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Abstract  

It has been suggested that to overcome the challenges facing the UK’s National Health Service 

(NHS) of an ageing population and reduced available funding, the NHS should be transformed 

into a more informationally mature and heterogeneous organisation, reliant on data-based and 

algorithmically-driven interactions between human, artificial, and hybrid (semi-artificial) agents. 

This transformation process would offer significant benefit to patients, clinicians, and the overall 

system, but it would also rely on a fundamental transformation of the healthcare system in a way 

that poses significant governance challenges. In this article, we argue that a fruitful way to 

overcome these challenges is by adopting a pro-ethical approach to design that analyses the system 

as a whole, keeps society-in-the-loop throughout the process, and distributes responsibility evenly 

across all nodes in the system.  
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In 2018, the UK’s National Health Service (NHS) turned 70. Built on the guiding principles of 

belonging to all (Department of Health and Social Care, 2015), and providing free high-quality 

care at the point of need, the NHS  is not only the UK’s largest institution but also one of its most 

revered.  However, it is also starting to show its age. In December 2018, the total number of 

patients waiting six weeks or longer from referral for one of the 15 key diagnostic tests was the 

highest in over ten years (NHS England, 2019a). And at the end of 2017, approximately 23% of 

all deaths in the UK were considered avoidable (Office for National Statistics, 2019). Given the 

demographic and funding changes challenging the NHS, this decline in performance is perhaps 

understandable. However, it is also morally unacceptable, when the overall result is loss in quality 

of life at best and loss of life at worst.  What can be done? 

 Setting aside the need to tackle the wider socio-economic factors (de Freitas & Martin, 

2015) that constrain people’s ability to improve their health (Lewis, 2006),1 the answer may well 

lie in making the NHS more informationally mature (Cath, Wachter, Mittelstadt, Taddeo, & 

Floridi, 2017), and able to capitalise on the opportunities presented by digital, data and artificial 

intelligence (particularly the use of machine learning (ML) (Ashrafian, Darzi, & Athanasiou, 2015)).  

Indeed, companies including DeepMind, Sensyne Health and Kheiron Medical Technologies have 

already started to make bold claims about the ability of their data-driven solutions to improve 

significantly outcomes for patients, and to reduce the burdens on the system. Systems that support 

clinical decision are in widespread use and have had a significant impact on safe prescribing, 

guidance adherence, prognostic screening, and risk scoring (Challen et al., 2019). Diagnostic 

screening has also seen considerable attention from the ML community. Today, AI systems can 

estimate bone age, diagnose retinal disease, or quantify cardiac risk with greater consistency, speed, 

and reproducibility than humans (He et al., 2019). These results are particularly exciting to 

healthcare policymakers when one considers that they are all instances of automating tasks that are 

                                                
1 It is vital that factors such as the cost of healthy food, varying levels of education regarding nutrition and exercise 
and issues with access to service are tackled if health outcomes are to be improved for the entire population, but for 
the purposes of this discussion  a detailed investigation of the influence of  these elements is not necessary. 
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not especially difficult ( Floridi, 2019c). It is predicted that further benefits will be released in the 

future as the NHS becomes a learning health care system (Faden et al., 2013) (Celi et al., 2016).  

 In this envisaged data-based and algorithmically-driven system, there would be a 

continuous circulation of data (including genomic, phenotypic, behavioural, and environmental) 

from a range of sources (including wearables, images, social media, geo-spatial information (Nag 

et al., 2018) between patients, clinicians and care systems. In such a closed loop system, actionable 

advice, also based on AI, could be given to people before problems become significant (Nag, 

Pandey, Oh, & Jain, 2017), and demand for services could be predicted in advance, creating the 

opportunity, hypothetically, to reduce very significantly the percentage of avoidable deaths.  

Such opportunities are not to be ignored, but capitalising on them is challenging. This is 

because the opportunities are not created by the technologies per se but by their ability to re-

ontologise (fundamentally re-engineer the intrinsic nature of) the ways in which health care is 

delivered in the NHS by coupling, re-coupling and de-coupling different parts of the system 

(Floridi, 2017a). For example:  

• Coupling: patients and their data are so strictly and interchangeably linked that the 

patients are their genetic profiles, latest blood results, personal information, 

allergies etc. (Floridi, 2017a). What the legislation calls ‘data subjects” become 

“data patients”; 

• Re-Coupling: research and practice have been sharply divided since the publication 

of the National Commission for the Protection of Human Subjects in the 1970s, 

but in the digital scenario described above, they are re-joined as one and the same 

again (Petrini, 2015) (Faden et al., 2013); 

• De-Coupling: presence of Health Care Provider (HCP) and location of Patient 

become independent, for example because of the introduction of online 

consultations (NHS England, 2019b).  
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This process is changing the sociotechnical nature of the NHS. Interactions now occur between 

human, artificial and hybrid agents, and data is far more easily managed, duplicated, stored, mined 

and distributed (Turilli & Floridi, 2009). As a result, social, ethical and professional norms are 

being challenged by new issues related to fairness, accountability and transparency (Lepri, Oliver, 

Letouzé, Pentland, & Vinck, 2018). In short, increasing the NHS’s reliance on ‘information’ 

increases its affordances (Floridi, 2017a) but also presents regulators and policymakers with 

considerable challenges related to its governance.2  

Clearly, there is a need to take a proactive, ‘digital ethics’ approach to these challenges, so 

that the transition from an evaluation of what is morally good to what is politically feasible and 

legally enforceable (Floridi, 2018) happens before ethical mistakes lead to social rejection, and leave 

the NHS unable to benefit from the so-called ‘dual advantage’ (where opportunities are capitalised 

on and risks mitigated (Floridi et al., 2018)) of an ethical approach to governance (Floridi et al., 

2018). The purpose of the following pages is to contribute to the development of a proactive 

approach. In section 2, we discuss the need to analyse the governance challenges posed by the 

digitisation of the NHS from the perspective of the whole system, if appropriate mitigating 

strategies are to be identified. In section 3, we provide a series of illustrative examples of pro-

ethical governance decisions that could be used to meet four necessary conditions for successfully 

governed digitisation: data access, data protection, accountability, and evidence.  In section 4, we 

reiterate that the examples given in section 3 are only illustrative of the art of the possible, not the 

art of the socially preferable and thus cannot be guaranteed to meet the fifth essential condition of 

successfully governed digital transformation, which is trust. For this, we argue that a mechanism 

for keeping society-in-the-loop during the elicitation of design requirements is essential. Finally, 

we conclude that the likelihood of such an approach succeeding remains uncertain, but this does 

                                                
2 Governance is taken to encompass regulation, ethics (of data, algorithms and practice (Floridi & Taddeo, 2016) and 
governance (in terms of policies, procedures and standards for the proper development, use and management of data-
driven health and care tech (Floridi, 2018). 
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not mean that we should not try because, if we do not, we run the risk of the NHS ceasing to be 

for everyone, as it is designed to be.  

 

2. A Systemic Approach 

Reflection on the ethical implications of medical intervention has been a feature of delivering 

medical care since antiquity (Mann, Savulescu, & Sahakian, 2016). Medical practitioners’ promise 

‘to do no harm’ to their individual patients, and the bioethical principles of beneficence, non-maleficence, 

justice, and autonomy (Beauchamp & Childress, 2013) are well established in the medical literature. 

They have recently been adopted (along with the new principle of ‘explicability’) by the ‘ethical 

Artificial Intelligence (AI)’ community (Floridi et al., 2018a) in one of many attempts to encourage 

the development of algorithmic systems that are fair, accountable, and transparent (Lepri et al., 2018). 

This coming together of bioethics and AI ethics—coherent with a broader, patient-oriented 

approach to moral philosophy (Floridi, 2013b)—is essential, given the vast array of harms related 

to the potential for AI to replicate or exacerbate bias and behave in unexpected risky ways; to alter 

the interaction between patients and healthcare professionals; to change people’s perception of 

their responsibility in managing their own body (Verbeek, 2009); and to use hugely personal 

information to manipulate patient behaviour without them realising it (Berdichevsky & 

Neuenschwander, 1999). However, this focus on the bioethical principles has prompted 

governance responses, in terms of policy and regulation, that focus solely on individual level 

impacts. For example, the NHS’s Code of Conduct for Data-Driven Health and Care Technology 

(Department of Health and Social Care, 2019)—which rests on the Nuffield Council of Bioethics 

principles for data initiatives (respect for persons, respect for human rights, participation and 

accountability (Nuffield Council of Bioethcs, 2015))—asks developers to consider their ‘specific’ 

user when carrying out tasks, such as a data protection impact assessment, data minimisation 

processes, and evaluation of evidence of effectiveness. However, it gives no guidance to 
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 6 

commissioners on how to assess the impact of introducing an algorithmic service at a group level 

(Taylor, Floridi, & van der Sloot, 2017).    

 Although vital, this exclusive focus on an individual level fails to recognise the risks that 

are associated with the fact that data related to healthcare of whole groups of people and not just 

individuals are now circulating outside of NHS boundaries, shared with third parties for research 

and commercial purposes (Garattini, Raffle, Aisyah, Sartain, & Kozlakidis, 2019), connecting 

personal, provider and population health information in complex feedback loops that exist at many 

levels (Flahault et al., 2017). In order to manage effectively these risks, and ensure that the NHS 

as a whole can both benefit from the dual advantage of ethical governance (in terms of risk 

management and opportunity strategy) and keep to its commitment of belonging to all, it is 

necessary to take into account a broader set of observable variables than recognised or protected 

in the above outlined policies, by adopting a different Level of Abstraction (LoA)3 (Floridi, 2008). 

The appropriate LoA is one that (a) looks at the systems level and considers the entire human, 

social and organisational infrastructure in which data-driven health and care technologies are being 

embedded (Macrae, 2019) and (b) involves public voices (Gonzalez-Polledo, 2018), so that the 

societal implications become clear (O’Doherty et al., 2016). A systems-level analysis, as set out 

below, will highlight the emergent impacts on fairness, accountability and transparency (Lepri et 

al., 2018) that result from the interaction between connected system components  (Rebhan, 2017), 

and produce a more holistic understanding of the governance challenges facing an informationally-

maturing NHS (Crawford & Calo, 2016) than possible when analysed at the individual patient 

LoA.  

  

                                                
3 A level of abstraction can be imagined as an interface that enables one to observe some aspects of a system analysed, 
while making other aspects opaque or indeed invisible. For example, one may analyse a house at the LoA of a buyer, 
of an architect, of a city planner, of a plumber, and so on. LoAs are common in computer science, where systems are 
described at different LoAs (computational, hardware, user-centred etc.). LoAs can be combined in more complex 
sets, and can be, but are not necessarily always, hierarchical. 
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2.1 Fairness at the systems level  

An informationally-mature NHS will provide better care for individuals about whom there is more 

information from which it can learn. Typically, those who generate less information (data) about 

themselves are conceptualised as those with less access, for example those who do not have a 

smartphone. However, a recent mixed-methods study by Powell & Deetjen (2019) found that there 

are at least six types of health information seekers (and therefore data generators): learners, 

pragmatists, sceptics, worriers, delegators, and adigitals. Each of these different groups will input 

different amounts of personal information into the system’s ‘training data’, which will be used to 

create predictive models (Chiu & Hripcsak, 2017) (profiles) that will form the basis of decisions 

about, for example, allocation of resource at the systems level. Unless carefully overseen—through 

the use of techniques such as ‘data nutrition labelling’ (Holland, Hosny, Newman, Joseph, & 

Chmielinski, 2018), model cards (Mitchell et al., 2019) or datasheets for datasets (Gebru et al., 

2018)—this process will make it impossible for the agents (human or otherwise) running the NHS 

to guarantee procedural regularity (Kroll et al., 2017). And without this guarantee, this process 

could lead to discriminatory practices and outcomes (Lepri et al., 2018). In the worst-case-scenario, 

this could render entire groups of the population ‘invisible’ to the system.  

Similar disproportionate effects can result from the way the ‘system’ incentivises the spread 

of innovation, including data-driven innovation. NHS Trusts that are performing well—in terms 

of key performance indicators such as A&E wait time—receive more funding by being rewarded 

for meeting targets and by avoiding fines. These Trusts, such as Moorfields Eye Hospital, are then 

more able to divert funding away from frontline care costs to invest in the successful 

implementation and ongoing process improvement of as-of-yet ‘unproven’ technologies such as 

AI (He et al., 2019). If the implementation proves successful and improves patient outcomes, the 

Trust will likely receive further financial incentivisation through schemes such as the ‘Global 

Digital Exemplars’ programme (NHS England, 2019b) and, potentially, profit from intellectual 

property rights. This is leading to a clear polarisation, with already high-performing Trusts 
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 8 

increasingly benefitting from the central drive to ‘digitise’ the NHS and forces related to cumulative 

advantage, whilst underperforming Trusts, whose patients would likely see more benefit from the 

implementation of data-driven technologies, increasingly missing the opportunity to reap such 

benefits and so becoming cumulatively more disadvantaged (DiMaggio & Garip, 2012).  

 

2.2 Accountability and transparency at the systems level  

An accountable decision-maker is one that is able to provide its decision-subjects with reasons and 

explanations for the design and operationalisation of its decision-making system, so that the 

decision-subject can judge whether this justification is adequate, and if not, sanction the decision-

maker (Binns, 2018). In this context, the NHS is the decision-maker and its users are the decision-

subjects. At the systems LoA, this means that users should be able to understand and question 

why decisions were made about, for example, funding allocations, particularly as this funding is 

public money, such as why treatment for one condition is available on the NHS and not another, 

and how and/or why their data were involved in making these decisions. However, it is increasingly 

difficult for the system to be able to provide similar explanations. This is because it has become 

considerably more challenging for the system to understand the reliability of the data or where the 

data were generated, as data have come to flow more easily from data collectors, to data 

aggregators, to analysers, (Garattini et al., 2019) not all of whom belong to the NHS, and some of 

whom may be under no obligation to tell policymakers or implementers how the data were 

collected, aggregated, stored, or processed.  

This lack of oversight and transparency is a direct result of the NHS’s ‘information 

revolution’, which has  forced it to become a more heterogeneous organisation (Turilli & Floridi, 

2009) or set of organisations. For instance, Babylon, a private third party, provides the Skype 

Consultation service ‘GP at Hand’ for some NHS GP practices in London (GP at hand, 2019). 

This organisational complexity has effectively rendered much of the NHS back-end decision-

making systems ‘black boxes.’ This is concerning (Watson et al., 2019) because, if something goes 
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wrong with the allocation of resource (for example, if there is insufficient staff placed in an 

emergency unit, and this results in fatalities), or with informational security (such as WannaCry 

(Department of Health and Social Care, 2018)) or patient data privacy, it is not clear enough which 

‘nodes’ in the system (Floridi, 2016a) made the decision in order to hold it accountable. Indeed, it 

may take much longer for problems felt at the point of service delivery to become visible at the 

point of service provision. This makes it considerably harder for users to trust the system (Sterckx, 

Rakic, Cockbain, & Borry, 2016), as it becomes increasingly reliant on processes that they cannot 

understand.  

 

3. A proactive approach to ethical governance  

When the ‘problem’ of the digital transformation of the NHS is so framed, it becomes easier to 

understand how every element of the digital ecosystem, even the seemingly innocuous—such as 

naming the NHS’s digital transformation portfolio ‘empower the person (NHS England, 2018)’ 

(Morley and Floridi, 2019)—can be seen as a moral enabler or a moral hindrance (Floridi, 2013b)).  

It also becomes clearer how each element of the system can be ‘pro-ethically’4 designed to protect 

the values, principles and ethics that we think are fundamental to the NHS (Floridi, 2017b).  This 

requires good ethical governance (both soft and hard) that translates between principles and 

practice (Winfield & Jirotka, 2018) in a way that addresses the challenges outlined and enables 

digital health innovation to produce better outcomes for all (Vayena, Tobias, Afua, & Allesandro, 

2018).  

                                                
4 The difference between ethics by design and pro-ethical design is the following: ethics by design can be paternalistic in 
ways that constrain the choices of agents, because it makes some options less easily available or not at all; instead, pro-
ethical design still forces agents to make choices, but this time the nudge is less paternalistic because it does not preclude 
a course of action but requires agents to make up their mind about it. A simple example can clarify the difference. A 
speed camera is a form of nudging (drivers should respect the speed limits) but it is pro-ethical insofar as it leaves to 
the drivers the freedom to choose to pay a ticket, for example in case of an emergency. On the contrary, in terms of 
ethics by design, speed bumps are a different kind of traffic calming measure designed to slow down vehicles and 
improve safety. They may seem like a good idea, but they involve a physical alteration of the road, which is permanent 
and leaves no real choice to the driver. This means that emergency vehicles, such as a medical ambulance, a police car, 
or a fire engine, must also slow down, even when responding to an emergency. 
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 10 

 According to Vayena et al. (2018) such governance should meet five conditions in order 

to ensure all the ethical and policy challenges posed by data-driven healthcare are covered: (1) data 

access; (2) data protection; (3) accountability; (4) evidence; and (5) trust. We shall address the 

condition of trust in section 4. In the rest of this section, we shall illustrate how governance 

decisions can be made to ensure that the first four of these conditions are met by collectively 

tackling the issues of confidentiality and consent for the public good (see 3.1); providing data 

protection legislation that enables individuals to ensure their data is working for them even without 

their awareness of it  (see 3.2); creating a regulation as a service pathway (see 3.3); and investing in 

safe environments for experimentation (see 3.4). These clarifications are designed to show the art 

of the possible, but it should be remembered that, for each condition, the ‘how-to meet x’ question 

is an open one that may be ‘solved’ in more than one way (Floridi, 2017b).  

 

3.1 Data access: collectively tackle the issues of confidentiality and consent for the public good  

To unlock the benefits of data-driven healthcare, large datasets are needed for initial training, 

ongoing training, validation, and refinement of data-driven solutions (He et al., 2019). Many data 

sources exist, including population biobanks, cohort studies, genome databases, clinical and public 

health records, direct-to-consumer genetic test data, social media, and data collected from fitness 

trackers, health apps and biometric sensors (O’Doherty et al., 2016). Yet it can be phenomenally 

difficult for researchers to access these data, resulting in significant opportunity costs for the 

system (Watson et al., 2019). Partly this is to do with a lack of data standardisation and resulting 

issues with interoperability (He et al., 2019). However, this is improving with an increased 

recognition across the system that data need to be FAIR (findable, accessible, interoperable and 

reusable) (Kemper & Kolkman, 2018) and the mandating of specific data standards for all digital 

services in use by the NHS by NHSX from July 2019 (NHSx, 2019).  A far more complicated 

challenge is answering when, by whom, why, where (for example by a commercial or non-
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 11 

commercial company or for profit or not-for-profit purposes) and how health data can be accessed 

(Floridi et al., 2018).  

Typically, these questions have been answered by addressing first another question 

concerning what uses the relevant patient has provided informed consent for. However, it is now 

well recognised that attaining traditional informed consent is no longer feasible in many data-

driven contexts where the specific objectives and risks of research are not known a priori (Woolley, 

2019). Given that the requirement for informed consent can act as a significant barrier to the 

generation of biomedical knowledge that can save lives (Mann et al., 2016), European Data 

Protection Law does allow for the processing of personal health data without consent when it is 

in the ‘public interest’ to do so (Quinn, 2017). However, concerns about breaching the common 

law of confidentiality, effectively enshrined in the Hippocratic Oath, have left many researchers 

reluctant to take any risk (Mann et al., 2016).  

In response, several authors have argued that we should move to a model of broad (or 

meta) consent, based on the ‘duty of easy rescue’ where it is presumed that—when the benefits of 

sharing health data in terms of the generation of scientific knowledge, significantly outweigh the 

potential harms to individuals—individuals have consented to its use as a public good (Mann et 

al., 2016, Ballantyne & Schaefer, 2018, Floridi et al., 2018b). Indeed, in 2014 the Global Alliance 

for Genomics and Health (GA4GH) created the framework for Responsible Sharing of Genomics 

and Health-Related Data with the explicit goal of moving towards a vision of data-intensive 

research for the common good as an expression of the fundamental human right to benefit from 

science (Knoppers & Thorogood, 2017). Yet this argument has found it hard to gain traction more 

broadly, at least partly because it has been presumed that, in order for such an approach to be 

ethically viable, the definition of a public good or science must be agreed by all. Yet this is unlikely 

to ever succeed as people disagree about values and what defines knowledge (Ploug & Holm, 

2016), making it impossible to come up with a set of universally acceptable moral rules (Binns, 

2018) of when it is acceptable to presume broad consent. A different approach may be more 
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successful and arguably the pro-ethical design approach we are advocating (Floridi, 2016b) could 

contriute to ensure that the public is engaged appropriately and agrees collaboratively (Georgiou 

et al., 2018) on the current ‘red-lines’ (or scenarios) when data-sharing must never be based on 

presumed or broad consent (more on this later). Crucially, the guiding principle of this process 

must be toleration (Floridi, 2016b) (where an act of toleration is defined as an agent’s intentional 

and principled refraining from interfering with an opposed other (or their behaviour) in situations 

of diversity where the agent believes she has the power to interfere (Cohen, 2004)), so that the 

system can cope with people who decide to opt out of being part of the data sharing ecosystem 

entirely.  

 

3.2 Data protection: enable competition to ensure fair return on data investment 

Since its introduction in May 2018, the European General Data Protection Regulation has been, 

to a greater or lesser extent, heralded as a solution for ensuring the protection of an individual’s 

data. It is, however, by no means perfect (Townend, 2018) and, given its focus on anonymisation, 

in the case of personalised medicine, it may be already out-of-date.  

If the benefits outlined in the introduction of a truly personalised data-driven health and 

care system are to be realised, it will be necessary to develop a regulatory framework for data 

protection that enables the integration of data related to multiple ‘omics’ (Okun & Wicks, 2018) 

in a way that is respectful of the subjective nature of privacy (Alshammari & Simpson, 2017). This 

might seem an impossible task, and yet there is one potentially simple policy change that could 

support this and has been provided by the financial services sector: enable regulated aggregation 

so that individuals, groups and populations get a fair return on the investment of their data. This 

may work in the following way. 

Payment Services Directive 2 (PSD2) (Payment services (PSD 2) - Directive (EU) 

2015/2366), which became enforceable in January 2018, requires all retail financial services 

providers, upon the request of a customer, to open up their payments infrastructure and customer 
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data assets to a third party so that said third party can provide information services (most 

commonly data aggregation services) for the individual customer in question. It was introduced partly 

in response to the lack of competition in the retail banking sector when other previous initiatives, 

such as the current account switching service, failed to incentivise incumbent retail banks to 

compete for business in a way that led to better financial outcomes for individual customers.   

By making it a legal requirement for bank A to open up its data at the request of bank’ B 

on behalf of customer C, the legislation enables B to compete for the custom of C by providing 

them with a better service than was provided by A. This not only ensures C gets the best service 

for them, but it also drives up the quality of services for all who currently use retail banking services 

(note, however that it does little to improve the outcomes for the unbanked community) by forcing 

the incumbents to compete for business rather than complacently relying on the inertia of their 

existing customers.  

The same logic can work in the healthcare sector by enabling individuals, be they patients 

or citizens, to ensure that their data is working for them, rather than merely ‘empowering’ them. The 

difference might not be immediately apparent, but it is crucial. In the current climate of 

empowerment, as we have argued previously (Morley and Floridi, 2019) patient P is presented with 

their health data (e.g. GP record, or statistics from Garmin Connect) by a digital health provider 

A with the expectation that P will translate reflection on the data presented by A into actions that 

move them towards pre-conceived ‘targets’ (e.g. number of steps, calorie deficit or optimum 

resting heart rate) – even if those targets may be impossible or inappropriate for them to meet. In 

this scenario, there is no incentive for A to provide services that genuinely improve the health 

outcomes of patient P, and the only return on the data investment made bv P is an increased 

responsibility for managing their own health, irrespective of whether or not this is feasible. This 

means that, even if that individual’s data are protected in a quantitative sense (i.e. there are 

appropriate security measures in place), they are not protected in a qualitative sense because they 

have delivered no benefit to P. Instead, the data have potentially been used solely for commercial 
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gain by A.  In the comparative ‘PSD2-enabled’ scenario, if P does not feel as though they are 

getting a fair return on their current data investment from A—for example they are struggling to 

get a diagnosis, cannot access the services they need, or they feel as though their data is being 

exploited for inappropriate purposes—P can choose to share their data with B. B represents an 

aggregator that has stricter policies about use of data for pure commercial gain and is better able 

to act on the behalf of the individual by, for example, recommending health interventions tailored 

to P’s circumstances, making suggested diagnosis or referral, or requesting an appropriate 

prescription from P’s clinician. In short, the legislation would enable digital health tools (DHTs) 

to act as digital companions and encourage would-be data aggregators to compete based on the 

provision of services that enable individuals, groups and populations to meet appropriately tailored 

health outcomes.   

Importantly, as with the case in the financial services sector, this policy intervention not 

only could improve the outcomes for data-rich and digitally-engaged individuals, it could also be 

used to enable the development of a learning healthcare system (Nag et al., 2017) that could benefit 

all users. This is because it would enable those using DHTs for personal benefit also to request 

that their data generated by third parties, are provided back to the NHS. In this way, the NHS 

could gain greater oversight of the wider digital health data economy and obtain richer data, both 

in terms of quality and quantity, than it is currently able to generate by itself. This would at least 

partially overcome some of the issues highlighted in section 2.2 and, if the right supporting policies 

were in place, enable the NHS to make better informed decisions about the provision of more 

tailored services (both digital and physical) based on the patient profiles generated by the 

aggregation of the data provided through this mechanism, rather than those provided by existing 

clinical trials data or GP records, which are inherently limited and often biased.  

The previous analysis is not meant to suggest that achieving these outcomes will be easy. 

The proposal is complex and presents a significant multi-layered pro-ethical design challenge. For 

example, to ensure that everyone is able to benefit equally from the promise we have set out of 
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user-controlled data sharing and aggregation, there is a need to invest in the following (as a 

minimum):  

1. Mandatory data standards and open APIs to ensure interoperability 

2. New technical solutions for eliciting data-sharing preferences by presenting terms and 

conditions in more accessible formats, such as video or RIB, and accepting consent in 

forms other than written signature, for example gesture (Butterworth, 2018) 

3. Privacy preserving techniques, such as homomorphic encryption, differential privacy, 

and federated learning 

4. Training of frontline staff (for example General Practitioners and practice managers) 

to enable them to provide an offline user-journey that gives those who do not want to 

engage with the healthcare system digitally equal control over what happens to their 

data  

5. The NHS’s data science capability so it is able to benefit from the new sources of data 

in the manner described 

6. An accreditation process for DHT providers wishing to become health data 

aggregators to process medical data (e.g. official medical records) as well as ‘wellness’ 

data (e.g. FitBit data). The minimum viable accreditation process should cover all the 

areas of the NHS’s Digital Assessment Questionnaire: clinical safety, data protection, 

security, usability and accessibility, interoperability and technical stability and most 

crucially intended outcomes. A return on data investment can only be considered ‘fair’, 

and therefore acceptable in the NHS, if the intended outcome of the aggregation is a 

genuine improvement of the user’s (or a group of users’) health outcomes. A would-

be aggregator that simply wants access for the purpose of providing them with targeted 

drugs advertising, for example, should not be considered acceptable. The onus of 

deciding which aggregators are ‘trustworthy’ should not sit with individual citizens.  
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If these challenges can be effectively tackled, such a combination of policy, technical and design 

requirements could result in significant improvements to the health of individuals and to the 

quality of healthcare as a whole. If not, the creation of the policy framework will most likely hinder 

rather than help the creation of a pro-ethically designed digital healthcare system, leading to a 

scenario where the potential unequal outcomes described in section 2.1 are exacerbated.  

 

3.3 Accountability: create a ‘regulation as a service’ pathway  

Currently, the governance framework (both in terms of hard and soft governance) for the 

development, deployment and use of data-driven health technology is convoluted, making it hard 

to navigate, discouraging regulatory compliance, and potentially undermining public trust. This is 

primarily the result of a culture of caution (Sethi & Laurie, 2013). What is needed—instead of the 

collection of regulations, policies and standards that have been developed in a relatively ad hoc 

fashion—is a coordinated effort from the centre of the healthcare system to move regulation away 

from being something that technology providers interact with at specific points-in-time towards 

‘regulation as an enabling service’. Such a service should cover the entire development pathway of 

data-driven technologies, as illustrated in figure 1 adapted from the ICO’s AI Auditing 

Framework’s depiction of the AI lifecycle (Binns, 2018), and should include mechanisms for 

protecting patient safety (He et al., 2019) and ensuring transparency, accuracy and interpretability 

(Guidotti et al., 2018) both ex ante and ex post (Reed, 2018), as data-driven products continuously 

cycle from: 

(1) development: when regulations regarding research ethics and data access are needed 

and compliance is supported by newer techniques, such as federated learning 

(Bonawitz et al., 2019)); to 

(2) deployment: when regulations related to validation of results and data protection are 

needed; and to  
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(3) use: when regulations related to continuous audit (Binns, 2018), and reporting of safety 

issues (Fong et al., 2018) are required.  

Importantly, the regulatory building blocks that make up this pathway must meet two conditions. 

First, they must be proportionate to risk, so that the regulatory burden does not become 

disproportionate to the risks posed to a patient (Sethi & Laurie, 2013). Second, they must be put 

together in such a way that responsibility is identifiably distributed across different levels of the 

system, so that it is possible to trace back the cause of the result in order for it to be corrected or 

recreated (depending on whether the result was bad or good) (Floridi, 2016a). Technology 

corporations that produce data-driven health technology and algorithms must be held accountable 

(Owens & Cribb, 2017) for the types of tools they develop and how they ensure the design is 

trustworthy (Pak, Fink, Price, Bass, & Sturre, 2012), whilst the State must take responsibility for 

bringing together regulators, commissioners, technology providers and policymakers to achieve a 

common goal at the systems LoA.  

 

 

Figure 1: Illustrative example of ‘Regulation as a Service’ for data-driven health and care technologies 

  

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=3424376

Pr
ep

rin
t n

ot
 p

ee
r r

ev
ie

w
ed



 18 

3.4 Evidence: invest in ‘safe’ environments for experimentation  

In evidence-based medicine, the belief to be justified (by the evidence) concerns the effectiveness 

of a particular medical intervention for a specific patient (Eustace, 2018). This is no less true of 

data-driven medical interventions at the individual or system level than it is of ‘traditional’ medical 

interventions. To be certain of the effectiveness of an intervention, progress needs to be monitored 

over time to understand how interventions work at the systems level to cause health changes at 

the individual level (Michie, Fixsen, Grimshaw, & Eccles, 2009). This means that it is risky to 

implement the use of data-driven technologies into the complex health system, without any a priori 

knowledge of how they will develop over time, unless the impacts can be modelled and simulated 

ahead of time (Silverman, Hanrahan, Bharathy, Gordon, & Johnson, 2015).   

The challenge is that, although the computing capacity to enable such modelling exists, the 

data that are required are difficult and expensive to generate and access (Krutzinna, Taddeo, & 

Floridi, 2018). Yet, this need not be the case. Currently, GP records of the deceased are passed to 

Primary Care Support England, where they are stored for ten years before being destroyed (NHS 

UK, 2018). Enabling the use of these data by conducting extensive stakeholder analysis, writing 

into policy the proposed ethical code for posthumous medical data donation (Krutzinna et al., 

2018), and giving people the option, through the ‘national data opt-out’ programme, to opt out of 

‘donating’ their data should they wish to do so, could be transformative. Appropriate tests would 

need to be used to ensure the data’s completeness, quality and robustness but, providing the data 

contained within the records are sound, they could be anonymised and synthesised, to provide 

multiple layers of protection, and integrated with other government held records (e.g. care records, 

pensions information) to create a ‘digital twin’ of the healthcare system. This ‘twin’ could then be 

used as a sandbox environment for experimentation, creating the opportunity for data-driven 

technology to demonstrate effectiveness without any risk of patient harm, and enabling 

policymakers and commissioners to model the system-wide impact of the introduction of a specific 
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algorithmic or other data-driven system ahead of time.  This would significantly improve the 

likelihood of successful implementation of data-driven health technologies. 

 

4. Keeping Society-in-the-Loop  

As stated previously, these outlined governance decisions should be seen as illustrative examples 

of possible means of meeting the conditions of data access, data protection, accountability and 

evidence, but not as the only means. This is because such governance decisions are definitely possible, 

and may even be acceptable, but there is no way of knowing a priori whether they are socially preferable 

(Floridi & Taddeo, 2016) and thus, they do not guarantee that the fifth essential condition of ‘trust’ 

will  be met (Vayena et al., 2018). To ensure that this condition is met, the people who rely on the 

NHS to care for them and their loved ones, or to provide them with meaningful employment, 

must not be seen only as ‘stakeholders,’ (as they are in the above example of meta-consent), but 

as real interlocutors (able to participate in the shaping of the system), (Durante, 2014), ‘prosumers’ 

of a makers’ knowledge instead of a users’ knowledge (Floridi, 2019b). The process of making all 

pro-ethically designed governance decisions must not begin with the paternalistic and technocratic 

assumptions of the State, but with the elicitation of the requirements of these individuals. Doing 

this well is vital, because whether or not these design requirements are understood and correctly 

implemented, can make the difference between the failure of Care.Data (NHS England, 2013) and 

the relative success of the National Data Opt-Out (NHS Digital, 2019). 

Gaining an understanding of these requirements necessitates asking different questions to 

account for conflicting viewpoints, complex cost/benefit comparisons, and the impact of cultural 

norms, institutional structures, and economic factors on people’s views on health system 

digitalisation (Balaram, Greenham, & Leonard, 2018). In short, to ensure that the designers of the 

digital NHS are able to work from an agreed set of requirements, it will be essential to develop 

what Rahwan (2018) refers to as a model for society-in-the-loop (SITL), by making use of research 

methods that keep people regularly engaged throughout the design process.  
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The research group Understanding Patient Data highlights several good practice examples of 

research conducted in this manner to elicit public attitudes to patient data (Understanding Patient 

Data, 2019). For example, the Academy of Medical Sciences commissioned Ipsos Mori (2018) to 

hold dialogue workshops with members of the public, patients and health care professionals on 

awareness, aspirations, expectations and concerns around uses of patient data in future 

technologies (Castell, Robinson, & Ashford, 2018). And Leeds Informatics Board commissioned 

Brainbox to hold conversations and facilitated workshops, analyse social media data and conduct 

journey mapping in a variety of different locations to explore attitudes to health data sharing 

(Fylon, 2015).   

 Crucially this participatory elicitation of SITL-requirements must be seen as a process, 

rather than a one-off act. This is because social values and norms shift over time and in different 

contexts, and therefore, what are seen as socially acceptable (and even preferable) uses and designs 

of technology and its governance will also shift. It will not be sufficient simply to ask society to 

outline ‘red-lines’ (as suggested earlier) for the use of digital technologies and data in the NHS 

once and assume that, provided design decisions do not breach these, the SITL-requirements have 

been met in perpetuity. Nor should it be assumed that eliciting these requirements will be straight-

forward. Principled disagreements are inevitable and should be welcomed as society grapples with 

the serious ethical considerations of the NHS increasingly relying on algorithmic decision-making.   

 Unfortunately, from the perspective of companies and governments this means that the 

costs of SITL-requirement elicitation cannot simply be borne as one-off revenue spend but must, 

instead, be factored into business-as-usual operating, or capital, costs. This is likely to be hard to 

justify when the benefits of ‘increased trust’ cannot be automatically translated into quantifiable 

return on financial investment.  The responsibility of ensuring that this process is carried through 

cannot, therefore, sit with just one group of NHS designers (programmers, policymakers, 

regulators, healthcare professionals, academics etc.). Instead, building on the point made earlier 

about distributed regulatory responsibility, technology corporations that produce digital health 
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devices and algorithms must be held responsible (Owens & Cribb, 2017) for ensuring that the 

tools they develop meet the principle of autonomy, as well as the other relevant bioethical 

principles of beneficence and non-maleficence (Floridi et al 2018). The State must also take 

responsibility for creating ethically-aligned policies and for encouraging the system components to 

coordinate. Then researchers and charities must take responsibility for ensuring the knowledge of 

the users is heard. Finally, commissioners and healthcare practitioners must take responsibility for 

checking to see whether the technology services they are planning to procure, prescribe or use 

meet the socially-defined and ethically-aligned requirements (as well as any policy standards or 

regulatory requirements). Only in this scenario of distributed but clearly identifiable responsibility 

will it be possible to ensure the entire causal chain (which should really be seen as a continuous 

cycle of development ® deployment ® use) is aligned with societal desiderata (Lipton 2017). 

 

5. Conclusion  

With the NHS Long Term Plan underpinning the importance of technology in the future NHS to 

provide a step change in the way that it cares for citizens, it is clear that, whether digitisation will 

have an impact on the NHS, is no longer a relevant question. Instead, the relevant questions are 

those related to governance mechanisms and how these can be developed to ensure that the digital 

NHS is designed to distribute evenly the positive impacts and limit the negative impacts. 

Developing such mechanisms will be challenging but, as illustrated, not outside the realms of 

possibility or, indeed, preferability, if a pro-ethical approach to system design is taken.  

Taking such an approach does require a willingness to live with uncertainty as the 

likelihood of any of the potentially implementable mechanisms succeeding in enabling the digital 

NHS system to capitalise on the dual advantage of ‘ethics’ remains an unknown (Vayena, et al., 

2018). However, if this uncertainty can be embraced and discussed openly, it should not prevent 

us from trying. We should be mindful of the challenge but eager to understand and act on what 
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can be done safely and in a socially acceptable way so that the opportunities presented by data-

driven technologies for the care of those who rely on the NHS are not wasted ( Floridi, 2019a).  

This understanding must be developed by keeping citizens and patients actively involved 

in every step of the governance design so that society is kept firmly in-the-loop (Rahwan, 2018). 

If the State fails to do this, it will produce a digital health ecosystem that supports only a very small 

number ( Floridi, 2014) of algorithmically designed digital selves, whilst ignoring the health of 

those that fall outside of these categories. If this were to transpire, the NHS would cease to be for 

everyone, as it is designed to be, and no amount of governance will suffice to undo the damage. 

The risks and the opportunity costs associated with this outcome are too great to contemplate and 

so it is paramount that every node in the system is encouraged to amplify society’s voices to ensure 

that the people for whom healthcare matters the most are seen as part of the solution to building 

trust in an informationally-mature NHS, rather than a hurdle to this trust that must be overcome  

(Aitken et al., 2019).  
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