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Abstract 17 
 18 

Behavioral, neuropsychological, and neuroimaging evidence has suggested that 19 
categories can often be learned via either an explicit rule-based mechanism critically dependent 20 
on medial temporal and prefrontal brain regions, or via an implicit information-integration 21 
mechanism relying on the basal ganglia. In this study, participants viewed sine-wave gratings 22 
(i.e., Gabor patches) that varied on two dimensions and learned to categorize them via trial-by-23 
trial feedback.  Two different stimulus distributions were used; one was intended to encourage 24 
an explicit rule-based process and the other an implicit information-integration process. We 25 
monitored brain activity with scalp electroencephalography (EEG) while each participant (1) 26 
passively observed stimuli represented of both distributions, (2) categorized stimuli from one 27 
distribution, and, one week later, (3) categorized stimuli from the other distribution. 28 
Categorization accuracy was similar for the two distributions. Subtractions of Event-Related 29 
Potentials (ERPs) for correct and incorrect trials were used to identify neural differences in 30 
rule-based and information-integration categorization processes.  We identified an occipital 31 
brain potential that was differentially modulated by categorization condition accuracy at an 32 
early latency (150 - 250 ms), likely reflecting the degree of holistic processing.  A stimulus-33 
locked late positive complex associated with explicit memory updating was modulated by 34 
accuracy in the rule-based, but not the information-integration task. Likewise, a feedback-35 
locked P300 ERP associated with expectancy was correlated with performance only in the rule-36 
based, but not the information-integration condition. These results provide additional evidence 37 
for distinct brain mechanisms supporting rule-based versus implicit information-integration 38 
category learning and use. 39 

 40 
1. Introductions 41 

 42 
Categories, as conceptualized based on perceived regularities, allow us to make sense of, 43 

describe, and order our worlds (Rips, Smith, & Medin, 2012).  Categories come in many 44 
different forms--from categories based on a single feature (e.g., objects that are red) to much 45 
more complicated relational concepts (e.g., chases or conduit).  Many have argued that human 46 
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categorization is not a unitary process, but rather can engage different systems depending on the 47 
category structure or the conditions during category learning (e.g., (Ashby & Maddox, 2011; 48 
Nomura & Reber, 2008; Seger & Miller, 2010; Smith & Grossman, 2008; Yamauchi & 49 
Markman, 1998).  Behavioral, neuropsychological, and neuroimaging evidence suggests that 50 
these various systems can make differential demands on neural networks of the brain (e.g., 51 
Ashby & Maddox, 2011; Keri, 2003; Nomura & Reber, 2008; Seger & Miller, 2010; Smith & 52 
Grossman, 2008).  However, describing the algorithm and neural implementation of category-53 
learning systems, as well as the factors that determine when each system will be engaged and 54 
how these systems interact, is still a very active endeavor. 55 

 56 
A prominent way to characterize category-learning systems postulates two kinds of 57 

categorization processes, rule-based (RB) and information-integration (II), categorization 58 
strategies that engage different neurocognitive networks (see Ashby & Maddox, 2011).  Within 59 
this framework, Maddox, Ashby, and Bohil (2003) have developed a feedback category-learning 60 
paradigm with perceptual properties of sine-wave gratings (Gabor patches) that can be varied 61 
parametrically to create category distributions that encourage either RB or II approaches to 62 
category learning (see Figure 1). 63 

_____________________________ 64 

Insert Figure 1 about here 65 
_____________________________ 66 

 67 
RB tasks are those where the categories can be learned via a reasoning process such as 68 

hypothesis testing (Ashby, Alfonso-Reese, Turken, & Waldron, 1998; Ashby, Ell, Valentin, & 69 
Casale, 2005).  By this account, a participant develops a candidate rule (e.g., category A stimuli 70 
have gray bars that are thicker than x; category B stimuli have gray bars thinner than x) that is 71 
tested based on the feedback on each trial.  After learning, participants can explicitly describe the 72 
rule they use to categorize the stimuli.  This RB mechanism would require maintaining and 73 
updating the rule, with the boundary condition represented both in working memory, dependent 74 
on prefrontal cortex (PFC), and in long-term memory, dependent on medial temporal lobe (MTL; 75 
(Nomura & Reber, 2012). 76 

 77 
In contrast, II learning appears to occur implicitly, such that the rule for the category 78 

structure is difficult to learn consciously or to describe verbally.  II tasks appear to encourage 79 
participants to consider the stimuli holistically, integrating perceptual information from different 80 
stimulus features early during processing.  II learning may depend on implicit learning supported 81 
by computations involving the caudate nucleus and visual processing areas in occipital cortex 82 
(Nomura & Reber, 2012).  Dopaminergic reward circuits of the caudate may be responsible for 83 
associating specific categories with neuronal patterns in occipital cortex that code for relevant 84 
visual features (Ashby, Alfonso-Reese, Turken, & Waldron, 1998). 85 

 86 
Numerous behavioral experiments comparing RB and II category learning have shown 87 

that they are employed using dissociable strategies.  For example, working memory dual-task 88 
procedures interfered with RB much more than with II learning (e.g., Zeithamova & Maddox, 89 
2006; Zeithamova & Maddox, 2007).  Delaying feedback beyond an initial period did not 90 
interfere with RB learning but disrupted II learning (e.g., Maddox, Ashby, & Bohil, 2003).  91 
Changing the response key associated with a particular category also interfered with II but not 92 
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RB categorization, suggesting that II learning may require stimulus-response association learning 93 
with relatively immediate feedback, characteristics associated with implicit procedural learning 94 
(Ashby, Ell, & Waldron, 2003). 95 

 96 
Mechanistically RB processing is thought to depend on hypothesis testing. For instance a 97 

participant trying to categorize line segments into two groups might hypothesize that length is 98 
what matters, with long segments being one category and short segments being the other.  On 99 
each trial they test their theory with a response to each line segment. While they may find 100 
support for their theory quickly they gradually build a representation of the category threshold 101 
that allows them to improve their performance. After each test of their hypothesis they then need 102 
to update their memory with whether the test worked and with a candidate threshold value. This 103 
evaluation requires selective attention and working memory, likely implemented in PFC, as well 104 
as the ability to form enduring mental representations of the rule and boundary condition 105 
dependent on the hippocampus and MTL.  In contrast, II learning is believed to require 106 
integration of multiple stimulus attributes at a predecisional stage (Ashby et al., 1998). Unlike in 107 
RB learning, learners frequently cannot articulate what they have learned, but can show their 108 
learning through successful performance, a hallmark of nondeclarative memory (Squire, 2009). 109 
Thus, II learning may be likened to gaining category expertise with complex objects such as 110 
faces (Bentin, Allison, Puce, Perez, & McCarthy, 1996) or Greebles (Rossion, Gauthier, 111 
Goffaux, Tarr, & Crommelinck, 2002).   112 

 113 
Working from this distinction, functional magnetic resonance imaging (fMRI) methods  114 

have been useful to spatially dissociate categorization when participants learn either an RB or II 115 
category distribution.  In a study by Nomura and colleagues (2007b), participants who learned 116 
the RB distribution showed greater activation in the MTL on correct than incorrect trials, while 117 
participants who learned the II distribution showed greater activation in the body of the caudate 118 
on correct than incorrect trials.  Another category learning study using a different paradigm 119 
likewise found activity in the body and tail of the caudate and putamen to be active when 120 
learning stimulus-category associations (Cincotta & Seger, 2007). Nomura and Reber (2012) 121 
subsequently reanalyzed several sets of RB/II paradigm fMRI data (Nomura, Maddox, & Reber, 122 
2007a; Nomura et al., 2007) using PINNACLE (Parallel Interactive Neural Networks Active in 123 
Category Learning), a computational model that includes multiple competing categorization 124 
systems.  Using a participant’s behavioral decision data, PINNACLE employs principals of 125 
Decision-Bound Modeling Theory (Ashby & Maddox, 1993) to estimate which categorization 126 
system is likely engaged on a given trial.  Thus, it can be used to sort trials of neuroimaging data 127 
to obtain estimates of the neural correlates for individual category-learning systems.  This 128 
approach identified areas in PFC important for correct decisions during RB category learning, a 129 
finding consistent with another previous fMRI study of RB category learning (Filoteo et al., 130 
2005).  Posterior regions of occipital cortex were associated with correct decisions during II 131 
category learning, a finding consistent with previous fMRI studies of implicit category learning 132 
(Reber, Stark, & Squire, 1998a; Reber, Stark, & Squire, 1998b; Waldschmidt & Ashby 2011).  In 133 
addition, this approach found evidence that regions of dorsolateral PFC were involved in the 134 
process of resolving competition between the two systems based on the model-identified 135 
moments of high levels of inter-system competition.  136 

 137 
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Further progress in understanding the neurocognitive mechanisms of category learning 138 
will depend on the ability to measure relevant processing.  In particular, measures with high 139 
temporal resolution are needed to comprehensively distinguish RB and II mechanisms.  In the 140 
present study we computed event-related potentials (ERPs) from scalp electroencephalographic 141 
(EEG) recordings to examine neural correlates of category learning during both categorization 142 
and feedback stages.  Participants learned RB and II category distributions during separate 143 
testing sessions and their responses were analyzed using Decision-Bound Modeling Theory 144 
(Ashby & Maddox, 1993) to identify participants likely to be using RB and II category learning 145 
processes with corresponding distributions.  Based on prior behavioral and neuroimaging results, 146 
we anticipated that RB and II category learning mechanisms would produce different ERPs, 147 
when comparing successful (correct) and unsuccessful (incorrect) trials.  Specifically, we 148 
anticipated differences in an early occipital N1 ERP previously associated with visual category 149 
learning (Curran, Tanaka, & Weiskopf, 2002), and consistent with occipital activation found for 150 
II category learning in our previous work (Nomura & Reber, 2012).  Secondly, given the 151 
previously demonstrated reliance of RB category learning on MTL (Nomura et al., 2007b; Seger 152 
& Cincotta, 2006; Seger, Dennison, Lopez-Paniagua, Peterson, & Roark, 2011) we predicted that 153 
a Late Positive Complex (LPC) ERP associated with explicit memory (Voss & Paller, 2008) 154 
would be modulated by accuracy in the RB condition but not the II condition.  Lastly, to the 155 
extent that RB learning is more explicit than II learning (Huang-Pollock, Maddox, & Karalunas, 156 
2011; Seger, Dennison, Lopez-Paniagua, Peterson, & Roark, 2011), we anticipated that the P300 157 
to positive feedback would index participant’s confidence in their learning (Hajcak, Holroyd, 158 
Moser, & Simons, 2005).   159 
 160 
2. Materials and Methods 161 
 162 
2.1  Task Description 163 

 164 
We used a visual category-learning paradigm (Maddox, Ashby, & Bohil, 2003) in which 165 

subjects learned to categorize visual stimuli into two categories via feedback given at the 166 
conclusion of each trial.  Stimuli were circular sine-wave gratings that varied in spatial frequency 167 
(thickness of lines) and spatial orientation (tilt of lines).  For the RB distribution, the stimuli were 168 
divided into two categories based on a vertical decision boundary such that category membership 169 
depended only on the spatial frequency of the sine-wave grating (Figure 1a).  For the II group, 170 
the categories were defined by a diagonal decision boundary that required integration of 171 
frequency and orientation information (Figure 1b).  Trial timing was similar to that used by 172 
(Nomura et al., 2007b) in their fMRI study (Figure 2). 173 

_____________________________ 174 

Insert Figure 2 about here 175 
_____________________________ 176 

 177 
2.2  Participants  178 

 179 
Twenty-eight Northwestern University students served as participants in this experiment.  180 

Participants received US$15 per hour for two 2- to 3-hour testing sessions.  Participants 181 
categorized the RB and II category distributions in separate sessions 1 week apart. Distribution 182 
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order was counterbalanced across participants. Participants gave informed consent according to 183 
the oversight of the Northwestern University Institutional Review Board.   184 
 185 
2.3  Procedure 186 

 187 
Prelearning.  In order to rule out differences in ERPs due to differences in the physical 188 

stimuli in the RB and II distributions participants passively viewed 160 sine-wave gratings from 189 
both distributions over the course of two blocks prior to attempting to learn categories.  Gratings 190 
were representative of the range of spatial frequency and orientation used during category 191 
learning.  Prelearning trial timing was identical to that during category learning, but participants 192 
did not make a response during prelearning and did not receive any category information.   193 

 194 
Category Learning.  Participants categorized 320 sine-wave gratings presented in four 195 

blocks during each category-learning session.  One session involved the RB distribution and the 196 
other session involved the II distribution.  Distribution order was counterbalanced across 197 
participants. Prior to testing, subjects were familiarized with the procedures, including trial 198 
timing, button pressing, and feedback.  Participants did not receive instructions about the nature 199 
of the categories; rather, they were asked to discover the categories with the aid of auditory 200 
feedback.  Participants received auditory feedback 2.5 s after stimulus onset.  For a correct 201 
decision the feedback was a bell sound.  For incorrect decisions the feedback was a short buzzer, 202 
while participants heard a long buzzer when no response was made in the allotted 2 s.  Responses 203 
after 2 s were not considered in the analysis.  Subjects were debriefed about their categorization 204 
strategies after the second testing session. 205 

 206 
EEG.  Continuous EEG recordings were made during prelearning and category-learning 207 

blocks from 59 evenly distributed scalp sites using tin electrodes embedded in an elastic cap 208 
(Figure 3).  Four additional electrodes were used for monitoring horizontal and vertical eye 209 
movements, and two electrodes were placed over the left and right mastoid bones.  Participants 210 
were instructed to attempt to refrain from blinking or moving their eye position from fixation 211 
during the categorization portion of each trial.  Electrode impedance was ≤ 5 k.  EEG signals 212 
were amplified with a band pass of 0.05–200 Hz and sampled at a rate of 1000 Hz.  The online 213 
reference (left mastoid) was changed to average mastoids offline and a 59- to 60-Hz band-stop 214 
filter was applied.  EMSE Software Suite (Source Signal Imaging, San Diego, CA) was used to 215 
process raw EEG files and to compute ERPs.  EOG artifacts were corrected by using a blink-216 
correction algorithm based on independent component analysis.  Averaging epochs for stimulus 217 
and feedback lasted 1200 ms, including a 200 ms pre-stimulus baseline.  Trials showing a greater 218 
than 100 µV deflection during the epoch were discarded.  Fewer than 15% of trials were 219 
excluded for any given condition for any given participant. 220 

_____________________________ 221 

Insert Figure 3 about here 222 
_____________________________ 223 

 224 
Decision-Bound Theory Modeling.  Although participants received stimuli drawn from 225 

either the RB distribution or from the II distribution within each session, some participants 226 
would be expected to fail to adopt the optimal categorization strategy.  As in prior work (Ashby 227 
& Maddox, 1993; Nomura & Reber, 2012), we used Decision-Bound Theory (DBT) models to 228 
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classify behavioral patterns as consistent with either an RB strategy or II strategy.  For each 229 
participant, the pattern of categorization responses across the stimulus space was compared to an 230 
RB-F model based on stimulus spatial frequency (thinness of the black/white strips reflected as a 231 
vertical boundary in stimulus space), an RB-O model based on spatial orientation (angle of the 232 
black/white strips reflected as a horizontal boundary in stimulus space) and an II model based on 233 
a diagonal partition of the stimulus space.  The specific placement of the category boundary was 234 
optimized to the participant’s behavior and the quality of the fit was contrasted across models.  235 
By this method, performance in each session can be identified as consistent with either an RB or 236 
II approach that either is relatively optimal for the administered stimulus set or reflects a 237 
suboptimal strategy.  We fit each block of 80 trials using the DBT model. Participants whose 238 
performance was consistent with task demands (i.e., at least three of four blocks showed model-239 
to-distribution agreement) were considered the Model-Conforming group and the remaining 240 
participants were designated as the Model-Nonconforming group.  Using this technique to 241 
identify participants most clearly expressing the appropriate strategy strengthens the comparison 242 
of ERP differences between RB and II category learning. 243 

 244 
3. Results	
  245 

	
  246 
All 28 participants exhibited an RB distribution response best fit by an RB-F DBT model. 247 

For II, only 15 participants comprised the Model-Conforming Group because they exhibited an II 248 
distribution response profile best fit by an II DBT model.  In contrast, 13 participants comprised 249 
the Model-Nonconforming Group because they exhibited an II distribution response profile best 250 
fit by an RB-F or RB-O DBT model (see Figure 4 for distribution profiles from representative 251 
participants).  Likewise, when the fits for these two groups were compared directly, the first 252 
group of participants exhibited better II model fits than did the second [t (26) = 2.7, p = .01].  253 
However, these two groups did not differ in the quality of their RB model fits with the RD 254 
distribution [t (26) =  .02, ns].  DBT model fitting thus allowed data from participants who were 255 
likely using a unidimensional RB strategy with the II category distributions to be excluded from 256 
subsequent analyses.   257 

_____________________________ 258 

Insert Figure 4 about here 259 
_____________________________ 260 

3.1  Behavioral Performance 261 
 262 
Of the 15 participants whose DBT fits were consistent with II strategy use with II 263 

distributions, two did not have an adequate number of incorrect trials (< 30) to allow for the 264 
correct/incorrect ERP analysis, so their results were excluded from further analysis.  Data from 265 
one additional participant were eliminated because of poor EEG quality. 266 

 267 
To evaluate potential differences in category-learning accuracy for the RB and II 268 

distributions, we ran a 2 (RB vs.  II) by 4 (block) repeated-measures ANOVA.  Accuracy for RB 269 
and II distributions (Figure 5a) did not reliably differ [F (1,11) = 1.6, p = .23, ηp

2 = .13].  There 270 
was a main effect of block [F (3,33) = 24, p < .001, ηp

2 = .69], and category learning linearly 271 
increased over blocks [F (1,11) = 50, p < .001, ηp

2 = .81].  However, RB and II distributions did 272 
not differ with respect to this pattern [F (1,11) = .4, p = .5, ηp

2 = .04].  Thus, observed differences 273 
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in correct/incorrect ERP subtractions (described below) cannot easily be attributed to differences 274 
in accuracy between RB and II learning.   275 

_____________________________ 276 
Insert Figure 5 about here 277 

_____________________________ 278 
 279 
Next we looked for potential differences in category-learning RT for the RB and II 280 

distributions by using a 2 (RB vs.  II) by 2 (Correct vs.  Incorrect) by 4 (block) repeated 281 
measures ANOVA (see Figure 5b).  Participants were faster on correct than incorrect trials [F 282 
(1,11) = 27, p < .001, ηp

2 = .71].  There was also a trend towards faster responses on RB trials 283 
compared to II trials [F (1,11) = 4.0, p = .07, ηp

2 = .27].  Likewise, there was a trend suggesting 284 
an interaction between accuracy and distribution type [F (1,11) = 2.6, p = .14, ηp

2 = .19].  285 
Participants were faster on correct trials than on incorrect trials for both RB distributions [F 286 
(1,11) = 20, p < .001, ηp

2 = .65] and II distributions [F (1,11) = 14, p = .003, ηp
2 = .56].  287 

However, RB and II trials only differed for correct trials [F (1,11) = 6.6, p = .026, ηp
2 = .38] not 288 

incorrect trials [F (1,11) = 1.1, p = .31, ηp
2 = .09].   289 

 290 
3.2  EEG Results 291 

 292 
Categorization ERPs Based on our predictions, stimulus-locked analyses were focused 293 

on an early occipital N1 ERP (Figure 6) and a later parietal LPC ERP (Figure 7) in the model 294 
conforming participants. 295 

 296 
To measure occipital N1 ERPs, we calculated mean amplitude from 150-250 ms for a 297 

cluster of inferior occipital electrodes (Figure 6).  The same electrodes and time range were used 298 
for every participant.  This time range included the occipital N1 peak for all participants.  A 2 299 
(RB vs.  II) by 2 (Correct vs.  Incorrect) ANOVA performed on mean amplitudes yielded a 300 
reliable interaction between distribution type and accuracy [F(1,11) = 6.1, p = .03, ηp

2 = .36, but 301 
no main effect of distribution type [F(1,11) = .05, p = .8, ηp

2 = .004] or accuracy [F(1,11) = .04, 302 
p = .9, ηp

2 = .003].  Amplitudes at this latency for correct and incorrect trials were reliably 303 
different for the II distribution [F(1,11) = 6.3, p = .03, ηp

2 = .37] and showed a trend in the 304 
opposite direction for the RB distribution [F(1,11) = 2.6, p = .14, ηp

2 = .19]. 305 
_____________________________ 306 

Insert Figure 6 about here 307 
____________________________ 308 

Also consistent with predictions, we found a stimulus-locked LPC ERP largest over 309 
parietal electrodes (Figure 7).  To quantify LPC, we measured mean amplitude from 400-700 ms 310 
in a cluster of parietal electrodes (Figure 7a).  A 2 (RB vs.  II) by 2 (Correct vs.  Incorrect) 311 
ANOVA performed on mean amplitudes yielded a reliable interaction between distribution type 312 
and accuracy [F(1,11) = 9.6, p = .01, ηp

2 = .47].  The LPC was reliably larger for correct than 313 
incorrect trials in the RB condition [F(1,11) = 20, p = .001, ηp

2 = .65], but not in the II condition 314 
[F(1,11) = 3.2, p = .1, ηp

2 = .23].  To uncover relationships between this ERP and performance, 315 
we used a smaller parietal region and temporal window (500 – 600 ms) targeted for maximal 316 
mean amplitude differences as a function of accuracy.  Magnitude of the Correct/Incorrect ERP 317 
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differences were reliably correlated with RB performance [Figure 6c; r (11) = .68, p = .01] but 318 
not with II performance [Figure 6e; r (11) = .05, p = .9]. 319 

_____________________________ 320 

Insert Figure 7 about here 321 
_____________________________ 322 

 323 
Feedback ERPs In order to assess hypotheses about the extent to which categorization 324 

was based on explicit knowledge, we examined ERPs recorded during feedback (Figure 8).  325 
Participants interpret feedback signals as a function of their explicit expectations. P300 responses 326 
have been associated with confidence in learning with feedback (Hajcak, Holroyd, Moser, & 327 
Simons, 2005).  Accordingly, we expected P300 potentials to preferentially index learning in the 328 
RB condition, given that implicit learning mechanisms are thought to dominate in the II 329 
condition.  Both Correct and Incorrect trials showed large positive potentials at approximately 330 
300 ms with central-focused topographies (Figure 7b and 7d).  A 2 (RB vs.  II) by 2 (Correct vs.  331 
Incorrect) ANOVA was performed on post-feedback mean amplitudes at 200-400 ms from a 332 
cluster of seven central electrodes (Figure 8a).  The analysis yielded a main effect of accuracy [F 333 
(1,11) = 43, p < .001, ηp

2 = .78], but no effect of distribution type [F (1,11) = 0, p = .99, ηp
2 = 0],  334 

and no interaction between distribution type and accuracy [F (1,11) = .25, p = .6, ηp
2 = .02]. 335 

 336 
Because P300 is frequently associated with expectancy violations (Polich, 2007) and is 337 

larger when participants receive unexpected feedback (Hajcak, Holroyd, Moser, & Simons, 338 
2005), we hypothesized that participants who were better at RB categorization would show lower 339 
P300 response to correct feedback than would participants who had less-developed rules.  To test 340 
this idea, we correlated categorization accuracy with P300 amplitude to correct feedback signals.  341 
Confirming our hypothesis, we found that accuracy was inversely correlated with P300 342 
amplitude for the RB distribution [Figure 8c; r (11) = -.71, p = .01], but not for the II distribution 343 
[Figure 8f; r (11) = .07, p = .83]. 344 

 345 
Because the stimulus-locked LPC during categorization and the feedback-locked P300 346 

both appear to index effective learning in the RB condition, but not in the II condition, we looked 347 
to see whether they were related. The LPC correct/incorrect subtraction is negatively correlated 348 
with the feedback P300 correct/incorrect subtraction in the RB condition (r =  -0.59, p = 0.03), 349 
but not in the II condition (r = -0.08, p = .82).  The negative correlation results because the 350 
correct LPC is more positive than the incorrect LPC. When the LPC correct/incorrect subtraction 351 
increases with accuracy, so does the P300 subtraction. 352 

_____________________________ 353 

Insert Figure 8 about here 354 
_____________________________ 355 

 356 
Prelearning ERPs  Our critical comparisons during category learning were between 357 

correct and incorrect trials within either RB or II distributions, not across the two distributions.  358 
Yet, we took steps to ensure that differences were not due to the nature of the stimuli in the RB 359 
versus II distributions.  Accordingly, we analyzed ERPs from prelearning at the same latencies 360 
and scalp locations used in the categorization analyses for N1 and LPC.  Neither N1 [t (10)  = 1.0 361 
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, p = .34.] nor LPC [t (10)  = .11 , p = .91] differed between the two distributions, confirming that 362 
effects can be ascribing to learning rather than physical stimulus differences. 363 

 364 
4. Discussion 365 
 366 

ERP measures differentiated RB and II category-learning processes from each other.  367 
During categorization, differences in neural activity were observed in an early, occipital N1 ERP 368 
component in the form of differential correct/incorrect activity patterns for RB and II conditions 369 
(Figure 6).  N1 amplitudes in the II condition were more negative for correct than for incorrect 370 
trials, while a trend toward the opposite pattern was observed in the RB condition.  At a later 371 
latency, LPC amplitudes during RB learning were larger for correct than for incorrect trials, 372 
whereas LPC amplitudes during II learning were not modulated by success (Figure 7).  In 373 
addition, a central P300 ERP to positive feedback was correlated with accuracy for the RB but 374 
not the II condition (Figure 8).  Together, these differences in brain waves associated with 375 
category learning expand on related results from neuropsychological and fMRI studies. In 376 
addition, the current findings add neurocognitive information about the temporal order of 377 
processing, as discussed further below.  Moreover, the lack of ERP differences for stimuli prior 378 
to learning makes it possible to rule out trivial physical stimulus factors. Accordingly, we 379 
attribute these ERP differences to the distinctive neurocognitive computations engaged during 380 
category learning and use. 381 

 382 
RB processing is thought to depend on hypothesis testing, whereby a candidate rule is 383 

evaluated by comparing the representation of the stimulus in the current trial to that of a 384 
representation of a category threshold.  This evaluation requires selective attention and working 385 
memory, likely implemented in PFC, as well as the ability to form enduring mental 386 
representations of the rule and the threshold, dependent on the hippocampus and MTL.  In 387 
contrast, II learning may be likened to gaining category expertise with complex objects such as 388 
faces (Bentin, Allison, Puce, Perez, & McCarthy, 1996) or Greebles (Rossion, Gauthier, 389 
Goffaux, Tarr, & Crommelinck, 2002).   390 

 391 
ERP results were consistent with both of these descriptions.  The more positive potential 392 

for correct compared to incorrect RB trials late during each trial (Figure 7) is similar to positive 393 
potentials that have been found in many different tasks and variously referred to as the P3b, 394 
P600, or late-positive complex (LPC).  These positive potentials with broad parietal topographies 395 
have been associated with working memory (Kok, 2001; Polich, 2007) and episodic memory 396 
retrieval (Fernandez et al., 1999; Guillem, Rougier, & Claverie, 1999; Halgren et al., 1994; 397 
Paller, Zola-Morgan, Squire, & Hillyard, 1988; Paller, Voss, & Westerberg, 2009).  The LPC 398 
found here may reflect retrieval/updating of the categorization rule and some mental 399 
representation of the boundary condition, two functions consistent with the function of 400 
anatomical regions previously associated with the RB category-learning system (Filoteo et al., 401 
2005; Nomura et al., 2007b; Nomura & Reber, 2012; Seger & Cincotta, 2006; Seger, Dennison, 402 
Lopez-Paniagua, Peterson, & Roark, 2011).  Likewise, we only found these LPC differences 403 
when participants’ categorization response patterns suggested they are using a simple rule based 404 
on a single feature.  Similarly, the magnitude of the Correct/Incorrect difference was positively 405 
correlated with individual participant categorization success.   406 

 407 
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LPC potentials were also apparent in the II condition, but there were no reliable 408 
differences between Correct and Incorrect trials, and the magnitude of the Correct/Incorrect 409 
difference was unrelated to individual participant categorization success.  One possible 410 
explanation for the elevation of the LPC here is that the neural machinery responsible for the 411 
LPC is engaged during the II condition, just as it is during the RB condition to update 412 
information about the hypothesized rule and boundary condition.  This interpretation of the LPC 413 
is consistent with context-updating theory whereby information from an incoming stimulus 414 
results in revision of a maintained mental representation (Donchin, 1981).  Given the gradual 415 
nature of feedback learning it is likely that participants are updating the mental representation of 416 
the boundary condition throughout successful RB learning.  In contrast, when participants are 417 
relatively confident of the rule they are using, but uncertain about whether a given stimulus is an 418 
A or B they may not update (lower LPC).  In the II condition they are constantly trying to update 419 
their rule and/or boundary condition, but this does not result in successful learning.  In this 420 
interpretation the neural systems responsible for the LPC is engaged during II learning, but it’s 421 
output is likely inhibited (Ashby & Maddox, 2011) and thus not responsible for the final 422 
behavioral decisions.   Nomura and Reber (2012) proposed that RB and II systems are both 423 
active and interact competitively during categorization with the DLPFC resolving this 424 
competition based on appraising confidence in both systems.  Our LPC ERP is consistent with 425 
this proposal that the explicit category-learning system is engaged in both the RB and II tasks, 426 
but it is only effective in guiding optimal categorization performance in the RB condition. 427 

 428 
We also observed an early occipital Correct/Incorrect difference wave (Figure 6).  A prior 429 

visual category learning study also revealed differential effects in the N1 ERP (Curran, Tanaka, 430 
& Weiskopf, 2002).  The authors speculated that this ERP could be related to the N170 ERP 431 
frequently seen in studies of face processing (e.g.,  Bentin, Allison, Puce, Perez, & McCarthy, 432 
1996) and expert categorization (e.g., Rossion, Gauthier, Goffaux, Tarr, & Crommelinck, 2002; 433 
Tanaka & Curran, 2001).  This type of processing frequently engages extrastriate visual cortex 434 
(e.g., Gauthier, Tarr, Anderson, Skudlarski, & Gore, 1999; Kanwisher, McDermott, & Chun, 435 
1997), an area found to be more active in the II condition of this task (Nomura & Reber, 2012) 436 
and previously implicated in several other category-learning tasks (Reber, Stark, & Squire, 437 
1998a; Reber, Stark, & Squire, 1998b).   The early time-course of our effect suggests a shaping 438 
of visual perception that occurs as part of the category learning process in tasks like II 439 
categorization. 440 

 441 
One hypothesis is that the observed N1 may reflect the degree to which a participant uses 442 

holistic processing to process the sine-wave gratings.   Ashby and Maddox (2011) have argued 443 
that II tasks encourage participants to integrate perceptual information from different stimulus 444 
features at a predecisional level.  In contrast, RB tasks encourage participants to consider single 445 
features and judge them against a rule1.  Thus, holistic processing is advantageous with the II 446 
distribution, while it may be detrimental with the RB distribution where attention to spatial 447 
orientation could distract the participant from focusing on the spatial frequency information 448 
necessary to appraise the rule used to define the RB categories in this study.  The presence of the 449 
N1 effect in both RB and II conditions is also consistent with the idea that both processes are 450 

                                                
1 Or to use a conjunctive rule whereby information about more than one feature is evaluated 
against a more complex rule at a later stage of processing. 
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regularly active during categorization, but that the results of the earlier II process may be 451 
inhibited to allow the RB to respond (Ashby & Maddox, 2011). 452 

 453 
The electrophysiological methods used in this study also allowed us to separate neural 454 

correlates of categorization accuracy from neural signals accompanying feedback.  We observed 455 
a differential Correct/Incorrect P300 response during feedback that did not differ in amplitude 456 
between RB and II conditions (Figure 8).  However, feedback-related P300 amplitude on correct 457 
trials negatively correlated with RB accuracy but not with II accuracy (Figure 8c & f).  P300 458 
responses to feedback may be sensitive to expectancies, as in prior studies with very different 459 
tasks (e.g., Courchesne, Hillyard, & Courchesne, 1977; Duncan-Johnson & Donchin, 1977; 460 
Johnson & Donchin, 1980), and when participants receive unexpected feedback (Hajcak, 461 
Holroyd, Moser, & Simons, 2005).  In the present case, the observed correlations may reflect an 462 
explicit/implicit distinction between RB and II category-learning strategies. Specifically, over 463 
trials participants in the RB condition are developing a hypothesized categorization rule 464 
including a representation for the boundary condition for that rule.  Each new stimulus is 465 
considered with respect to this context.  When those expectations are confirmed by positive 466 
feedback, participants are less surprised the more confident they are in their rule and boundary 467 
condition representation.  In contrast, while participants perform similarly with respect to 468 
accuracy in the II condition, they do not become confident in their rule because an explicit RB 469 
rule is not driving their performance.  This result is consistent with participants’ self-reports, 470 
which indicate confidence in their rule description after RB learning and little to no confidence 471 
after II learning.  Thus, these results provide further evidence for an explicit/implicit distinction 472 
between RB and II learning. 473 

 474 
The majority of our ERP analyses in this study are based on correct/incorrect subtractions 475 

that seek to isolate what is unique about successful RB and II categorization. The advantage of 476 
this subtractive approach (see also Normura et al., 2007b) is that aspects of the two tasks that 477 
may be common such as seeing the stimulus, making a response, and hearing feedback are 478 
subtracted away leaving us with what is unique.  However, this means by definition that our 479 
descriptions of RB and II category learning are incomplete because these common processes are 480 
certainly part of the whole mechanism and may be important to achieve a full understanding of 481 
category learning.  Likewise, it is difficult for us to use this approach to look at how the 482 
category-learning processes changes over time as so does the balance of correct and incorrect 483 
trials.  Given successful learning, correct trials are more abundant at the end of the experiment 484 
than at the beginning when their neural correlates are likely more affected by guessing with 485 
either RB or II distributions. These factors are both important, particularly when we consider 486 
categories that may be learned and used frequently over the course of a lifetime.  Recently, in 487 
their ambitious study of expertise in category learning (participants performed ten thousand trials 488 
over the course of the experiment compared to our 320 trials), Waldschmidt and Ashby (2011) 489 
demonstrated that even when considering just a single distribution type the neural correlates 490 
responsible for category use can change as participants approach expertise in categorization. 491 

 492 
In summary, the present ERP findings illustrate two distinct neurocognitive processes 493 

responsible for successful category learning.  These processes appear to compete on each 494 
categorization trial. The II process utilizes a network including, but not limited to the occipital 495 
cortex likely reflecting changes in perceptual processing as a result of implicit category learning.  496 
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In contrast the more deliberative RB process occurs later during processing of a stimulus and 497 
employs more anterior cortical regions associated with working and long-term memory, most 498 
likely in association with MTL networks.  In addition, neural activity measured during feedback 499 
suggest participants are aware of their learning when using an RB process to make their 500 
categorization decisions, but not when they are using the II process.  Our findings do not appear 501 
to arise from differences in stimuli, but rather stem from differences in the neurocognitive 502 
processes which can be engaged while learning different types of categories.  This experimental 503 
approach provides new perspectives on these category-learning mechanisms as well as a new 504 
way to investigate their interaction and competition during learning. 505 
 506 

Human Research Statement 507 
Humans participated in this experiment according to procedures approved by the 508 

Northwestern University Institutional Review Board.  Before beginning the experiment, 509 
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Figure Legends 
Figure 1.  RB and II category distributions used in the study.  Sine-wave gratings varied based on 
spatial frequency and spatial orientation.  (A) The RB category was defined based on frequency 
whereas orientation varied unsystematically.  (B) The II category was defined based on both 
frequency and orientation with a diagonal decision bound. 
 
Figure 2.  Schematic of a single trial.  A fixation cross was followed by the to-be-categorized-
stimulus for a fixed duration, followed by a short visual mask, followed by auditory feedback 
and a brief ISI before the next trial.  The subject responded ‘‘category A’’ or ‘‘category B’’ 
during the 2 s the stimulus was on the screen by pressing one of two buttons on a hand-held 
response box.  EEG was recorded continuously, and stimulus- and feedback-locked ERPs were 
calculated from each trial. 
 
Figure 3.  (A) Placement of 52 scalp electrodes (of 58 total) used in this study with respect to 10-
20 landmarks.  (B) Frontal (F), Central (C), Parietal (P), and Occipital (O) electrode clusters used 
for the analysis of the N1.  (C) Parietal electrode cluster surrounding location Pz used in the 
analysis of the LPC.  (D) Central electrode cluster surrounding and including electrode Cz used 
in the analysis of the feedback P300.   
 
Figure 4.  (A) II distribution used in the experiment.  (B) II distribution category responses from 
a participant whose responses were best fit by a RB DBT model and who was excluded from 
further analysis.  (C) II distribution category responses from a participant whose responses were 
best fit by an II DBT model and who was kept for further analysis. 
 
Figure 5.  Behavioral results for Model-Conforming Participants.  (A) Accuracy and (B) RTs for 
participants included based on DBT model fits and included in the analysis of brain potentials.  
Error bars represent ±1 standard error of the mean. 
 
Figure 6.  Early stimulus-locked ERPs from frontal (F; three marked electrodes just posterior to 
Fz), central (C; three marked electrodes including Cz), parietal (P; three marked electrodes just 
posterior to Pz) and occipital (three marked electrodes just posterior to Oz including the Iniun) 
electrode clusters for (A) RB and (B) II category-learning conditions.   
 
Figure 7.  ERPs showing the LPC ERP for both (A) RB and (D) II conditions in a cluster of 
parietal electrodes (twelve marked electrodes surrounding Pz).  Topographic maps representing 
correct minus incorrect subtractions from 500 to 600 ms for (B) RB and (E) II ERPs.  
Scatterplots showing the relationship of accuracy to the correct minus incorrect mean amplitude 
ERP subtractions from 500 to 600 ms for three parietal electrodes near Pz (indicated on the 
corresponding topographic maps) for (C) RB and (F) II conditions. 
 
Figure 8.  Feedback-locked ERPs from a central cluster of electrodes (seven marked electrodes 
surrounding Cz) for (A) RB and (D) II category-learning conditions.  Topographic maps 
representing mean amplitude from correct responses from 200 to 400 ms for (B) RB and (E) II 
ERPs.  Scatterplots showing the relationship of accuracy to mean amplitude for correct trials for 
(C) RB and (F) II conditions. 
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