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 Abstract . Geometry was a main source of inspiration for Carnap’s conventionalism. 
Taking Poincaré as his witness Carnap asserted in his dissertation Der Raum (Carnap 
1922) that the metrical structure of space is conventional while the underlying topologi-
cal structure describes "objective" facts. With only minor modifications he stuck to this 
account throughout his life. The aim of this paper is to disprove Carnap's contention by 
invoking some classical theorems of differential topology. By this means his metrical 
conventionalism turns out to be indefensible for mathematical reasons. This implies that 
the relation between topology and geometry cannot be conceptualized as analogous to 
the relation between the meaning of a proposition and its expression in some language as 
logical empiricists used to say.   
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Carnap’s Metrical  Conventionalism and Differential  Topology 

 
 
1. Introduction . Geometry was a main source of inspiration for Carnap's general conven-
tionalist conception of epistemology and philosophy of science (cf. Coffa 1986). If space 
could be endowed with different metrical structures that could be considered as different 
ways of codifying the same topological facts, then it was at least prima facie plausible 
that a similar division between conventional and factual components  existed in other 
areas of knowledge. In this paper I'd like to show that Carnap’s metrical conventionalism 
was doomed to fail from the outset. For purely mathematical reasons the relation 
between the metrical and the topological structure of space cannot be described in the 
conventionalist manner he proposed. Different metrical structures cannot be conceived 
as "alternative languages" that describe the same facts in different ways as he and many 
other Logical empiricists used to say.   
Restricting one's attention to languages such as English, French, German, or Spanish it 
may be plausible to assume that any of them can be used to express the same facts of 
the world equally well. It is a matter of convention which of them is employed. This kind 
of linguistic conventionalism is fairly uncontroversial and, moreover, it is pretty trivial. If 
one wants to find a less trivial conventionalism one has to look elsewhere. Following Poin-
caré the Logical empiricists concentrated on conventionalism in geometry. One may 
distinguish several kinds of conventionalist doctrines dealing with geometry.1 Perhaps the 
simplest (non-trivial) one is that  concerned with the relation between the metrical and 
the topological structure of space. In any case, this was the one Carnap dealt with 
throughout his philosophical career from Der Raum (1922) until An Introduction to 
Philosophy of Science (1966).  
In Der Raum 2 Carnap distinguished between topological matters of fact and metrical 
matters of convention, and attempted to elucidate their relation by the following analogy: 
 

"The transformation of a statement of matter of fact from one metrical 
space-form into another -- e.g., from the Euclidean into one of the non-

                                                
1 For instance, one may consider the conventional distinction between the axioms of geometry and 
the theorems to be deduced from them (cf. Quine 1966, p. 116). This conventional aspects of 
geometry may be of considerable didactical interest but lacks philosophical importance.  
2 The page numbers of all quotations of Der Raum refer to the German original Carnap (1922). The 
translation is  that of Michael Friedman and Peter Heath. 
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Euclidean -- has been aptly compared to the translation of a proposition 
from one language into another. Now, just as the genuine sense of the 
proposition is not its presentation in one of these linguistic forms -- for 
then its presentation in the other languages would have to appear as 
derivative and less original -- but is merely that in the proposition which 
remains unaltered in translation; so too the sense of the statement of 
matter of fact is not one of its metrical presentations, but that which is 
common to all of them (the "invariants of topological transformations") -
- and that is precisely its presentation in merely topological form." (Der 
Raum, p. 65) 

 
In a slogan, then, Carnap's metrical conventionalism can be put as follows: The 
topological structure of space  is to its metrical structure as the meaning of a 
proposition is to its specific expression in a given language (cf. Howard 1996, p. 148). 
Or, with a slightly different emphasis: Two metrical geometries are merely two 
descriptions of the same topological facts (cf Carnap 1966, p. 150). 
In this paper I'd like to argue that this kind of metrical conventionalism is not tenable for 
mathematical reasons.  The relation between the metrical and the topological is of a 
different kind than that between the meaning of a proposition and its expression in a 
contingent language. Thus the linguistic analogy quoted above is seriously misleading. To 
prove this contention one has to invoke some facts from differential topology 
philosophers may not be too familiar with. Nevertheless, the introduction of these 
mathematical tools is necessary, since the arguments that have been brought forward 
against Carnap's metrical conventionalism by Grünbaum, Nerlich, and others are less than 
conclusive (cf. Grünbaum 1963, Nerlich 1994). In order to keep everything on the most 
elementary level possible, let us restrict as far as possible our attention to 2-dimensional 
manifolds. Analogous arguments can be formulated for higher-dimensional spaces: the 
untenability of metrical conventionalism is not a matter of dimension. 
The outline of this paper is as follows: in the next section 2 first we recall Carnap’s early 
metrical conventionalism  as presented in his dissertation Der Raum (1922). Then the 
theorems of Bonnet and Gauss-Bonnet are used to disprove Carnap’s conventionalist 
theses.  In section 3 some late modifications in Carnap’s metrical conventionalism are 
discussed. It is argued that they cannot save his account from the differential topological 
criticism presented in section 2. In section 4 the mathematical argument against metrical 
conventionalism is compared with some other arguments launched forward against this 
doctrine, to wit, Quine's anti-conventionalist holism, and Friedman's and Ryckman's 
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criticism based on the fact that metrical conventionalism seems to be incompatible with 
the general theory of relativity.   
 
 
2. Metrical Conventionalism in Der Raum .  For the following we assume the basic notions 
topology  and the theory of differentiable manifolds to be known, see for example (James 
1999, Hicks 1971). A Riemannian manifold M is a differentiable manifold endowed with a 
2-tensor field g satisfying certain familiar conditions (Hicks 1971, p.20/21). A 
Riemannian manifold is denoted by (M, g) or simply by M if g is understood.  If M is a Rie-
mannian manifold the Riemannian curvature of M is a real-valued function R that assigns 
to every 2-dimensional subspace P of the tangent  space Mm of M at a point m � M a real 

number R(P). If M is 2-dimensional the Riemannian curvature R boils down to a real-valued 
function K: M ------>R called the Gaussian curvature of M. A Riemannian manifold M is 
called a space form, if the Riemannian curvature R is constant, i.e., for all points m and all 
tangential planes P at m the Riemannian curvature R(P) is a constant K.  Depending on 
the properties of K one may distinguish between different types of Riemannian space 
forms: 
 
(2.1) Definition . Let (M, g) be a Riemannian manifold of constant curvature K.  
(i) M is a hyperbolic manifold iff K < 0. 
(ii) M is an elliptic manifold iff K >  0. 
(iii) M is a flat manifold iff K = 0. 
  
Although in Der Raum  Carnap did not explicitly define the basic concepts of differential 
geometry he was to use, it transpires from his presentation that he employed concepts 
such as "Gaussian curvature", "Riemannian curvature" or "space of constant curvature" 
virtually in the same way as today.  The only point Carnap was not aware of was the 
distinction between complete Riemannian manifolds and non-complete Riemannian 
manifolds.  Recall that a Riemannian manifold is a metrical space in a canonical way. 
Hence, one may define a Riemannian manifold to be complete if it is complete as a 
metrical space, i.e., all its Cauchy-sequences converge. The assumption of completeness 
is intuitively plausible, and, moreover, it seems to be indispensible from an empiricist 
point of view. On non-complete manifolds many bad things happen: some geodesics 
cannot be extended to infinity, and some points cannot be connected by a shortest 
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geodesic.3 Hence, for technical and conceptual reasons all Riemannian manifolds to be 
considered in this paper are assumed to be complete. Perhaps the simplest Riemannian 
manifold that is not complete, is the punctured plane, i.e., the space E2 - {b}, b � E2. As 
will become evident in the following not distinguishing between complete and non-
complete manifolds lead Carnap into serious trouble.   
Now let us come to the crucial problem of whether the metrical structure g of a 
Riemannian manifold (M,g) can be considered as a matter of conventional stipulation or 
not. Consider the Euclidean plane E2 endowed with its standard Riemannian metric g. Then 
(E2, g) is a flat Riemannian manifold. Poincaré (and Klein) showed that E2 can be endowed 
with a different metric g- that renders (E, g-) a hyperbolian manifold of constant negative 
curvature.  In Der Raum  Carnap thought that he could do better than Poincaré and put 
forward two amazing contentions: 
 
(C1)  The 2-dimensional sphere S2 can be endowed  with a flat  metric, i.e., a 

metric g with curvature K = 0.4 
 
(C2) The 3-dimensional Euclidean space E3 can be endowed with a metric g+ of 

constant   positive curvature K > 0.5 
 
While (C1) was considered by Carnap only as an intuitive example for the conventional 
character of the metrical structure of manifolds, (C2) played an essential role for the 
main philosophical result of Der Raum, to wit, the partial justification of the Kantian thesis 
that Euclidean space is constitutive for spatial experience. First note that (C2) combined 
with Poincaré’s  result yields that the Euclidean space E3 can be rendered a Riemannian 
space form in three essentially different ways, namely, according to (C2) one would have 
the Riemannian manifolds (E3, g), (E3, g+) and (E3, g-), which are flat, elliptic and 
hyperbolian space forms, respectively.  
According to Carnap, Kant erroneously considered the manifold (E3, g) as the unique 
spatial structure possessing experience-constituting significance. The main result of Der 
Raum  contended that the flat manifold (E3, g) should be replaced by the topological 

                                                
3 The most important mathematical properties that non-complete Riemannian manifolds do not 
possess, may be read of from the classical theorem of Hopf-Rinow, cf. Hicks (1971, p. 163). 
4 "In order to take an intuitive example, let it be determined that we shall consider the earth's 
surface S2 as a plane. …We could thus determine, for example, that S2 is to have zero curvature 
everywhere. We could then regard the earth's surface as infinitely large with the Euclidean 
geometry of the plane holding everywhere upon it." (Der Raum, p. 47). 
5 Cf. Der Raum, p. 48. 
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space E3, i.e., only the topological structure of E3 was to be considered as experience-
constituting while its metrical structure g was a matter of stipulation and could be chosen 
as flat, elliptic or hyperbolic according to one's preferences (ibidem, p. 59). Carnap took 
this kind of Kantian metrical conventionalism as a convincing evidence for conventio-
nalism  überhaupt.  He considered the Riemannian metric of a manifold  as a tool of the 
conventional arrangements  of the underlying topological facts.6  Regrettably, Carnap did 
not care to give rigorous proofs for (C1) and (C2). Rather, he was content  to point out 
that these claims could easily proved by following the lines of Poincaré's proof. This 
cavalier attitude was to have fatal consequences: As will be explained in some detail in a 
moment, (C1) and (C2) cannot be proved since they are false.   
As far as I am aware of,  (C2) has not attracted much attention although it may be 
considered as the upshot of early Carnap’s revisionary Kantian philosophy of geometry. 
On the other hand, from time to time philosophers have attacked  (C1), but without ma-
thematically convincing arguments, or so I want to argue. Particularly noteworthy is Grün-
baum's criticism in Carnap on the Foundation of Geometry (Grünbaum 1963), and also 
Nerlich's arguments in Nerlich (1994). Before we come to their criticisms, let us recall the 
notion of a (global) topological invariant. Let T and T* topological spaces. A global 
topological invariant is a property P a topological space T has if and only if every 
topological space T* homeomorphic to T has P. In other words, global topological 
invariants are properties stable under topological transformations (homeomorphisms) (cf. 
Der Raum, p. 39). Typical examples of global topological invariants in this sense are 
properties of topological spaces such as being compact, being connected, or being 
Hausdorff. On the other hand, it may be noted that for a metrical space M the 
completeness of its metric is not a topological invariant. 
In order to disprove (C1) Grünbaum offered the following reductio: If S2 could be 
endowed with a flat metric it would be homeomorphic to the plane E2. This is false, since 
S2 is "closed" and E2 "is "open" in both directions" (Grünbaum 1963, p. 669).7 Hence 
(C1) is false. This argument is flawed. As is well-known since the beginnings of the 20th 
century (cf. Wolf 1979, Theorem 2.5.5) the flat Euclidean plane (E, g) is not the only 
complete 2-dimensional connected Riemannian manifold with K = 0. There are other 2-
                                                
6 From this position it was only a small step to consider empirical theories as conventional arrange-
ments of observational facts of some kind. Indeed, cashing out the results of Der Raum in Über die 
Aufgabe der Physik und die Anwendung des Grundsatzes der Einfachstheit (Carnap 1923) he did 
exactly this. 
7 In modern terminology, S2 is compact, and E2 is not compact. Since compactness is a global 
topological invariant S2 and E2 cannot be homeomorphic. 
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dimensional flat Riemannian manifolds (M, g), for instane the flat toruses.  Hence, even if 
S2 is proved to be non-homeomorphic to E2 this does not prove that S2 cannot be 
endowed with a flat Riemannian metric.8  
In a different vein Nerlich argues that the "identification" of S2 and E2 via the well-known 
projection p from the "north-pole" n of  S2 onto E2 (conceived as the tangent plane at the 
south-pole of S2) leads to unacceptable "causal anomalies". For instance, moving a small 
area A over the north-pole of S2, on the plane E2 amounts to a violation the basic 
topological structure of that space, since the corresponding move on E2 turns the interior 
of the image of A outside (cf. Nerlich 1994, p. 184f). In other words, the topological 
structures of S2 and E2 cannot be translated continuously by p from  S2 to E2 and vice 
versa. This is true enough but leaves open the possibility that there exists another 
homeomorphism between S2 and E2 different from p.9 Of course, this is excluded by 
Grünbaum’s argument based on the global topological invariant of compactness. But, as 
was argued above, this is not sufficient to  refute (C1).  
For this task one needs a topological distinction that is a bit more sophisticated than that 
between compact and non-compact spaces.  Differential or algebraic topology come to 
the rescue and offer a general framework to handle such problems. The strategy is to 
define appropriate global topological invariants sensitive to the possible Riemannian 
structures defined on the spaces to be considered; if one is lucky these invariants can be 
calculated and turn out to be different. This may be sufficient to prove that the 
topological structure of with some stipulated metrical structure. Indeed, the classical 
theorem of Bonnet shows that the Riemannian curvature of a manifold is related to the 
topological invariant of compactness in a way that can be used to refute (C2): 
  
(2.2) Bonnet’s Theorem (Hicks 1971, p. 165). If M is a complete connected Riemannian 
manifold with Riemannian curvature K ≥ a > 0, then M is compact. 
 
(2.3) Corollary. The Euclidean space E3 cannot be endowed with a complete Riemannian 
metric with constant positive curvature K > 0. 

                                                
8 Apparently Carnap and Grünbaum believed that a flat metric on a Riemannian manifold implies that 
is homeomorphic to a Euclidean space. For Carnap, see footnote  4. 
9 It should be noted, however, that the projection pn: Sm - {n}---->Em may be used to endow Em with 
a non-complete  Riemannian metric with constant positive curvature K, to wit, the metric induced 
by the standard positive metric of the non-complete Riemannian manifold Sm - {n}. This fact may be 
of some mathematical interest but lacks empirical significance since non-complete metric are 
empirically quite unappealing.     
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Proof .  If E3 could be endowed with a complete Riemann metric with constant positive 
curvature K, it would be compact. But E3 is not compact. Hence, such a metric does not 
exist→ 
 
In order to disprove (C1) one needs another kind of topological invariants. These are de-
fined with the aid of so-called homology theories.  Informally and very roughly10 a 
homology theory may be characterized as a recipe which assigns to each topological 
space T an algebraic object h(T) in such a way that for homeomorphic spaces T and T* 
one has h(T) = h(T*). That is to say, the assignment of h(T) to T is a global topological 
invariant of T.   The one we need is the so-called Euler-Poincaré characteristic χ(T)of T 
which will play an important role in the following. The precise definition of χ(T) is of no 
interest here. Rather, the point is that for appropriate Riemannian manifolds M the Euler-
Poincaré characteristic χ(M) is determined already by the curvature K of Riemannian 
metric g:    
 
(2.4) Theorem of Gauss-Bonnet (Hicks 1971, p. 111). Let M be a compact connected 
oriented Riemannian 2-manifold with Riemannian curvature function K. Then  
 

∨M K = 2π χ(M) 
 
(2.5) Corollary . The sphere S2 cannot be endowed with a metric whose curvature K is 0. 
 
Proof . S2 is a compact connected oriented 2-dimensional manifold. Hence (2.4) applies. If 
there existed a Riemannian metric g with K = 0 this would imply 2π χ(S2) = 0. But it is 
well-known that the Euler-Poincare characteristic χ(S2) = 2 (cf. Greenberg 1976, p.99) 
Hence, such a metric cannot exist.→  
 
Summing up, Carnap’s claims (C1) and (C2) have been refuted.11 In general, the metrical 
structures of manifolds are not conventional with respect to the topological structures. 
                                                
10 More detailed accounts may be found in any textbook on algebraic topology. For an elementary 
account  see Greenberg (1976). 
11 At least for complete Riemannian manifolds. But it would be a desperate move to attempt to 
rescue Carnap's theses by allowing him to fall back on incomplete metrics. Even if under this inter-
pretation (C2) could be saved, (C1) remains false. Obviously Carnap considered both theses to be 
on an equal footing. Moreover, neither Carnap nor any other logical empiricist ever showed any sign 
of being conscious of the distinction between complete and non-complete metrics. Rather, they 
took completeness for granted.  
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Rather, there are non-trivial relations between the metrical structure and the underlying 
topological structure of M.12 Not every kind of metric g is compatible with every kind of 
topological structure. Given the topological structure of a manifold M one is no longer 
free to assume that M can be endowed with any metric g whatsoever. It may happen that 
appropriate topological invariants of M are sensitive with respect to  Riemannian 
structures to be defined on M. Hence a Riemannian metric cannot be considered as a 
conventional language in which the topological facts can be expressed. Some metrical 
languages turn out to be unsuitable for expressing some kinds of topological facts. The 
basic linguistic metapher of Logical empiricism’s conventionalism breaks down. Of course, 
sometimes it may occur that a topological manifold can be endowed with metrics of 
different types, as Poincare showed  for the plane E2. But this is, so to speak, an 
exception. In general, a Riemannian metric cannot be considered as a "conventional" 
language that describes the topological facts in one way or other. In other words, the 
relation between topology and geometry cannot be conceived as the relation between an 
underlying base of "topological facts" conventionally described by a "geometric 
"language.    
  
 
3. Limited Domains to the Rescue? Throughout his life, philosophy of geometry played an 
important role in the background of Carnap’s  epistemology and philosophy of science. 
Nevertheless he did not publish much on this topic. As far as I know, after Der Raum he 
explicitly dealt with geometry only in his Reply to Grünbaum (1963) and in An Introduc-
tion to Philosophy of Science  (1966). In chapter 15 of Introduction  we find him fiddling 
with problems of metrical conventionalism in virtually the same way as he did more than 
forty years ago in Der Raum.  With one notable exception: in 1966 he put greater 
emphasis on the local geometry of space.  
He cast his argumentation in Reichenbach’s well-known story of the two physicists P1 and 
P2 living on a 2-dimensional sphere S2 embedded in the standard way in Euclidean 3-
dimensional space.  P1 and P2 hold different theories about the nature of their world: 
according to P1 it is the surface of a sphere, but P2 insists that it is a plane "in which the 

bodies expand and contract in certain predictable ways as they move around." (ibidem, p. 

                                                
12 Often, these relations are expressed as relations between curvature and homological invariants of 
M. The theorem of Gauss-Bonnet is only the first and most elementary example. 
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147). Local constraints enter the stage in that Carnap allowed the physicists to do their 
investigations only in "a limited domain": 
 

"The sphere is gigantic in relation to their own size; they are the size of 
ants, and the sphere is as large as the earth. It is so large that they never 
travel all the way around it. In other words, their movements are confined 
to a limited domain on the surface of the sphere. The question is, can these 
creatures, by making internal measurements on their two-dimensional sur-
face, ever discover whether they are on a plane or a sphere or some other 
kind of surface?  (Carnap 1966, p. 146). 
 

Obviously, the purpose of restricting the ken of P1 and P2 to a "limited domain" was to 

avoid that the ant-physicists managed to walk around their world on a great circle 
thereby gathering evidence that they were living on a spherical world. Since this is 
excluded by fiat Carnap felt justified to assume his familiar reconciliatory attitude 
admonishing the rival physicists to end their dispute: "There is no need to quarrel. You 
are simply giving different descriptions of the same totality of facts." (ibidem, p. 148). 
Invoking Leibniz’s principle of identitas indiscernibilium he proposed to conceive the 
theories of P1 and P2  just as two equivalent descriptions of the same world.  
Against this restriction of the domain of possible experiences of P1 and P2 one may object 

that it is not compatible with an empiricist conception of science: For an empiricist it is 
meaningless to be engaged in investigating the global structure of the world under the 
presupposition that large areas of that world are principally inaccessible to empirical 
investigation. Rather, if it is assumed that from a God’s eye point of view the domain A 
accessible to P1 and to P2 differs from the world they are living in the question  

concerning the global structure of the world can be meaningfully asked only for "their 
world", i.e., the limited domain A. But then the problem Carnap wanted to eschew arises 
anew, no matter how  limited the domain A is: one has to assume that A is a Riemannian 
manifold, and P1 and to P2 are engaged in finding out what is the global structure of A. 

Hence the retreat to "limited domains" does not help the metrical conventionalist.13 
Summing up we may assert that Carnap’s metrical conventionalism is not tenable, neither 
in its global nor in its allegedly more local version for "limited domains". Even for ants it is 
a matter of fact and not a matter of convention what kind of world they are living in.  
                                                
13 It is known that every n-dimensional Riemannian manifold (M, g) can be embedded  isometrically 
in a high-dimensional Euclidean space EN endowed with the standard flat Riemannian metric 
(Theorem of Nash). Hence, one may always assume a Riemannian manifold to be a Riemannian 
submanifold of some flat Euclidean space. This is mathematically interesting but irrelevant for 
matters of conventionalism.  
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4. Conclusion  . Carnap took metrical conventionalism as the paradigm for conventiona-
lism in general. The allegedly conventional character of the metrical with respect to the 
topological was the driving force behind Carnap’s attempts to generalize conventionalism 
beyond the confines of geometry culminating in his "principle of tolerance" according to 
which even logic is to be considered as conventional.  
Carnap’s general conventional stance has been attacked  from various quarters. Let us 
mention just two: In Two Dogmas  (Quine 1951) Quine argued against the feasibility of a 
neat separation of conventional and factual components of empirical knowledge but 
without specific reference to geometry. In Quine (1966) he addressed the case of 
geometry pointing out that the existence of non-Euclidean geometries per se (i.e., as un-
interpreted systems) can hardly be considered as an argument in favour of a substantial 
conventionalism (ibidem, p. 116f). However, he did not explicitly deal with the allegedly 
conventional character of the metrical structure of space.   
Another argument against Carnap’s metrical conventionalism has been launched forward 
by Friedman, Ryckman and others. According to them this account is not in line with the 
general theory of relativity, see Ryckman (1996, p.200) and Friedman (1999, p.71ff). As  
was pointed out already by Einstein, the object of GTR war the space-time manifold (S, g) 
- without the metric g there is nothing left of it, in particular there is no residual 
topological space  S (cf. Einstein 1961, p. 155). The ontological interdependence of 
space-time and matter in GTR forecloses the possibility of asserting the existence of 
topological structures of space-time in the absence of metrical ones dependent upon 
surrounding mass-energy distributions. Thus, metrical conventionalism can be blamed not 
to be compatible with one of the most important theories of contemporary science.  
The criticism against metrical conventionalism brought forward in this paper is located on 
a philosophically more elementary level than the two objections just mentioned. My 
arguments show that metrical conventionalism is untenable for mathematical reasons. 
The relation between the topological and the metrical structure of space level is not 
conventional. Poincaré’s example of the compatibility of a hyperbolic and a Euclidean 
metric with the same underlying topology is accidental, so to speak. In general, the 
metrical structure g of a Riemannian manifold (M, g) cannot be conceived as a 
"stipulation" of a conventionally chosen  language in which the topological facts are 
expressed. A rather drastic evidence for this claim is the fact that there are topological 
manifolds that do not allow any Riemannian structure at all (Kervaire 1960). That is to 
say, the topological facts of these manifolds are such that they cannot be expressed  in 
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terms of a "metrical" language. This flatly refutes the idea that the metrical structure can 
be conceived as a kind of (neutral) language in which the topological meaning can be 
expressed. The topological  and the  metrical are entangled in a much more complicated 
manner.14   
Certainly it would be highly interesting to cash out this relation in philosophical terms. In 
order to carry out this endeavour successfully it is necessary to elucidate as precisely as 
possible why and where the logical empiricists’s conventionalist attempt  to understand 
this relation failed.   
  
 
References: 
  
Bonnet, O., 1855, Sur quelques propriétés des lignes géodésiques, C.R. Acad. Sci. Paris 
40, 1311- 1313. 
Carnap, R., 1922, Der Raum. Ein Beitrag zur Wissenschaftslehre, Kant-Studien, 
Ergänzungsheft Nr. 56, Berlin. Reprint 1978 by Topos Verlag, Vaduz/Liechtenstein. 
Carnap, R., 1963, Reply to Grünbaum, in P.S. Schilpp (ed.) The Philosophy of Rudolf 
Carnap, Open Court, La Salle and Chicago, 952 - 958.  
Coffa, A., 1986, From Geometry to Tolerance: Sources of Conventionalism in Nineteenth 
Century Geometry, in R. Colodny (ed.), From Quarks to Quasars,  Pittsburgh University 
Press, Pittsburgh, 3 - 70. 
Coffa, A., 1992, From Kant to Carnap. To the Vienna Station, Chicago, Chicago University 
Press. 
Einstein, A., 1961, Relativity: The Special and the General Theory. New York, Crown. 
Friedman, M., 1999, Reconsidering Logical Positivism, Cambridge. Cambridge University 
Press. 
Greenberg, M.J., 1976, Lectures on Algebraic Topology, Reading/Mass., Benjamin. 
Grünbaum, A., 1963, Carnap’s Views on the Foundations of Geometry, in P.S. Schilpp 
(ed.) The Philosophy of Rudolf Carnap, Open Court, La Salle and Chicago, 599 - 684.  

                                                
14 How complicated this relation is may be glimpsed from the evolution of differental topology and 
related disciplines in the 20th century.  Some of the most profound theorems of 20th century’s ma-
thematics, e.g., the Atiyah-Singer index theorem, may be conceived as attempts to elucidate the 
highly non-conventional and complex relation between the metrical (differential) and the topological 
structure of spaces.  
 



 13  

Hicks, J., 1971, Notes on Differential Geometry, van Nostrand Reinhold, London. 
Howard, D., 1996, Relativity, Eindeutigkeit, and Monomorphism: Rudolf Carnap and the 
Development of the Categoricity Concept in Formal Semantics, in Minnesota Studies in 
the Philosophy of Science XVI, 115 - 164. 
James, I., 1999, Topologies and Uniformities, London and Berlin, Springer. 
Kervaire, M., 1960, A Manifold which does not Admit any Differentiable Structure, Comm. 
Math. Helv. 34, 257 - 270. 
Kobayashi, S., Nomizu, K., 1969, Foundations of Differential Geometry, 2 volumes, 
Interscience Publishers, New York. 
Nerlich, G., 1994, The Shape of Space, Second edition, Cambridge, Cambridge University 
Press. 
Poincaré, H., 1946 (1902), Science and Hypothesis, Lancaster. 
Quine, W.V.O., 1966, Carnap and  Logical Truth, in The Ways of Paradox, 100 - 125, New 
York, Random House. 
Ryckman, T., 1996, Einstein Agonists, in A. Richardson, R. Giere (eds.) Origins of Logical 
Empiricism, Minnesota Studies in Philosophy of Science XVI, 165 - 209.  
Stump,  D., 1991, Poincaré's Thesis of the Translatability of Euclidean and Non-Euclidean 
Geometry, NOUS 25, 639 - 657. 
Wolf, J.A., 1967, Spaces of Constant Curvature, New York, Academic Press. 
  


