (2.6) is
sound with respect to the class of all topological models (X, OX, N, μN), i.e., all
axioms and rules of weak KB hold for all topological models (X, OX, N, μN).

Proof As is to be expected for proofs of soundness the proof is routine. Looking at
the list of axioms and rules of weak KB-logic given in (2.6) the proof can be divided
into three parts:

(i) Axioms dealing only with the modal operator K;
(ii) Axioms dealing only with the modal operator B;
(iii) Axioms dealing with modal operators K and B (mixed axioms).

(i) The axioms of the first group are (K), (T) and (KK). The validity of (K), (T),
and (KK) for topological models of weak KB is well-known because every model
(X, OX, N, μN) of weak KB defines a model (X, OX, μN) for standard epistemic logic
K (cf. Aiello et. al., 2003). Moreover, modus ponens (MP) and necessitation (NE)
hold for topological models.

(ii) The second group of axioms consists of the axioms that only deal with the
modality B. This group contains the axioms

CBð ÞBu ! :Bð:uÞ and Kð ÞB B ðu!wÞ ! ðBu!BwÞ
In order to show that (CB) ( = (D)) holds in all models (X, OX, N, μN) of weak KB

one has to show that μN(Bφ) � μN(B(: φ))C for all φ. This can be seen as follows:
μN(Bφ) � μN(B(: φ))C iff μN(Bφ)∩μN(B(: φ))CC=Ø.
iff iNInt(μN(φ))∩ iNInt(μN(: φ))=Ø iff iNInt(μ(φ ^ : φ))=iN(Ø)=Ø.
since N is a dense nucleus.
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The semantic interpretation of the modal operator B is defined as the
concatenation of the three normal operators i, N, and Int and hence normal, i.e.,
(K)B and (4)* are satisfied.

(iii) The third group of axioms comprises the axioms (PI), (KB), and (FB). The
validity of these axioms can be read off directly from their definitions, the defining
properties of nuclei, and the Kuratowski axioms.

For the proof of a topological completeness theorem for weak KB in Sect. 5 we
have to construct an adequate nucleus for the canonical topological model of weak
KB that takes care of the belief modality B. For this construction, we show that the
nuclei of OX give rise to appropriate sublocales of OX.We heavily rely on the
detailed presentations of sublocales in Picado and Pultr (2012, Chapter III) and
Johnstone (2002, Proposition 1.1.13, p. 481).

Definition 4.12 Let H be a complete Heyting algebra. A subset S � H is a sublocale
of H iff S is closed under all meets of H and for every s∈S and every x∈H, the
Heyting implication x ⇒ s∈S.13

It may be observed that sublocales are defined for complete Heyting algebras in
general. For our purposes we only need this concept for the special case of Heyting
algebras OX arising from topological spaces (X, OX).

Definition 4.13 A sublocale S is a dense sublocale of OX iff Ø∈S.

In the following we will only consider sublocales of lattices of the form OX for
(X, OX) topological spaces but actually the definition (4.12) makes sense more
generally for all complete Heyting algebras.

The smallest sublocale of OX is {X}. Clearly, {X} is a non-dense sublocale.
Trivially, OX is the largest dense sublocale of OX. Probably the best-known non-
trivial example of a dense sublocale is the Boolean lattice of regular open sets O*X �
OX. Actually, O*X is a very special sublocale. According to Isbell’s theorem, for
every topological space (X, OX) O*X is the smallest dense sublocale of OX [see
Theorem (6.5)].

Denote the set of sublocales of OX by SL(OX). Then SL(OX) is a complete lattice
with respect to set-theoretical intersection∩ . Even more, with respect to∩ the lattice
SL(OX) is a complete co-Heyting algebra with the sublocale {X} as bottom element
of SL(OX) and the sublocale OX as its top element [cf. Picado and Pultr (2012, 3.2.1.
Theorem, p.28)]. Thus, we have:

Proposition 4.14 For all A � OX there is a (unique) smallest sublocale SA ∈SL(OX)
such that A � SA, namely, the intersection of all sublocales that contain A.

Proof The class of sublocales that contain A is not empty, since A � OX. Since SL
(OX) is complete with respect to arbitrary set-theoretical intersections there is a

13 Sublocales are also called ⇒ -ideals.
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smallest sublocale SA that contains A, namely, the intersection of all sublocales that
contain A.14

Given A � OX a unique nucleus corresponding to the sublocale SA may be
constructed as follows. The inclusion i: SA→OX has an adjoint map j: OX→SA.
Then the concatenation ij:OX→OX is the desired nucleus. It may be called the
nucleus generated by A.

This correspondence will be important for constructing a canonical model for
weak KB. More precisely, in the next section we will use this construction to define a
canonical topological model (H, OH, NB, μNB) which shows that weak KB logic is
complete with respect to topological models (X, OX, N, μN).

5 A Topological Completeness Theorem for Weak KB

In this section we will construct a canonical topological model (H, OH, NB, μNB) for
weak KB logic. This topological model will be used to prove a completeness theorem
for weak KB. The proof follows closely the lines of the standard topological
completeness proof of S4 epistemic logic for the knowledge modality K as carried
out in Aiello et al. (2003). The only novelty is the construction of an appropriate
dense nucleus NB∈NUC(OH)d that is used to define the semantics of the belief
modality B.

We start with the construction of a topological space (H, OH) for the canonical
topological model of weak KB. Let φ be any well-formed formula of the bimodal
extension LKB of classical Boolean propositional logic. Call a set Γ of formulas LKB-
consistent if for no finite set {φ1,…,φn}� Γ we have KB ⊢ : (φ1 ^…^ φn). A
consistent set Γ is called maximally consistent if there is no consistent set of formulas
properly containing Γ. Due to Lindenbaum’s lemma (cf. Blackburn et al. (2010,
Lemma 4.17, p. 197)) any consistent set of formulas can be extended to a maximal
consistent one. It is well known that Γ is maximally consistent iff for any formula φ
of LKB, either φ∈Γ or : φ∈Γ, but not both.

Now we can construct a topological space of maximally consistent sets of
formulas for LKB in a quite analogous way as this has been done for LK (cf. Aiello
et al. (2003)).

Proposition 5.1 Define the canonical topological space (H, OH) for LKB as follows:

(i) H is the set of all maximally consistent sets Γmax of formulas of LKB.
(ii) For φ ∈ LKB let [φ]:= {Γmax∈H; φ ∈ Γmax}. Define SK:= {[Kφ]; φ ∈ LKB}.

Then OH is defined as the set of subsets of H generated by arbitrary unions of
the SK.

(H, OH) is a topological space, called the topological space of the canonical
model of LKB.

14 Actually there is an order-reversing bijection between nuclei and sublocales: A nucleus N:OXOX is
uniquely determined by its image i:N(OX)OX. Indeed, N(OX) OX is a sublocale. Thus, a nucleus uniquely
determines a sublocale. On the other hand, the inclusion map of a sublocale i:SOX has an adjoint frame
map j:OXS such that the concatenation ij:OXOX is a nucleus N [cf. Johnstone (2002, Proposition 1.1.3., p.
486), Picado and Pultr (2012, 5.3.2. Proposition. p. 32)]. We don’t need this result, however.
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Proof One has to show that SK is a basis for a topology of H. This is carried out
exactly in the same way as is done for the analogous assertion for LK in Aiello et al.
(2003, Lemma 3.2) by replacing LK by LKB.

Obviously, for the modal operator Int of (H, OH) a truth lemma can be proved in
the same way as is done in Aiello et al. (2003) for the interior operator of the
canonical topological space for of the modal logic S4.

Thus, the only missing ingredient for a full truth lemma of weak KB (and thereby
a completeness theorem for weak KB) is the construction of an appropriate belief
operator N° that satisfies a truth lemma for (H, OH). This will be carried out now.
The key for this construction is the following observation:

Lemma 5.2 For all formulas φ of LKB one has [Bφ]=[BKφ]=[KBφ], i.e., the sets
[Bφ] are basic open sets of the topological space (H, OH). Moreover, due to (4)* one
has [Bφ] = [Bnφ] for all n ≥1.

Proof By the axioms (PI) and (T) one obtains that the formulas Bφ are logically
equivalent to KBφ and to BKφ. Hence, the sets [Bφ]=[KBφ] are basic open sets of
(H, OH).

Now all ingredients are available for the definition of the canonical topological
model of weak KB-logic. The construction of the underlying topological space is
standard. The point is the definition of an appropriate nucleus that takes care of the
modal operator B.

Since the lattice SL(OH) of sublocales of (H, OH) is closed with respect to
arbitrary intersections by (4.14) the sublocale S(B) of the intersection of all
sublocales that contain the elements of {[Bφ]; φ∈LKB} exists. It is denoted S(B). As
S(B) is a sublocale, for i:S(B)→OH an adjoint map j:OH→S(B) exists such that a
nucleus ij:OH→S(B)→OH is defined. This nucleus will be denoted by NB. Clearly,
NB∈NUC(OH)d, i.e., NB is a dense nucleus, since by the axiom of consistency (CB)
one has

½Bð?Þ� � Bð:?½ �C¼ ½Bð>Þ�C ¼ >½ �C¼ ;

The nucleus NB defines a consistent belief operator NB°. This NB° is used to
define the canonical topological model of weak KB logic as follows:

Definition 5.3 The canonical topological model of weak KB-logic is defined as (H,
OH, NB, μNB) with the following ingredients:

(i) The elements of H are the maximally consistent sets of formulas Γmax of
LKB.

(ii) The topology OH is generated by the basis of open sets {[Kφ]; φ∈LKB}.
(iii) The belief operator NB° is defined by the nucleus NB generated by the

sublocale S(BH) generated by the set of open subsets {[Bφ]; φ ∈ LKB}.
(iv) μNB(φ):={Γmax; Γmax is a maximally consistent set of formulas of LKB with

φ∈Γmax}.
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This definition of the canonical model for weak KB is a straight-forward
generalization of the analogous definition of the canonical model for K to be found in
Aiello et al. (2003).15 The definition of the belief operator NB° is based on the
observation that the sets {[Bφ]; φ∈LKB} are basic open sets of OH and therefore
define a dense sublocale of OH that corresponds to a dense nucleus. Since NB°∈
NUC(OH)d, from (3.13) it follows that (Int, NB°) satisfies the rules and axioms of a
weak Stalnaker system, i.e., (H, OH, NB, μNB) belongs to the class of sound models
of weak KB-logic.

Now we prove a truth lemma for the canonical topological model (H, OH, NB,
μNB). This will be the essential ingredient for the proof of the desired completeness
theorem:

Theorem 5.4 (Truth Lemma TL). Let (H, OH, NB, μ) be the canonical topological
model of weak KB. For all modal formulas φ of LKB and all w ∈H one has: w �LKB φ
and w2[φ].
Proof Induction on the complexity of φ. The base case follows from the definition
from (4.10). The case of the Booleans is also well known, see (Aiello et al., (2003, p.
895). The interesting cases are the modal operators K and B. The proof for K is just a
rehearsal of the well-known proof of the truth lemma TL for the unimodal case for K.
Thus, it only remains to prove TL for B. Analogously to the proof for K, the proof of
TL for B is divided into two parts:

(i) From truth to membership (If w ⊨LKB φ then w∈[φ]).
(ii) From membership to truth (If w∈[φ] then w⊨LKB φ).

Proof of (i):
Suppose w⊨LKB Bφ. That means that there is a U∈OH such that.
w∈N(U) and ∀v(If v∈U then ∀v∈U(M, v ⊨ Kφ)).
Since we may assume that TL holds for K in OH this may be simplified to .
w⊨LKB Bφ iff there is a Kψ∈OH such that w∈BKψ and[Kψ] � [Kφ].
Since (H, OH) is a topological model of S4 (with respect to K), due to the

completeness of S4 the inclusion [Kψ] � [Kφ] entails the validity of Kψ→Kφ in S4.
By necessitation with respect to B in weak KB also B(Kψ→Kφ) is valid in weak
KB. Since B satisfies (K)B in weak KB we have that B(Kψ→Kφ)→(BKψ→BKφ)
is valid we obtain by MP that (BKψ→BKφ) is valid in weak KB. Since weak KB is
sound of (H, OH) we obtain that [BKψ] � [BKφ]. By (5.2) we have [BKφ]=[Bφ].
Thus, we eventually conclude w∈[BKψ] � [BKφ]=[Bφ]. In other words, “Truth
entails membership”.

(2) From Membership to Truth: Proof by induction on the complexity of formulas
and reductio ad absurdum. Suppose w∈[Bφ]. We can assume that the first part of TL
“From truth to membership” has been proved for B. Suppose w|≠Bφ. Then by
definition of w|≠Bφ this is equivalent to.

15 According to Aiello et al., (2003, p. 896) the canonical topology of the canonical space is the
intersection of the Kripke topology and the Stone topology. This entails that this space is compact and
dense-in-itself.
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(i) NOT(∃U∈OH (w∈N(U) & ∀v(If v∈U then v⊨ Kφ)).
Since we can assume that TL is already proved for K this can be
simplified to

(i’) NOT(∃U∈OH (w∈N(U) & U � [Kφ]))
This is equivalent to

(ii) ∀U∈OH (w∉N(U) OR NOT (U � [Kφ]))
In order to carry a reductio one has to find a U for which (ii) is false.
Obviously, this is the case for U=[Kφ], since [Kφ] � [BKφ]=[Bφ] by
(5.2) and we have assumed that w∈[Bφ]. Thus, the reductio ad
absurdum has been carried out. Thereby the proof of the truth lemma for
the modal operator K and the modal operator B is completed.

Now a completeness theorem for weak KB can be proved in the canonical way:

5.5 Completeness Theorem for Weak KB For any consistent set of formulas Γ of
LKB one has.

If Γ ⊨ φ then Γ ⊢wKB φ.

Proof Suppose that NOT(Γ ⊢ wKB φ). For the proof of (5.5) we have to prove that
this supposition entails NOT(Γ⊨φ). Then Γ∪{: φ}is consistent, and by a
Lindenbaum Lemma it can be extended to a maximally consistent set Γmax∈H
with {: φ}∈Γmax, i.e., Γmax∈[: φ]. According to the truth lemma (5.4) for (H, OH),
this is equivalent to Γmax⊨: φ, whence NOT(Γmax ⊨ φ). and we have constructed the
required counter-model.

In sum, the weak KB logic (2.6) of knowledge and belief is a normal, sound and
complete bimodal extension of classical propositional logic CL defined by the two
modalities K and B.16 In the next section it will be shown that for a given knowledge
operator Int a wealth of belief operators N° exists such that all the pairs (Int, N°)
satisfy the rules and axioms of weak KB. For a given knowledge operator Int the
pairs (Int, N°) are partially ordered in a natural way by the partial order of NUC(OX)
defined in (4.2) such that different belief operators N° can be compared with respect
to the extent how much they deviate from knowledge Int.

6 On the Doxastic Plurality of Weak KB

In this section we deal with a peculiar feature of weak KB-logic, namely, its doxastic
plurality. Doxastic plurality means that any topological knowledge operator Int
always comes with a plurality of accompanying belief operators N° defined by the
dense nuclei N∈NUC(OX)d such that all quadruples (X, OX, N, μN) are topological
models of weak KB-logic. In other words, the complete lattice NUC(OX)d (which
will be shown to be even a complete Heyting algebra in a moment) provides a
framework for comparing weak KB logics (Int, N°), (Int, N’°) with respect to how

16 If the axiom (NI) of negative introspection is assumed to be valid, the bimodal logic KB boils down to a
unimodal logic defined by K since then the belief modality B can be uniquely defined in terms of K,
namely B=: K : K (cf. Footnote 4).
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much their belief operators N°, N’° deviate from the common knowledge operator Int.
More precisely, NUC(OX)d sets up an intuitionistic logic of competing belief
operators related to one and the same knowledge operator Int.17

Up to now, we do not know much about the doxastic plurality of belief operators,
since we do not know much about NUC(OX)d. Given a topological space (X, OX)
the only dense nuclei of this space that are known are the nucleus Int and the
Stalnaker nucleus IntClInt. Thus, it is high time to overcome this shortage by
providing other concrete examples of dense nuclei. This is the aim of this
section. Moreover, to show that the plurality of dense nuclei is really interesting for
the logic of knowledge and belief, it has to be argued that the belief operators defined
by these nuclei are conceptually appealing as belief operators. First of all, let us give
some concrete examples of (dense) nuclei that are located between Int and IntClInt:

Proposition 6.1 (Macnab (1981, Section 6). Let (X, OX) be a topological space, Y �
X, and D2OX. Define a map :PNX→NUC(OX) by N(Y) by.

N(Y)(D):=Int(YC∪D).

The nucleus N(Y) is called the spatial nucleus defined by the subspace Y of X.

Proof It will be shown that N(Y) satisfies requirements (4.1)(i–iii) that define a
nucleus:

(i): For D∈OX, one obtains D � Int(YC∪D). Hence, D � N(Y)(D).
(ii): Clearly, N(Y)(D)=Int(YC∪D) � Int(YC∪Int(YC∪D)). On the other hand,

one calculates Int(YC∪Int(YC∪D)) � Int(YC∪(YC∪D))=Int(YC∪D). Hence, N(Y)
(N(Y)(D))=(NY)(D).

(iii): By the Kuratowki axiom (3.2) (i) one obtains N(Y)(D∩D’)=Int(YC∪(D∩
D’))

=Int(YC∪D)∩Int(YC∪D’)=N(Y)(D)∩N(Y)(D’).
Thus, for all subsets Y of X the map N(Y): OX→OX is a nucleus.

Proposition 6.2 If Y is dense in (X, OX) then N(Y) is a dense nucleus.

Proof For Y dense in (X, OX) the Kuratowki axiom (3.2) (i) yields: N(Y)(Ø)=Int
(YC)=Cl(YCC)C=Cl(Y)C=XC=Ø.

Corollary 6.3 If Y is dense in (X, OX) the belief operator N(Y) is a dense nucleus
and the pair (Int, N(Y)°) defines a weak KB-logic.

Proof Since N(Y) is a dense nucleus, by (4.10) the pair of operators (Int, N(Y)°)
defines a weak KB-logic.

In order to ensure that (6.3) actually yields different dense nuclei it is expedient to
assume that the space (X, OX) is a TD-space (cf. (3.4)).

18 Under this mild restriction
one can prove:

17 This section is somewhat technical. Readers who believe that a knowledge operator Int is always
accompanied by many belief operators may therefore skip this section on first reading.
18 TD is a rather weak axiom satisfied by most topological spaces that “occur in nature”. For instance,
Euclidean spaces and, more generally, all T2-spaces, and all T0-Alexandroff spaces are TD-spaces.
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Proposition 6.4 For TD-spaces (X, OX) the mapN:PX→NUC(OX) defined in (6.1)
is an order-reversing monomorphism.

Proof Suppose that Y and Y′ are two distinct subsets of X and N(Y)=(NY′).
Suppose x∈Y−Y′. Since (X, OX) is a TD-space (3.3)(ii), x has an open
neighborhood D such that D−{x} is open as well. Then we obtain x∈Int(Y′C∪(D
–{x})) but clearly x∉Int(YC∪(D−{x})). This is a contradiction. Analogously, the
assumption that there is an x∈Y′−Y leads to a contradiction. Hence Y=Y′, i.e., j is a
monomorphism. N is order-reversing by definition.

Propositions (6.2) and (6.4) show that for “most” spaces (X, OX) many dense
belief operators can be defined by dense subspaces Y of X that differ from Int and
IntClInt, respectively. It is expedient to note, however, that for many familiar spaces
there are important dense nuclei that cannot be characterized in this way. Rather, the
belief operators defined by subspaces Y of X turn out to be only the most elementary
class of belief operators. Indeed, the structure of NUC(OX) is much more
complicated than the rather elementary structure of the classical Boolean algebra
PX={Y; Y � X}.19

The fact that not all belief operators related to the knowledge operator Int arise
from dense subsets has to be considered as an advantage of the concept of consistent
belief operators over dense subspaces. Or, the other way round, it has to be
considered as a serious shortcoming of the concept of dense subspaces that there not
enough of them. This may be explicated in some more detail as follows. As is well-
known, for topological spaces (X, OX) the intersection of dense subspaces Y and Y’
in general is not dense. A classical example is the real line (ℝ, Oℝ) for which the set
of rational numbers ℚ and set of irrational numbers ℚC are both dense, but the
intersection ℚ∩ℚC=Ø is clearly not dense. Hence, in general, a topological space
(X, OX) does not have a unique smallest dense subset. But, due to Isbell’s theorem
(see (6.5)), there is a largest dense nucleus, namely, Stalnaker’s nucleus NS aka IntCl.

More generally, the intersection∩Yλ of arbitrarily many dense subspaces Yλ of a
topological space (X, OX) is usually far from being a dense subspace of X. Thus, the
partial order of dense subspaces DX⊆PX of a topological space (X, OX) (partially
ordered by set-theoretical inclusion �) is a rather unwieldy structure. In sharp
contrast, for dense nuclei of a topological space the situation is quite different. As
will be proved in a moment, the set NUC(OX)d of dense nuclei is a complete Heyting
algebra.20 Consequently, the class of belief operators related to a knowledge operator
has a rather nice structure.

19 Already in Macnab (1981) it is proved that for TD -spaces (X, OX) there is a Boolean isomorphism
between PX and the Boolean algebra of regular elements of NUC(OX) [cf. Macnab (1981, Theorem (6.5)
(5)]. In contrast, even for the Euclidean line (ℝ, Oℝ) the full structure of NUC(Oℝ) is not fully known up
to now (as far as I know).
20 Roughly, the relation between dense subspaces and dense nuclei of a topological space (X, OX) may be
compared with the relation between the field of rational numbers ℚ and the field of complex numbers C
with respect to their algebraic qualities. A very simple aspect of this issue concerns the solvability of
polynomial equations. While there are enough complex numbers to solve all polynomial equations in a
neat and elegant way, this does not hold for the more restricted domain of rational numbers ℚ. It is quite
difficult to say anything general about the solvability of polynomial equations in rational numbers.
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By Proposition (4.3) we already know that the lattice NUC(OX) of nuclei of a
space (X, OX) is a complete Heyting algebra. This result may be used to prove an
analogous result for the set of dense nuclei NUC(OX)d by invoking a famous
theorem of Isbell. Isbell’s theorem asserts that every topological space (X, OX) has a
greatest dense nucleus:

Theorem 6.5 (Isbell’s Density Theorem). Let (X, OX) be any topological space. The
dense nucleus NS is the greatest element of NUC(OX)d, i.e., for all dense nuclei N one
has N(D) � NS(D), D2OX.
Proof The proof of this theorem goes well beyond the horizon of this paper. The
reader is recommended to consult the excellent treatises Johnstone (1982, II. 2.4
Lemma, p. 50/51) or Picado and Pultr (2012, III, 8.3., p.40, also VI, 2.1, p. 101ff.)

Isbell’s theorem is a remarkable theorem, since it demonstrates that the dense
nuclei of a topological space (X, OX) behave quite differently than the dense
subspaces Y of X. More precisely, a space may have more dense nuclei N than dense
subspaces (see propositions (6.7) and (6.8)): A pertinent example is the Euclidean
line (ℝ, Oℝ) and its disjoint dense subsets ℚ and ℚC which entails that there is no
largest dense subspace of (ℝ, Oℝ). Moreover, as will be shown in a moment,
Stalnaker’s nucleus NS is not a spatial nucleus for (ℝ, Oℝ) (see (6.7)).

As has been pointed out by Johnstone and others, this difference between nuclei
and subspaces may be considered as one of the great advantages of doing topology in
the conceptual framework of “pointfree topology” based on “nuclei” “(sub)locales”,
and related concepts instead of traditional set-theoretical topology (cf. Johnstone,
1991, p. 87–88). This paper is not the place to discuss this issue in any further depth.
Just let us note the following elementary corollary of Isbell’s density theorem:

Corollary 6.6 The partially ordered family NUC(OX)d of dense nuclei is a complete
Heyting algebra with bottom element idOX and top element NS=IntCl. These nuclei
correspond to the dense belief operators Int and IntClInt, respectively.

Proof NUC(OX)d is a subset of the complete Heyting algebra NUC(OX). By Isbell’s
theorem (6.5) the largest element of NUC(OX)d is the regular nucleus IntCl. Hence,
NUC(OX)d is the downset ↓NS of N that are smaller than or equal to NS, i.e., ↓NS:=
{N; N≤IntCl}. Thereby NUC(OX)d inherits canonically the structure of a complete
Heyting algebra from NUC(OX) with bottom element idOX and top element IntCl.
By definition (4.2) of the partial order≤of NUC(OX) one calculates for N≤NS that N
(Ø) � NS(Ø)=Int(Cl(Ø))=Ø. Hence, the N∈NUC(OX)d are indeed dense nuclei.

Corollary (6.6) offers a neat intuitionist calculus of belief operators N° related to a
given knowledge operator Int: Any two belief operators N°, N°’ compatible with
Int can be compared with respect to riskiness. An operator N° is riskier than N°’, i.e.,
more error-prone than N°’, if and only if N°’≤N°. The least risky belief operator is,
of course, the knowledge operator Int, since by definition w∈Int(μ(φ)) always entails
that w∈μ(φ), i.e., Int is factive. The riskiest belief operator is Stalnaker’s belief
operator N°S, since by Isbell’s theorem (6.5) N≤NS for all N∈NUC(OX)d. Hence, if
one is guided by a cautionary principle in stating one’s beliefs, it is advisable to base
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one’s beliefs not on NS but on a less risky operator N even if NS may be considered
as the operator that can be defined in the mathematically most elegant way.

In order to show that spatial nuclei N(Y) do not tell the whole story about nuclei
of (X, OX) it is sufficient to give a prominent example of a nucleus N for which in
general no generating subset Y exists:

Proposition 6.7 For the Euclidean line (ℝ, Oℝ) the regular nucleus NS is not a
spatial nucleus, i.e., there is no subset Y of ℝ such that NS=N(Y).

Proof Suppose the contrary, i.e., there is a Y � ℝ such that N(Y)(D)=Int(YC∪D)=
IntCl(D) for all D∈Oℝ). Clearly, Y≠Ø. Assume x∈Y. Take D=ℝ – {x}. The set D
is open in (ℝ, Oℝ) since (ℝ, Oℝ) is a T2-space (cf. (3.4)). Then, we get N(Y)(D)=
Int(YC∪D)=Int(D)=D, but NS(D)=ℝ. Hence, for (ℝ, Oℝ) the regular nucleus NS is
different from any spatial nucleus N(Y) of NUC(Oℝ) whatsoever.

Proposition 6.8 The join N(ℚ) _ N(ℚC) of the spatial nuclei N(ℚ) and N(ℚC)
is not a spatial nucleus.

Proof Suppose N(ℚ) _ N(ℚC) is a spatial nucleus N(F) defined by F � ℝ. Then
one obtains N(ℚ)≤N(F) and N(ℚC)≤(NF). By (6.4) this implies F � ℚ, ℚC and
therefore F=Ø. Hence N(Ø)(D)=Int(ℝ∪D)=ℝ for all D∈Oℝ. This is a contradic-
tion since N (ℚ) andN(ℚC) are dense nuclei and thereforeN(ℚ) _N(ℚC) is also
dense and at most as large as NS. Hence N(ℚ) _ N(ℚC) cannot be a spatial
nucleus.21

Proposition (6.8) is a strong argument for the claim that there are not sufficiently
many spatial nuclei for a satisfying theory of nuclei: The finite join N _ N’ of two
nuclei N and N’ is a plausible and meaningful operation, if there is any such
operation on these objects at all. If the domain of spatial nuclei is not closed under
such an operation, this domain must be assessed as seriously incomplete. An
appropriate strategy to overcome this deficit is to move from the domain of spatial
nuclei to the domain NUC(OX) of all nuclei that may be considered as a kind of
completion of the set of spatial nuclei.

For some spaces, however, NS is a spatial nucleus. A simple case is provided by
polar spaces introduced by Rumfitt to deal with the Sorites paradox in the framework
of classical Boolean logic (cf. Rumfitt, 2015).22

Definition 6.9 Let X be a set and Ø≠P � X be a set of distinguished elements to be
interpreted as prototypes, paradigmatic cases, or poles. Assume that for all x∈X
there is a non-empty set m(x) � P of poles p. For all x∈X and all p∈P the sets m(x)
are assumed to satisfy two requirements: (i) Ø≠m(x) � P, and (ii) m(p)={p}. These
assumptions define a map X—m→2P in the obvious way. The map m is called a pole
distribution and denoted by (X, m, P).

21 With some more effort it can be easily shown that there exist many spatial nuclei N1, N2 in NUC(Oℝ)d
such that N1_N2 is non-spatial and different from NS=IntCl.
22 Rumfitt’s polar spaces have been well known in topology. They may be characterized as submaximal
Alexandroff spaces (cf. Bezhanishvili et al., 2014; Mormann, 2022).
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Proposition 6.10 A pole distribution (X, m, P) defines a topology on X (cf. Rumfitt,
2015; Mormann, 2021): For A � X define the interior operator Int:PX→PX of the
pole topology by x∈Int(A):= x∈A and m(x) � A. Then the operator Int is a
Kuratowski interior kernel operator and defines a topology OX. More precisely, (X,
OX) turns out to be a (submaximal) Alexandroff space, i.e., arbitrary (not only finite)
intersections of open sets are open.

More precisely, the topology of a polar spaces defined by (X, m, P) is calculated as
follows:

Proposition 6.11 (Topology of polar spaces) Let the pole distribution (X, m, P)
define the polar space (X, OX). Then for p2P and x2X—P the following holds:

Int fpgð Þ ¼ pf g; Int fxgð Þ ¼ ;; Cl fxgð Þ ¼ xf g; Cl fpgð Þ ¼ fx; p 2 m xð Þg

IntClfpÞ ¼ x; pf g ¼ m xð Þf g; xf g [m xð Þ is the smallest open set that contains x:

Proof Just check the definitions. See Mormann (2022, Proposition 2.5).
From (6.11) one reads off that a polar space (X, OX) is a scattered TD-space, i.e.,

X contains no non-empty dense-in-itself subsets (cf. Steen and Seebach Jr. (1982,
p. 33). Hence, we may apply a famous theorem of Simmons in order to obtain that
NUC(OX) is Boolean.

Theorem 6.12 (Picado & Pultr, 2012; Simmons, 1980). Let (X, OX) be a scattered
TD-space. Then the map N:PXNUC(OX) defined in (6.1) is a Boolean isomorphism,
i.e., all nuclei N are spatial, i.e., N(D)=N(Y)(D)=Int(YCD), for some Y � X.

Clearly, by (6.11) a subset Y is dense in a polar space (X, m, P) iff P � Y. Hence,
polar spaces are scattered TD-spaces and we obtain:

Proposition 6.13 Let (X, m, P) define a polar space (X, OX), D2OX. Then NUC
(OX)d={Y; P � Y � X}=2X−P. The bottom element 0 of 2X−P corresponds to the
largest dense subset of (X, OX), namely X, and is related to the nucleus idOX byN(X)
(D)=Int(XC∪D)=D, and the top element 1 corresponds to the smallest dense subset
of (X, OX), namely, P � X is related to the Stalnaker nucleus NS by N(P)(D)=Int(X-
P∪D)=IntClInt(D).

In sum, for the special case of polar spaces (X, OX) the family of consistent nuclei
N (or, equivalently, the family of corresponding belief operators N°) related to Int has
the structure of an atomic Boolean algebra. This entails, in particular, that for every
nucleus N there exists a “complementary” nucleus N* such that N ^ N*=idOX and N
_ N*=IntCl.

Moreover, propositions (6.9) and (6.7) show that the logics of belief (encapsulated
in the complete Heyting algebras NUC(OX)d) for polar spaces and “ordinary”
topological spaces like Euclidean spaces strongly differ: For polar spaces the
operator IntCl is spatial, i.e., induced by the subspace P of X, while for Euclidean
spaces IntCl is not spatial.
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As already explained in the previous section, NS° is the riskiest choice for a belief
operator that is compatible with Int and still consistent. Certainly, NS° is an elegant
choice for a belief operator that is available for all kinds of topological spaces
whatsoever. Nevertheless, if one subscribes to a cautionary principle there is no
reason to stick to the riskiest operator just for aesthetic reasons. For dense-in-
themselves topological spaces there is a less risky alternative to NS, namely, the
perfect belief operator defined by the nucleus NPF. This may be explained as follows.

The nucleus NPF is a general operator in the sense that it relies on general features
of the concept of topology and not on specific features of the underlying topological
spaces. First recall that a subset A � X is dense-in-itself in (X, OX) iff A has no
isolated points (cf. (3.5) (iv)). Since the arbitrary union of dense-in-themselves
subsets of X is dense-in-itself, the closure Cl(A) of a dense-in-itself set A is dense-in-
itself, and the empty set Ø is clearly dense-in-itself (Kuratowski, 1966), for all closed
subsets A � X the largest dense-in-itself subset PF(A) of A is a well-defined concept.
Clearly, for A∈CX the set PF(A) is a closed and dense-it-itself set, i.e., a perfect set
(cf. Steen/Seebach Jr. (1982, p.6)). Hence, PF(A) is usually called the perfect kernel
of A (cf. Zarycki, 1930; Oxtoby, 1976).

Proposition 6.14 Let (X, OX) be a topological space, A, D ∈CX. The perfect kernel
PF(A) of A has the following properties:

(i) PF(A) � A and PF(A) is closed.
(ii) If A � D then PF(A) � PF(D). (Monotony)
(iii) PF(PF(A))=PF(A). (Idempotence).
(iv) PF(A∪D)=PF(A)∪PF(D). (Distributivity with respect to∪).23

Proof The proofs of (i–iii) are obvious. A detailed proof of (iv) can be found in
Oxtoby (1976).

If the space (X, OX) is dense-in-itself one has PF(X)=X. Then we can define a
dense “perfect belief operator” NPF as follows:

Proposition 6.15 Let (X, OX) be topological space that is dense-in-itself, A ∈OX.
Define the operator NPF: OX→OX by.

NPF Að Þ :¼ PF AC
� �C

:

Then NPF is a dense nucleus. NPF is called the perfect nucleus of (X, OX).

23 Zarycki (1930) erroneously claimed that PF is distributive with respect to [ for all subsets A, D of X,
not only for closed ones. This error was observed by Vaidyanathaswamy (1947) and Oxtoby (1976).
Oxtoby proved a more complex formula for all subsets A, D that yields (6.12)(iv) for closed sets. For our
purposes it is sufficient that distributivity ((6.14)(iv)) holds for closed subsets of X.

Simmons (1978, 1982) stated (without explicit proof) that (6.14) (iv) holds, i.e., that the operation PF is
distributive with respect to [ for closed sets. He then went on to show that PF(AC)C is a nucleus. Actually,
Oxtoby proved his more general results on PF only for T1-spaces. A closer inspection of his proof,
however, reveals that for the distributivity of PF his proof works for all topological spaces.
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Proof We have to prove that NPF satisfies the conditions (4.1)(i) – (iii) that define a
nucleus.

(4.1) (i): Since the closure of a dense-in-itself subset of AC is dense-in-itself and
AC is closed one clearly has that PF(AC) � AC. Hence A=ACC � PF(AC)C.

By definition of PF the proofs for (ii) and (iii) are obvious. A detailed proof of a
stronger and more general result than (6.14)(iv) can be found in Oxtoby (1976,
Sect. 2). Thus, NPF is a nucleus.

If X is dense-in-itself one has X=PF(X) and NPF is a dense nucleus since NPF(Ø)=
PF(ØC)C=(PF(X))C=XC=Ø.

As explained before, the nucleus NPF defines in a canonical way a belief operator
denoted by NPF°. By (4.8) we obtain:

Theorem 6.16 Let (X, OX) be a dense-in-itself topological space. Then the pair (Int,
NPF°) of the interior operator Int and the perfect belief operator NPF° satisfies the
rules and axioms of a weak KB system.

Examples of dense-in-themselves spaces abound. For instance, Euclidean spaces
and other Polish spaces24 are dense-in-themselves. Hence, (6.14) has wide
applications. By Isbell’s theorem the perfect nucleus NPF is smaller than or equal
to NS, i.e., for all A∈OX one has NPF(A) � NS(A). For some spaces it can be shown
that NPF is indeed strictly smaller than NS. Ignoring the mild restriction that the
perfect nucleus NPF is only defined for dense-in-itself spaces (X, OX) we may say
that NPF° is another “general” belief operator (besides NS°) in the sense that its
definition does not depend on the specifics of the topological structure of (X, OX) as
is the case, for instance, for spatial operators N(Y) defined by dense subsets Y � X.
In other words, that forming beliefs on the basis of the perfect belief operator NPF° is,
with respect to generality, on an equal footing as NS°. It is natural to ask, whether
NPF° and NS° are really different. The real line (ℝ, Oℝ) shows that NPF° is different
from NS°: Consider the Cantor dust D. As is well known, D is a perfect set and
nowhere dense in ℝ, i.e., IntCl(D)=Int(D)=Ø. Hence DC is open and one calculates
for the belief operator NS° and NPF°, respectively:

N�
S DC
� � ¼ IntClInt DC

� � ¼ IntCl DC
� � ¼ R: ð6:17Þ

N�
PF DC
� � ¼ PF DCC

� �C ¼ PF Dð ÞC ¼ DC:

Hence, on (ℝ, Oℝ) the perfect belief operator NPF° is strictly smaller than
Stalnaker’s NS°.

The Heyting algebra NUC(OX) defined by the underlying topological structure
(X, OX) brings to the fore the doxastic plurality of weak KB-logic, i.e., the fact that
there are many belief operators N° related to one given knowledge operator Int.

Restricting one's attention on Stalnaker’s NS° amounts to a considerable
simplification. Following Stalnaker (2006), Baltag et al. (2019) rightly emphasize as
an important feature of Stalnaker’s KB system that in KB the only admissible belief

24 A Polish space is a separable topological space that is homeomorphic to a complete metric space [cf.
Jech (2002, Definition (4.12), p. 44)].
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operator NS° can be defined in terms of the knowledge operator, namely, as NS°=
IntClInt. According to these authors,

this proposition constitutes one of the most important features of Stalnaker’s
combined system KB. This equivalence allows us to have a combined logic of
knowledge and belief in which the only modality is K and the belief modality B
is defined in terms of the former. We therefore obtain …a more economical
formulation of the combined belief-knowledge logic… (Baltag et al., 2019,
p.221).

“Economy” is certainly an important feature of logical systems, but one may ask
whether such an “economy” for a logic of knowledge and belief is actually desirable.
It may be appropriate also to take into account that for the topological knowledge
operator Int of an arbitrary topological space a numerous family of belief operators
exists that are compatible with Int in the sense that all pairs (Int, N°) satisfy the
axioms of weak KB logic. Acknowledging this fact would add a plausible dosage of
epistemological pluralism and simultaneously maintain the “spirit” of Stalnaker’s
logic of knowledge and belief. It would relate the operator of knowledge Int and the
operators of belief N° in a more flexible manner than is done traditionally, when
either N° is uniquely defined by Int, or Int is uniquely defined by N°.

We already have ensured that there exist many belief operators that satisfy the
formal conditions that can reasonably be expected to hold for good belief operators.
It remains to show that these operators are also philosophically plausible. In the
following I’d like to argue that the class of novel belief operators introduced in this
paper inherit their plausibility more or less directly from the philosophical
plausibility of Stalnaker’s operator classical belief operator NS°=ClInt that conceives
(a strong version of) believing φ as not knowing that one does not know that φ
(Stalnaker (2006, p. 195; Baltag et al., 2019, p. 220). For extremally disconnected
spaces (X, OX) this definition of full (or strong) belief—“Belief as possibility of
knowledge”—is rendered formally as

Bu :¼ :K:Ku or; in topological terminology N� :¼ ClInt ð6:18Þ

As has been discussed in full detail this definition of belief has quite nice
properties, namely, the pair (Int, ClInt) defines a topological model of (full) KB
system iff the underlying space (X, OX) is extremally disconnected. For the more
comprehensive class of all topological spaces, however, ClInt scores rather badly. As
is easily calculated, already on (ℝ, Oℝ) the operator ClInt does not satisfy the axioms
of (PI) of positive introspection, the axiom (CB) of consistency, nor the Kripke
axiom of normality (cf. (2.6)(i)).25 In other words, for general topological spaces (X,
OX), ClInt is certainly not an acceptable belief operator.

There is, however a way out of this impasse. If one moves from ClInt to IntClInt
the new operator preserves almost all plausible features of ClInt that qualified it as a
nice normal belief operator. More precisely, IntClInt is a weak KB operator for all

25 Already Stalnaker (2006) pointed out that on general topological spaces the operator ClInt does not
define a (reasonable) belief operator, since it is not a normal operator, i.e., does not satisfy (2.6)(i) [cf.
Stalnaker (2006, p. 195)]. An example for this fact is already provided by the Euclidean line (ℝ, Oℝ).
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topological spaces, i.e., IntClInt satisfies all axioms of KB logic except the axiom
(NI) of negative introspection. In other words, (Int, IntClInt) defines a weak KB
system, but fails to be a (full) KB system, if (X, OX) is not an extremally
disconnected space. Thus, IntClInt may be considered as a well-behaved general-
ization of Stalnaker’s original operator:

(i) IntClInt is conservative in the sense that it does not change anything for
extremally disconnected spaces (X, OX), and

(ii) IntClInt minimally modifies the original operator ClInt where it is necessary.

Thus, the new general definition of belief IntClInt (“knowledge of the possibility
of knowledge”) faithfully preserves the spirit of Stalnaker’s account of belief and
renders it applicable to a much larger domain of topological universes than just
extremally disconnected ones. Thus, everybody who considers Stalnaker’s arguments
that (full justified) belief ClInt as “conceptual possibility of knowledge” is
philosophically convincing for belief in the case of extremally disconnected spaces,
should accept IntClInt (“knowledge of possibility of knowledge”) as a good formal
explication of this concept in the more general case of arbitrary topological spaces.

Conceiving IntClInt as a good formal explication for belief also renders
philosophically respectable other belief operators based on dense nuclei N∈NUC
(OX)d as well. An essential ingredient for the proof of this thesis is Isbell’s density
theorem. Due to this theorem, one has for all nucleus-based dense belief operators N°
=iNInt

Int Að Þ � iNInt Að Þ � IntClInt Að Þ: ð6:19Þ

Informally expressed, this chain of inequalities asserts: a belief operator defined
by any good (i.e., normal, consistent, …) nucleus-based belief operator iNInt is
entailed by knowledge Int and is at least as strong as (and therefore entails) belief as
defined by knowledge of possibility of knowledge IntClInt.

Nucleus-based belief operators iNInt take into account the specifics of the
topological structure of the universes of possible worlds to strengthen the
requirement of IntClInt. Topologically, the nucleus-based belief operators iNInt Int
may be understood as approximations of Int in the sense that for all A∈PX Int(A) �
iNInt(A) and iNInt(A) is extensionally close to Int(A), i.e., their set-theoretical
difference iNInt(A)∩Int(A)C is nowhere dense in (X, OX).

The simplest way of constructing an approximative knowledge operator in this
sense is to ignore a small set of anomalies or exceptions that are not contained in Int
(A) when a claim justified belief of approximative knowledge is made. Formally, this
procedure is described by replacing the knowledge operator Int (applied to A) by the
belief operator N(Y)°(A)=Int(YC∪Int(A)) for some appropriate set Y. It is
important to note that the set YC of anomalies or exceptions has to be “small” in
some appropriate sense. Not just any approximation of knowledge by YC is a
reasonable approximation. The point is that YC has to be assumed as “small” or
“negligeable” in some reasonable sense. Otherwise N(Y)° would not be dense A, i.
d., the approximative belief based on Y would not be consistent. More precisely, one
has to assume that Int(YC)=Ø, i.e., that Y is dense in (X, OX).
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Accepting IntClInt as the “correct” generalization of the operator Clint originally
defined for extremally disconnected spaces entails that all weak belief operators (i.e.,
belief operators that do not necessarily satisfy (NI) on general topological universes
(X, OX)) may be considered as generalizations of the prototypical operator ClInt
defined for extremally disconnected spaces. Thus, we may say that the nucleus-based
approach of belief preserves the spirit of Stalnaker’s approach, and, simultaneously,
generalizes it.

The simplest way of asserting an approximative knowledge claim is by ignoring
some small set of anomalies that are considered as irrelevant. Formally this is
described by belief operators that are defined by spatial nuclei N(Y)∈NUC(OX)d,
with Y a dense subspace of X. But depending on the topological structure, many
other (non-spatial) methods of defining dense nuclei exist. As we have shown,
already the formation of the finite supremum N _ N’ of spatial nuclei N and N’ may
lead us beyond the realm of spatial nuclei. Thus, admitting only spatial nuclei for the
definition of belief operators is rather inconvenient. Thus, one should give up the
restriction to spatial nuclei and their belief operators and accept the larger domain
NUC(OX)d of belief operators that can be defined by dense nuclei in general. The
move from spatial nuclei to general nuclei is a kind of completion that is a procedure
that takes place quite often in mathematics. An example in elementary algebra is the
extension of the field of rational numbers ℚ to the field of complex numbers C in
order to deal in a more comfortable way with the problems concerning the solution of
polynomial equations.

In some sense, then, the nucleus-based theory of doxastic operators renders the
concept of belief an open concept, since for many spaces the domain of nuclei NUC
(OX)d is far from being completely understood up to now.

7 Nuclei and the Derived Set Operator

In this penultimate section we resume a topic that was mentioned already briefly in
the introduction of this paper, namely, that (at least for certain topological universes
of possible worlds) the derived set operator d of the topological structure may be
used as a formal model of belief (cf. Parikh et al., 2007; Steinsvold, 2006). More
precisely, in this section we want to show that the theory of topological nuclei not
only sheds new light on a Stalnaker’s account of knowledge and belief but also on
the account of belief that is based on the notion of the derived set operator d. As it
turns out both accounts of topological epistemology have interesting relations with
the theory of nuclei. Let us start with the very definition of the derived set operator in
topology:

Definition 7.1 (Steen and Seebach Jr. (1978, p. 5), Parikh et al., (2007, 11.2, p. 332/
333). Let (X, OX) be a topological space. A point x∈X is called an accumulation (or
limit) point of a set A � X iff for each open neighborhood U of x we have (U –
{x})∩A≠Ø. The set of all accumulation points of A is denoted by d(A). The set d(A)
is called the derived set of A and d is called the derived set operator.
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As is well known, for each A � X one has Cl(A)=A∪d(A), i.e., A is closed iff d
(A) � A. In this section it is assumed throughout that (X, OX) is a TD-space (cf.
(3.3)). For this class of spaces one can prove:

Proposition 7.2 If (X, OX) is a TD-space and S ∈PX, then d(d(S)) � d(S), i.e., d(S) is
closed (cf. Bezhanishvili & van der Hoek, 2014, p. 373; van Benthem &
Bezhanishvili, 2007, p. 233, Definition 5.13).

Proof First, we should note that for a TD-space for every open neighborhood U’(x)
of x there is a possibly smaller open neighborhood U(x) of x such that U(x)−{x}is
also open. By TD we know that for any x there is an open neighborhood V(x) such
that V(x)−{x} is open. Hence, if U’(x) is any open neighborhood, then U(x):=
U’(x)∩V(x) is an open neighborhood of x such that U(x)−{x} is open. Now we
want to show that d(S) is closed, i.e., x∈d(S) entails x∈d(d(S)). By definition x∈d(d
(S)) iff, for all open neighborhoods U(x), we have U(x)∩d(S)−{x}≠Ø. We may
assume that U(x)−{x} is open. For all y∈d(S) one has that for all open
neighborhood V(y) of y one has that V(y)∩S−{y}≠Ø. Clearly (U(x)−{x})∩V(y)
is an open neighborhood of y. Hence, (U(x)−{x})∩V(y)∩S−{y}≠Ø. Thus, U(x) is
an open neighborhood of x such that U(x)∩S−{x}≠Ø, i.e., x is an accumulation
point of S. That means x∈d(S).

Now let t(A):=d(AC)C be the dual operator of d, also called the co-derived
operator of (X, OX). By (7.2), for all A � X the set t(A) is open, since (X, OX) is TD.
We are going to show that t (restricted to OX) is “almost” a nucleus:

Proposition 7.3 Let (X, OX) be a dense-in-itself TD-space. The co-derived set
operator t:OX→OX has the following properties for all A, B ∈OX.

(i) A � t(A).
(ii) If A � B then t(A) � t(B).
(iii) t(A∩B)=t(A)∩ t (B).
(iv) t(A) � t(t(A)).
(v) t(Ø)=Ø.

Proof Check the definitions.

Informally stated, the co-derived operator t is “almost” a nucleus (experts call this
type of operators “pre-nuclei”). The only requirement that is missing for t being a
nucleus is the inequality t(t(A)) � (t(A). As is easily checked, in general this
shortcoming cannot be eliminated. This can be seen as follows. To find an open A
such that t(t(A))≠ t(A) is clearly equivalent to find a closed set S such that d(d(S))≠d
(S). A simple example of such a set is given by the following example (cf. Parikh
et al., 2007, Example (6.21), p. 332):

Example 7.4 Let S be the subset of real numbers ℝ defined by
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S :¼ 1=n þ 1= n þ mð Þf g [ 1=nf g [ 0f g; for n � 1; m � n:

The set S is obviously closed. Its set d(S) of accumulation points is {1/n}∪{0}
and the set of accumulation points d(d(S)) of d(S) is d(d(S))={0}, and d(d(d(S)))=Ø.
Hence d(d(S))≠d(S) and equivalently t(t(SC))≠ t(SC).

In order to ensure that the co-derivative t is not only a pre-nucleus but even an
honest nucleus one has to restrict the class of topological spaces considerably. Instead
of dense-in-themselves TD-spaces one has to specialize to DSO-spaces:

Definition 7.5 (Parikh et al., 2007, p. 334). A topological space (X, OX) is called a
DSO-space26 if it is a dense-in-itself TD-space such that d(A) is an open set for each
A � X.

A simple example of a DSO-space is provided by the set of natural numbers N
endowed with the finite-cofinite topology (N, ON). In this topology a subset U of N
is open in (N, ON) iff its complement is finite or U=Ø.

For DSO-spaces we can prove:

Theorem 7.6 For a DSO-space (X, OX) the co-derived operator t is a dense
nucleus.

Proof By definition of DSO-spaces, for each A � X the co-derivative d(A) is an
open and closed subset of X. Since X is dense-in-it-self, d(A) is dense-in-itself as
well. This means that d(A), as also being a closed set, is even a perfect set. Hence, by
definition of being perfect d(d(A))=d(A), i.e., for all i one has di(A)=d(A). Trivially,
the analogous equality holds for the co-derivative t, i.e., ti(A)=t(A). Thus, for DSO-
spaces the pre-nucleus t is even an honest nucleus.

It should be emphasized that we have already have met this nucleus—it is just the
perfect nucleus NPF defined in (6.15) by NPF(A):=PF(A

C)C, PF(AC) defined as the
largest perfect (=closed and dense-in-itself) subset of AC. Since d=d2, d(AC) is
perfect, and therefore a subset of PF(AC) as the largest perfect subset of AC. On the
other hand, PF(AC)=d(PF(AC) is clearly a subset of d(A)=d(d(A)). Thus, PF(AC)=d
(AC) and NPF(A)=t(A)=d(A

C)C.
This relation between t and BPF that exists for DSO-spaces can be generalized to

an analogous relation for operators defined for the larger class of dense-in-itself TD-
spaces. One has to observe that for the series t, t2, t3,… of pre-nuclei ti a supremum
SUP(ti) can be defined. This supremum turns out to be a nucleus that corresponds to
the perfect nucleus BPF [cf. (6.15)]. The precise construction of SUP(ti) requires a
more comprehensive investigation of the lattice of pre-nuclei of a topological space
(X, OX). Extensive investigations in this area have been carried out by Simmons and
others (cf. Simmons 1980). Among other things it has been shown that this lattice of
pre-nuclei is, analogously to the lattice NUC(OX) of nuclei, a complete Heyting
algebra. We abstain from going into the details, since this would require the
introduction of a considerable formal apparatus. Rather, we hope that already the

26 DSO is an acronym for “Derived Sets are Open.”
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special case of DSO-spaces may suffice to persuade the reader that the theory of
nuclei is an appropriate general framework for doxastic operators that comprises not
only Stalnaker’s combined logics of knowledge and belief KB but also systems of
doxastic operators based on the derived and the co-derived set operator, respectively
(cf. Parikh et al., 2007).

8 Concluding Remarks

This paper has two main results: First, a topological completeness theorem for
Stalnaker’s weak logic KB of knowledge and belief has been proved. Second, it has
been shown that for weak KB-logic every knowledge operator Int is compatible with
many different belief operators N° defined by dense nuclei N∈NUC(OX)d. Thereby,
for any given knowledge operator Int, a wealth of admissible belief operators N°
exists such that all pairs (Int, N°) satisfy all axioms and rules of weak KB-logic.

This plurality of belief operators is an argument for doxastic tolerance: Different
epistemic agents may rely on the same knowledge operator Int but subscribe to
different belief operators Ni° that all are compatible with Int in the sense that all pairs
(Int, Ni°) satisfy the axioms of a weak KB-logic.

By subscribing to the axiom of strong negative introspection (NI), this doxastic
plurality of different coexisting belief operators compatible with one knowledge
operator is eliminated in favor of one “dogmatically” imposed belief operator NS°.
This means, more precisely, that the Heyting algebra of belief operators encapsulated
in NUC(OX)d boils down to the trivial Heyting algebra of two elements {Id, NS}.

The remarkable existence of a unique riskiest consistent belief operator NS° for Int
is a consequence of Isbell’s density theorem. Mathematicians consider Isbell’s
theorem as an important mathematical result of point-free topology. They have not
been interested in any “philosophical” interpretation of it. Given the topological
interpretation of Stalnaker’s KB-logic by Baltag and others and the observation that
Stalnaker’s belief operator NS° is related to the regular nucleus IntCl that occurs in
Isbell’s theorem has the unexpected bonus that one can directly apply—without any
extra conceptual effort—Isbell’s theorem to obtain a non-trivial epistemological
result, namely, the determination of the structure of the set of dense belief operators
as a complete Heyting algebra. Such short-circuits between mathematics and
epistemology are rare. Usually greater philosophical efforts have to be invested to
obtain interesting epistemological results. Here, almost everything has been done: On
the mathematical side, Isbell’s theorem is available, on the epistemological side, the
topological interpretation of knowledge is a well-established theory.

Finally, a short remark on the relation between the strong (original) and the weak
version of Stalnaker’s logic KB of knowledge and belief. Formally, this relation can
be described as follows:

The original (full or strong) version of KB (requiring the validity of (NI))
characterizes the relation between knowledge and belief by the trivial Heyting
algebra ℤ2= <Int, IntClInt>corresponding to the two extremal belief operators Int
and IntClInt. In contrast, weak KB-logic conceptualizes the relation between
knowledge and belief by the elements of a much larger complete Heyting algebra
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NUC(OX)d with bottom element Int and top element IntClInt. The structure of this
algebra depends on the structure of the underlying topological space (X, OX).
Depending on (X, OX), the structure of NUC(OX)d may vary considerably: For
polar spaces (X, m, P), the Heyting algebra NUC(OX)d of nuclei has the simple
structure of an atomic Boolean algebra 2|P|. In contrast, for the Euclidean line (ℝ,
Oℝ), the structure of NUC(Oℝ)d is, as far as I know, only partially known up to now,
and easily shown not to be an atomic Boolean algebra.

From an epistemological point of view, the nucleus-based approach of this paper
may be characterized as a “knowledge first” approach, since the belief-defining
structure NUC(OX)d may be considered as “derived” from the underlying
topological structure (X, OX) defined by the interior operator Int.

Thus, an important task for a comprehensive topological logic of knowledge and
belief is the investigation of how the topological spaces (X, OX) that underlie the
topo-models of our epistemological logic determine the structure of the algebras
NUC(OX)d of dense nuclei N that define the belief operators N° related to the
knowledge operator Int as described by weak KB.

The results of this paper may be considered as some modest steps on the path
towards a realization of this task.
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