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1 Idealist Philosophy of Science?
In Anglo-American philosophy there is a strong conviction that idealism on the
one hand, and science and serious philosophy of science on the other hand, do
not go well together. Often, idealism plays the role of a strawman to whom all
the vices are attributed that one wants to criticise. As a particular savage example
of this kind of anti-idealism let me mention Israel Scheffler’s characterisation of
Thomas Kuhn as an irresponsible and even immoral idealist:

The current attacks (of Kuhn, T. M.) challenge . . . the very opposi-
tion between science and speculative idealism, from which scientifi-
cally minded philosophies have sprung. The attacks threaten further
the underlying moral motivation of these philosophies, their uphold-
ing of the ideal of responsibility in the sphere of belief as against
willfullness, authoritarianism, and inertia. The issues are fundamen-
tal, indeed more fundamental than is generally realized, precisely be-
cause a powerful moral vision has implicitly been called into question.
[Scheffler, 1967, pp. 7–8]

Perhaps Scheffler’s attack can be seen as a remote rehearsal of Moore’s and
Russell’s anti-idealist revolt against British idealism around the turn of the last
century. Be that as it may, in the Anglo-American philosophical scene the opinion
is wide-spread that all variants of idealism subscribe to the doctrine that ‘real-
ity is fundamentally mental’. As typical one may take Haack’s characterisation
according to which ‘[A]n idealist holds that everything there is, is mental: that
the world is a construction out of our ideas’, [Haack, 2002, p. 70]. A bit more
specifically Russell maintained that idealists believe that all propositions are of
the subject-predicate form, and therefore idealists do not appreciate the merits of
modern relational logic. As will be shown in the following, Cassirer may serve
as a brilliant counter-example to the claims of Russell and Haack: it is difficult to
find a philosopher who praised the achievements of relational logic more ardently
than Cassirer.

Laws and Models in Science, 137–157.
c� 2004, the author.
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Despite, or perhaps just because of its oversimplified character, conceptions of
idealism like Haack’s are rather common ones. Consequently, in contemporary an-
alytic philosophy of science, idealist positions are rarely mentioned. For instance,
in most books that intend to give a history of philosophy of science in the twentieth
century neither Cassirer nor any other idealist is mentioned at all.

If idealism were what its caricature maintains it to be this would be alright, but
actually things are more complicated. To show why, one may start with a bit of
history of philosophy of science: nobody will deny the importance of Logical Em-
piricism for philosophy of science of the 20th century. Some authors even contend
that contemporary philosophy of science is to be conceived of as a successor dis-
cipline of Logical Empiricism. As has been shown by detailed studies by Coffa,
Friedman, Richardson and others, most logical empiricists started their philosoph-
ical careers as neo-Kantian idealists. A case in question is Carnap: not only that
Carnap began as a neo-Kantian idealist, even worse, in The Logical Structure of
the World[Carnap, 1928] he openly confessed to have sympathies for idealist doc-
trines. For instance, he characterized the constitutional theory which may safely
be called the core of the Aufbauprogram, as deeply influenced by transcendental
idealism:

The merits of having discovered the necessary basis of the constitu-
tional system thereby belongs to two entirely different . . . philosophical
tendencies. Positivismhas stressed that the sole material for cognition
lies in the undigested experimental given . . . Transcendental ideal-
ism, however, especially of neo-Kantian tendency (Rickert, Cassirer,
Bauch), has rightly emphasised that these elements do not suffice;
order-posits must be added, our basic relations. [Carnap, 1928, Sec-
tion 75]

Thus, in one of the key works of logical empiricist philosophy of science we find
a large dose of idealism. This and other evidences show that there is something
in idealism that does not go away as easily as many may wish. Summarising,
then, I’d like to assent to Crispin Wright who put the problem with idealism in the
following way:

For all the vilification and caricature which its critics have meted out
over the years, the idealist tradition in philosophy has proved suffi-
ciently durable to encourage the belief that, at least locally, there are
insights for which it is striving, but for which—its persistently con-
troversial character suggests—we have yet to find definitive means of
expressions. [Wright, 1992, p. 3]

After these introductory remarks let me come to my point, the role of idealisa-
tion and mathematisation in Cassirer’s ‘critical idealism’. More precisely I propose
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to reconsider a central thesis of Cassirer’s that deals with the role of idealisation
and mathematisation in the sciences, in particular, in physics. This is done not only
for an interest in history of philosophy of science. Rather, I contend that Cassirer’s
thesis might be of some interest for the contemporary agenda of philosophy of
science dealing with the roles of idealisation, mathematisation, laws, and models.
Cassirer put forward his thesis in the early paper Kant und die Moderne Mathe-
matik ([Cassirer, 1907], KUMM in the following). The title of this bulky article
is a bit misleading, the issue is not so much Kant but the problem of how neo-
Kantian philosophy of science should assess the recent developments of logic and
mathematics, in particular the growing importance of the theory of relations for
logic, mathematics and philosophy in general. KUMM may be considered as the
programmatic precursor of Cassirer’s first opus magnum Substance and Function,
[Cassirer, 1910].

It goes without saying that the thesis of Cassirer’s I want to discuss in the fol-
lowing is not an isolated assertion but embedded in a rather complex theoretical
context, to wit, his theory of the formation of scientific concepts. Indeed, accord-
ing to him, philosophy of science is to be conceived as the theory of the formation
of scientific concepts. Since this paper is not the appropriate place to develop
the essentials of Cassirer’s account in an orderly manner, the following six the-
ses may be distilled from Substance and Functionand later works (cf. Cassirer
[1929; 1937]).

1. Scientific knowledge does not cognize objects as ready-made entities. Rather,
knowledge is organized objectually in the sense that in the continuous stream
of experience invariant relations are fixated.

2. The unity of a concept is not to be found in a fixed group of properties, but
in the rule, which lawfully represents the mere diversity as a sequence of
elements. The meaning of a concept depends on the system of concepts in
which it occurs. It is not completely determined by one single system, but
rather by the continuous series of systems unfolding in the course of history.
Scientific knowledge is a ‘fact in becoming’ (‘Werdefaktum’).

3. Scientific concepts and conceptual systems do not yield pictures of reality,
rather, concepts provide guide lines for the conceptualisation of the world.
The fundamental concepts of theoretical physics are blueprints for possible
experiences.

4. Factual and theoretical components of scientific knowledge cannot be neatly
separated. In a scientific theory ‘real’ and ‘non-real’ components are inex-
tricably interwoven. Not a single concept is confronted with reality but a
whole system of concepts.
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5. Our experience is always conceptually structured. There is no non-concept-
ually structured ‘given’. Rather, the ‘given’ is an artifact of a bad meta-
physics.

6. The concepts of mathematics and the concepts of the empirical sciences are
of the same kind.

In the following, I’d like to concentrate on (6). Implicitly, however, we have to
deal with the other theses of Cassirer’s as well. As a start, it may be expedient to
quote (6) more fully as follows:

What ‘critical idealism’ seeks and what it must demand is a logic
of objective knowledge(gegenständliche Erkenntnis). Only when we
have understood that the same foundational syntheses(Grundsynthe-
sen) on which logic and mathematics rest also govern the scientific
construction of experiential knowledge, that they first make it possi-
ble for us to speak of a strict, lawful ordering among appearances and
therewith of their objective meaning: only then the true justification
of the principles is attained. [Cassirer, 1907, p. 44]

This thesis will be referred to as the ‘sameness thesis’ (henceforth �� ). I’d like
to contend that �� lies at the heart of the ‘critical idealist’ philosophy of science
Cassirer first presented in Substance and Functionand later elaborated throughout
his entire philosophical career (cf. Cassirer [1929; 1937]).

The outline of this paper is as follows: in Section 2 some preliminary comments
on �� are put forward in order to forestall some unnecessary misunderstandings.
In order to set the stage for a proper assessment of �� in Section 3 we reconsider
some paradigmatic examples of the introduction of ideal elements that may be
considered as point of departure for Cassirer’s account. In Section 4 we deal with
idealisation in mathematical physics in order to render plausible �� for the realms
of mathematics and physics. In Section 5 we conclude with some general remarks
on the place of Cassirer’s ‘critical idealism’ in the landscape of 20th century’s
philosophy of science.

2 Some Preliminary Comments on ��

At first glance, one may be tempted to read the ‘sameness thesis’ �� as a sort
of vulgar idealism which identifiesmathematics and physics. This would be a
misunderstanding. According to Cassirer, philosophy as philosophy of science
has to concentrate neither on mathematics, as an ideal science, nor on physicsas
an empirical science, but rather:

If one is allowed to express the relation between philosophy and sci-
ence in a blunt and paradoxical way, one may say: The eye of phi-
losophy must be directed neither on mathematics nor on physics; it is
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to be directed solely on the connection of the two realms. [Cassirer,
1907, p. 48]

For Cassirer’s philosophy of science the central point of reference is neither
mathematics—as a science of ideal objects, nor physics—as a purely empirical
science. Cassirer did notaim at the futile reduction of physics to mathematics or an
identification of both. Rather, he was looking for a common root from which both
physics andmathematics spring. This common root is identified as the idealising
method of the introduction of ideal elements.

Today, when dealing with idealisation in science it is usually taken for granted
that there is a strict separation between the mathematical and the physical realm.
Implicitly it is assumed that within mathematics there is no place for idealisation.
Mathematics already is on the ideal side, so to speak. Under this assumption, the
problem of the idealisational character of scientific knowledge is said to be solely
concerned with the problem of the role of idealisation in the empirical realm. For
instance, Leszek Nowak and his school have set up a detailed classification of
the various methods of idealisation, but they are concerned only with the various
forms of idealisations in the empirical sciences. They never consider mathematics
as a domain for which idealisation could be relevant (cf. [Nowakowa and Nowak,
2000]).

According to Cassirer such a theory of idealisation starts too late: for him, ideal-
isation has a role in mathematics andin the empirical sciences. Hence, a theory of
idealisation in science has to take into account both mathematics andthe empirical
sciences. If one wants to understand the role of idealisation in empirical science
one should study how it works in mathematics and in empirical science. Moreover,
one should not tackle this problem armed with ‘philosophical’ presuppositions of
what are the philosophically correct methods of idealisation. The methods of ide-
alisation should be studied empirically, so to speak, no philosophical intuition will
give us the answer what the common foundational syntheses are on which logic,
mathematics and empirical science are based. Rather, this has to be revealed by
studying the history of science. For Cassirer this meant to study the history of the
formation of scientific concepts. Hence, philosophy of science has to pay attention
to the ongoing evolution of science, it has to investigate and explicate the forma-
tion of scientific concepts in the real history of science.1 In a nutshell, then, ��
contends:

1This entails a specific difficulty for contemporary philosophy of science, in particular philosophy
of mathematics. Today, the latter is not too much interested in ‘real mathematics’ and its historical
development, but rather in its so-called logical foundations. The more advanced topics of mathematics
are assumed to contribute nothing to the philosophical understanding. In contrast, Cassirer was inter-
ested in contentful mathematics, since a basic assumption of his philosophy of science was that science
and mathematics can only be understood by studying its real history. Hence, his answer of what are the
common foundational syntheses requires something more than elementary mathematics.
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The common foundational syntheses on which mathematical and phys-
ical knowledge are based, are provided by the method of ‘ideal ele-
ments’.

The point Cassirer wants to make is that mathematicians and physicists are both
using the methods of ideal elements. This claim is in stark contrast with modern
views according to which the mathematicians are, so to speak, already insidethe
sphere of ideal objects, while the physicists, when they are offering their idealized
laws and models that do not hold good in the real world, somehow attempt to enter
the ideal domain but, strictly speaking, never succeed in getting in.

ST claims that this dichotomy is misleading. Mathematics should not be char-
acterized as a realm of ideal objects while physics is said to be confined to the
crude and non-ideal empirical sphere. Principally, the domain of mathematics is
not too different from that of physics. Also within mathematics a lot of idealis-
ing is necessary to formulate and prove interesting theorems in a sea of ephemeral
phenomena. In other words, one has to provide appropriate settings 2 in order to
be able to do some interesting work in mathematics. This involves some sort of
idealising. In order to render plausible this thesis one has to explain what is the
role of ideal elements in the realm of geometry, or where idealisation takes place
in the realm of numbers. Cassirer gave detailed answers to these questions, but
today most philosophers seem to ignore them. For instance, in a recent discussion
on the influence of neo-Kantian idealism on Carnap’s AufbauAlan Richardson
comes to the conclusion that Cassirer failed to say clearly what is to be understood
by these foundational syntheses, and the allegedly ‘common foundational synthe-
ses’ remained mere verbiage [Richardson, 1997]. I think that Richardson’s verdict
is too hasty. Although a comprehensive answer to what are the common founda-
tional syntheses may be said to be missing in KUMM, a full-fledged answer can
be found in Substance and Function.

This does not mean that this answer is still fully satisfying today. The reason
is not that Cassirer hadn’t offered a good account of the methodology of ideal el-
ements. Quite the contrary. Since his days the methodology of ideal elements has
made great progress and therefore his account needs an update. In order to show
that Cassirer’s account of the method of ideal elements is not obsolete for under-
standing the role of idealisation one has to go beyond elementary mathematics.
Standard elementary mathematics is sanitised in such a way that the the role of
idealising in it is hidden from the eye. This should not be too surprising: for quite
a long time the idealisational character of physical knowledge has been ignored by
philosophy as well. Concentrating on some toy theories encapsulated in sentences
like ‘Copper expands when heated’ or ‘All swans are white’ the indispensable role
of idealisation hardly springs to the eye. Hence, with respect to matters of ideali-

2This expression has been coined by Wilson [1992].
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sation, a parallelity between ‘real’ mathematics and ‘real’ physics arises: in both
fields its role has been neglected by philosophy of science. Whilst philosophers of
science have made some progress to get into contact with ‘real physics’, the anal-
ogous re-orientation towards ‘real mathematics’ in philosophy of mathematics is
still in its beginnings.3 In this respect, a reconsideration of Cassirer’s philosophy
of science that deliberately dealt with mathematics and physics might be helpful. 4

3 Ideal Elements in Mathematics
Till the beginnings of the 19th century, a non-expert, for instance a philosopher,
might have been justified to conceptualise the domain of geometry as an unalter-
able sphere of ideal objects such as ideal points, ideal lines etc. From that time
onwards, however, it became more and more evident that Euclidean geometry was
less than perfect and ideal. Seen from a mathematical perspective, it could be said
to have certain conceptual defects which called for fixing. To formulate it in a
somewhat paradoxical way: too many theorems one wanted to be true, turned out
not to be true. Perhaps the simplest example was provided by projective geometry
of the plane. From a mathematical point of view it had long been known that be-
tween points and lines there existed a certain useful duality: for a given theorem
it was sometimes possible to obtain a new theorem by switching the terms ‘point’
and ‘line’: for instance, given the proposition that every two points determine a
single line, the dual proposition was that every two lines determine a point by their
intersection. Or, a triangle could be defined by its three vertices as well as by its
three intersecting sides.5

Unfortunately, in Euclidean geometry a dual of a theorem was not always a
theorem. For instance, although two points always determine a unique line, two
lines not always determine a point since two parallels do not intersect. The method
of ideal elements was to fix deficiencies of this kind. It introduced new ‘ideal
points’ located on a new ‘ideal line’ that rendered the originally incomplete duality
perfect.6 This could be done in several ways. One method was to conceive an ideal

3To be sure, there are promising exceptions, for instance, Corfield’s recent book ‘Towards a Philos-
ophy of Real Mathematics’ [Corfield, 2003].

4Before we go on it should be noted that Cassirer’s emphasis of the important role of ideal elements
in mathematics is not a special feature of his ‘critical idealism’ or the neo-Kantianism of the Marburg
school. In the 19th century, the issue of ideal elements was a common topic discussed by philosophers
of mathematics and mathematicians alike (cf. [Wilson, 1992]). This continued till the first decades of
the 20th century. After the rise of logicism and formalism the talk about ideal elements was no longer
to be considered a serious theme in philosophy of mathematics. In mathematics itself, mathematicians
continued to talk about them, but, as it seems, philosophers no longer were interested to listen.

5As a less trivial example one may mention the dual theorems of Pascal and Brianchon, see[Smith,
1959, pp. 331–336].

6For an insightful discussion of ‘ideal elements’ in the case of complex projective geometry, see
[Wilson, 1992]. Here, I restrict myself to some brief remarks on the more elementary case of real
projective geometry. An easily accessible, more detailed discussion can be found in[Torretti, 1978].
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point as an equivalence class of parallel lines in such a way that any two parallel
lines intersect at this ideal point. This sounded paradoxical, since the new ‘point’,
being an equivalence class of lines, seemed to be larger than the ‘line’ it was to be
a part of. Nevertheless, this method worked, and the new points and lines could be
shown to fulfil the tasks they were designed for.7

When they were introduced, these ideal elements aroused some suspicion among
the more conservative minded mathematicians. Ideal points and ordinary points
had not the same ontological dignity, so to speak. Only gradually ideal points and
ideal lines became citizens on a par with ‘ordinary’ points and lines. An important
step on the road to full recognition was the construction of models of projective
spaces. For instance, the points of the real projective plane could be conceptualised
as the set of lines through the origin of the real 3-dimensional vector space, and
correspondingly the lines of the projective plane could be conceived of as planes
through the origin.8 As a result of this and other developments, in the second half
of the 19th century geometry was no longer considered as the investigation of an
immutable domain of ideal objects but rather as an unfolding theory of generalised
spatial structures defined by appropriate ‘idealising’ constructions. Geometry was
no longer characterized as a theory of space in a narrow sense, but as a general
theory of Ordnungssetzungen(order posits) (cf. [Carnap, 1928]).

The philosophical upshot of this evolution was that even in geometry the role of
Kantian pure intuition was in decline. Instead of Anschauung, general principles
of theory construction began to play a central role such as principles of duality and
completion. More generally, considerations of practical and theoretical fruitful-
ness became dominant (cf. [Wilson, 1992; Tappenden, 1995]). This change was
grist to the mill of the neo-Kantians. In contrast to orthodox Kantians, the neo-
Kantians took the new developments as a confirmation of their Anti-Kantian claim
that the Kantian idea of pure intuition had to be abandoned in the light of modern
science and mathematics. According to Cassirer, the development of mathematics
in the 19th century made a naive intuition-oriented view of geometry untenable.
He whole-heartedly welcomed the new developments in geometry. 9

The methodology of ideal elements was not confined to geometry. Also the
domain of algebra underwent a growing variety of idealisational procedures which
unfolded the original narrow domain of numbers in a multifaceted way. Maybe
the best-known example is the idealisational procedure of Dedekind cutswhich
Cassirer chose as his paradigmatic case.

Let us consider the rational number Q as the objects ‘antecedently understood’,
to use an apt terminology of Hempel. As is generally agreed, rational numbers are

7Cf. Wilson’s discussion of von Staudt’s method of ‘concept-objects’.
8Cf. [Torretti, 1978, Chapter 2.3].
9His discussion of the philosophical relevance of projective geometry in Substance and Function

may still be considered as one of the best that can be found in the philosophical literature.
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useful concepts, but for certain applications they are less than optimal, for instance
for measuring or solving polynomial equations. One is in need of more numbers,
the so called irrational numbers. In other words, with respect to the problems of
solving polynomial equations, the domain of rational numbers does not qualify as
an appropriate setting. In order to overcome this unpleasant situation one has to
construct new ‘ideal’ or ‘imaginary’ numbers that provide solutions for equations
for which ‘real’ solutions do not exist.

In order to construct the missing irrational numbers we may consider the set
of ‘cuts’ of Q, i.e., the set of partitions of Q in two mutually disjoint and jointly
exhaustive subsets such that all elements of the lower cut are strictly smaller than
all elements of the upper cut. Obviously, a cut is determined by either its lower or
upper cut alone. Hence, we are entitled to carry out the completion of Q by the
lower cuts. Denoting the power set of all subsets of Q by �Q, a lower cut � � �Q
may be precisely defined as follows: � is a lower cut iff it satisfies the following
two conditions:

1. � is a downset, i.e., for all � � �� � � � � � � �.

2. � has no maximal element.

Denote the set of lower cuts of Q by �Q. Then there is a canonical embedding
of Q –e� �Q by mapping a rational number � � Q to the cut ���� defined by
	��� �� ��� � 
 ��. This means, rational numbers can be identified with lower cuts
whose upper cuts have a minimal element, to wit � itself. Hence the set of rational
numbers Q can be identified with its image 	(Q)� �(Q). The interesting point is
that �(Q) is larger than 	(Q)—not all lower cuts have the form 	���. 10 A typical
example is the cut ��� �� 
 �� which is to be identified with the irrational number�
�. The set ��� �� 
 �� is not a rational cut since its upper cut ��� �� 
 ��

has no minimal element. The next step is to identify ��Q� with the set R of real
numbers by showing that the arithmetic of rational numbers Q can be extended
to the arithmetic of �(Q) in such a way that the elements of �(Q) play indeed
the arithmetic roles they are designed to play. Summing up we may say that by
embedding Q into �(Q) one has completed the domain Q of rational numbers by
certain ‘ideal elements’ in such a way that the completed domain �(Q) behaves
arithmetically better than Q.

Although for the completed domain of real numbers R arithmetic works more
smoothly than for rational numbers, even R leaves something to desire, since it is
not algebraically complete. In order to get a fully satisfying theory of polynomial
equations for which the fundamental theorem of algebra holds, the algebraically
incomplete field R should be replaced by the algebraically complete field C of

10Actually, the cardinality of �(Q) is much larger than that of Q: Q is countable but �(Q) has the
cardinality of the continuum.
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complex numbers. This may be done by considering complex numbers as pairs
��� �� of real numbers �� � � �, such that the original real numbers are identified
with pairs of type ��� ��. Again, this process may be conceived as an idealising
completion process, although of a different kind than Dedekind’s. For our pur-
poses these differences are not important, the upshot for a theory of idealisation is
that the introduction of new ‘ideal’ or ‘imaginary’ elements in geometry or num-
bers, not only enlarges the domain of objects to be considered, but, and this is the
most important characteristics, it enhances the global conceptual features of the
domain to be considered. Put in a nutshell, it leads to construction of new, more
appropriate settings for doing geometry and algebra. Thus, these theories are not
to be confined to their fixed domains of platonic entities, rather they are to be con-
ceived as open fields of idealising constructions. These idealising constructions
introduce a wealth of new objects that render untenable any ‘intuitionist’ concep-
tion of mathematics as the theory of an intuitively given unalterable domain of
timeless platonic entities. Although it may well be the case that mathematics once
started in some intuitive domain, it certainly did not remain confined to it.

One of the deepest philosophical insights of Cassirer’s idealist philosophy of
science was that constructions such as Dedekind’s are not only mathematically in-
teresting technical achievements. Rather, these idealisational constructions are to
be considered as the prototypes of idealisational constructions essential for 20th
century’s mathematics in general.11 Evidence for this sweeping claim is that ‘ide-
alisation’ and ‘completion’ in the sense of finding ‘appropriate settings’ for the
problems one is studying is now a routine part of the mathematicians’s work. Typ-
ical are the following remarks of the mathematician Horst Herrlich; 12 After having
listed nine assertions concerning set-theoretical topology, he remarks:

Although we would like the above statements to be true, we know that
none of them is [true]. . . in the category Topof topological spaces and
continuous maps. However, there exist settings—more appropriate it
would seem—in which the above statements are valid. The category
Topcan be decently embedded in larger, more convenient categories
such that . . . the above statements are not only true but, in fact, special
cases of more general theorems. [Herrlich, 1976, p. 265]

11For instance, the proof of one of the most famous theorems of 20th century mathematics, Stone’s
representation theorem, may be considered as a generalisation of Dedekind’s cut construction.

12I’d like to emphasise that Herrlich’s remarks have no ‘philosophical’ intentions. His article may
be characterized as a mixture of a survey and a research paper. Philosophers of mathematics certainly
do not belong to its intended audience. The general tenor of Herrlich’s paper is in no way original,
analogous remarks for other research areas may easily be found in many places.
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Then he goes on and proposes other categories 13 than Top as more appropri-
ate settings for doing topology. These categories are more appropriate settings
for doing topology since in them the above mentioned ‘assertions concerning set-
theoretical topology’ become provable theorems. Thus, category theory as a gen-
eral theory of local mathematical frameworks offers a framework in which math-
ematicians can discuss problems of appropriate setting in a way that goes beyond
a subjectivist presentation of personal whims and preferences. Of course, there is
still room for negotiation. It may turn out that there are good reasons for wishing
one of two incompatible theorems to be true. An interesting case is the axiom of
choice ���� and the axiom of determination ��
�: for many domains of mathe-
matics the axiom of choice ���� seems to be virtually indispensable (e.g. topol-
ogy) while for others, the axiom of determination ��
�, which may be considered
as the opposite to ����, appears more attractive. Examples like these can be easily
multiplied. They show that mathematics of 20th century has been fully aware of
the importance of the method of ideal elements, or, more generally, of idealisation.
Unfortunately, this issue has yet to find the attention it deserves from the side of
philosophy of mathematics:

The official position, dominant since the start of this (the 20th) cen-
tury, maintains that any self-consistent domain is equally worthy of
mathematical investigation; preference for a given domain is justified
only by aesthetic considerations, personal whim or its potential phys-
ical applications. [Wilson, 1992, p. 152]

Although the ‘official position’ meanwhile may have lost some of its strength,
having given room for some less global, more local and specific considerations, it
is remarkable how far ahead Cassirer’s account was compared with that of most
philosophers of mathematics who still stick to the ‘official position’. 14 His account
may be characterized as a kind of a general pragmatics of idealisation and comple-
tion. As a last mathematical evidence for the importance of idealising completions
in mathematics I’d like to mention Stone’s representation theorem that provided
the first non-trivial relation between topology and logic.

Let � be any Boolean algebra. Every � � � defines an ideal, to wit, the set
���� �� ��� � � �� � � ��. Denoting the set of ideals of � by IDEAL(�) one ob-
tains a map � � � �� IDEAL(�). One can show that in general IDEAL(�)

13A category may be informally characterised as a local universe of mathematical discourse, for a
detailed discussion of categories and their role in mathematics see[Adámek et al., ].

14It is a pity that in the recent work on the issue of ‘appropriate settings’ for mathematical the-
ories Cassirer’s contributions are completely ignored. Wilson [1992] asserts in a footnote that it is
worth mentioning that various philosophers attempted to extend the ‘principle of continuity’ (i.e., the
introduction of ideal elements) into general philosophy of language, e.g. Cassirer in [Substance and
Function]. This is a somewhat strange remark: Substance and Functiondeals with many things, but
certainly not with a ‘general philosophy of language’.
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is larger than �, since there are ideals that are not of the form ����. These
‘non-principal’ ideals correspond to the non-rational numbers in the analogous
Dedekind completion of rational numbers. In other words, IDEAL(�) may be
conceived as a completion of �. As was shown by Stone in the thirties, this com-
pletion defines a bridge from the theory of Boolean algebras to the theory of totally
disconnected Boolean (or Stone) topological spaces in the sense that IDEAL(�)
uniquely defines a topological space whose lattice of open and closed sets is iso-
morphic to � (cf. [Davey and Priestley, 1990]). Thereby one obtains a ‘concrete’
set-theoretical representation of the ‘abstract’ Boolean algebra �.

Stone’s theorem has been considered as one of the most important theorems of
20th century’s mathematics (cf. [?]). This is not the place to discuss this assess-
ment in any detail but certainly strongly evidences that idealising completions are
of utmost importance for contemporary mathematics. Guided by �� Cassirer did
not confine the method of ideal elements to mathematics. According to him, the
same kind of idealising completions can be found in the empirical sciences. This
will be discussed in the next section.

4 Idealisation in Mathematical Physics
Critical idealism argued for the importance of idealisations in physics and other
empirical sciences from an empirical perspective, so to speak. It is a fact that the
advanced sciences make heavy use of mathematics, and it is the task of philosophy
of science to make sense of this fact. For instrumentalist and empiricist currents
of philosophy of science the employment of advanced mathematics in all areas
of science presents a conceptual difficulty since according to them scientific con-
cepts have only the task of reproducing the given facts of perception in abbreviated
form [Cassirer, 1910, p. 148]. If this were really the case, the task of philosophy
of physics would be achieved, if every concept of a physical theory had been dis-
solved into a sum of perceptions such that this sum could be used to recover the full
realm of empirical facts falling under that concept (cf. [Cassirer, 1910, p. 151]).
But such a replacement of mathematical concepts by perceptual or observational
ones is virtually impossible:

The theories of physics gain their definiteness from the mathematical
form in which they are expressed. The function of numbering and
measuring is indispensable even in order to produce the raw material
of ‘facts’ that are to be reproduced and unified in theory.

...

[For] it is precisely the complex mathematical concepts, such as pos-
sess no possibility of direct sensuous realisation, that are continually
used in the constructions of mechanics and physics. Conceptions,
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which are completely alien to intuition in their origin and logical prop-
erties, and transcend it in principle, lead to fruitful applications within
intuition itself. This relation finds its most pregnant expression in the
analysis of the infinite, yet is not limited to the latter. [Cassirer, 1910,
p. 116]

Exactly this intertwinement of ‘factual’ and ‘theoretical’ elements is the base
of which empirical theories [Cassirer, 1910, p. 130].15 A typical example is the
representation of moving bodies in space. As long as space is conceived just as
a sum of visual or tactile impressions it does not allow ‘motions’ in the sense of
physics:

Motion, in the universal scientific sense, is nothing but a certain rela-
tion into which space and time enter. Space and time themselves, how-
ever, are assumed as members of this relation not in their immediate,
psychological and ‘phenomenal’ properties, but in their strict math-
ematicalmeaning..... [Motion] demands the continuous and homo-
geneous space of pure geometry as a foundation; continuity and ho-
mogeneity, however, never belong to the coexistence of the sensuous
impression itself, but only to those forms of manifold, into which we
constructively transform it by certain intellectual postulates. In this
way, from the very beginning motion is cast in a conceptual frame-
work. [Cassirer, 1910, p. 118]

In brief, motion is a fact of conception, not of perception. However, it is im-
portant to note that the idealising method of empirical science should not simply
be conceived as a replacement of the directly observable experiences by their ideal
limit cases. This would suggest that the objects empirical science is dealing with
are in line with the objects of perception. Thereby idealisation would boil down
to not much more than approximation. Idealisation could be characterized as a
continuation of empirical observation. Cassirer emphatically insists that this is not
the case. The ideal elements to be introduced are not just some other things we
add to the ‘real’ things. Rather, they express a certain way we deal with the ‘real’

15 Margenau, once a colleague of Cassirer’s in Yale, was one of the few working scientists of the 20th
century who took seriously neo-Kantian philosophy of science (cf. [Margenau, 1950]). He described
the entanglement of mathematical and empirical components of physical knowledge paradigmatically
as follows: ‘... we observe a falling body, or many different falling bodies; we then take the typical body
into mental custody and endow it with the abstract properties expressed in the law of gravitation. It is no
longer the body we originally perceived, for we have added properties which are neither immediately
evident nor empirically necessary. If it be doubted that these properties are in a sense arbitrary we need
merely recall the fact that there is an alternate, equally or even more successful physical theory—that
of general relativity—which ascribes to the typical bodies the power of influencing the metric of space,
i.e. entirely different properties from those expressed in Newton’s law of gravitation’[Margenau, 1935,
p. 57].
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things. This may become plausible, if we consider in some detail the construc-
tion of points as limiting elements of other more basic ‘empirical’ objects called
regions.

The underlying problem may be described as follows: In physical geometry and
other sciences the talk of points as basic elements is ubiquitous. Nevertheless, in
‘reality’ one never meets points. They are idealisational constructs. The measured
values of a physical magnitude never assume points as their values simply because
this would amount to absolute precision which real science never reaches. Instead,
in real science, the measured values are assumed to be located in some more or less
extended intervals. Usually, these intervals are considered as sets of points. Thus,
even if one admits that our measuring methods never reach the points, we are ac-
customed to consider them as the basic building blocks of space, time, space-time,
and other generalised spatial structures used in science. From a strictly empiri-
cal point of view, however, points appear to be rather contrived entities. It would
be too simple, however, to consider them just as convenient mathematical fictions
that ‘somehow’ play the role they are assumed to play. This would amount to a
strict separation between the domain of empirical reality on the one hand and the
domain of mathematics on the other hand whereby it becomes impossible to bring
them together again by somehow establishing a link between them by stipulation.
The question is how to avoid the standard dichomotic account.

An answer, or at least some hints, where one may look for an answer, can
be found in Whitehead’s method of ‘extensive abstraction’ [Whitehead, 1929].
Whitehead was probably the first who attempted to replace points as fundamental
entities of spatial and temporal structures by objects that were empirically more
accessible. In the case of space and spacetime these entities may be character-
ized as regions. Intuitively, a spatial region may be described as a more or less
well-shaped part of space. Whitehead’s programme was to take regions instead of
points as the basic fundamental building blocks and to construct points and their
geometric relations from regions and their relations. Whitehead only gave an in-
formal sketch of how this might work but his account can be reconstructed in a
formally rigorous way (cf. [Mormann, 1998]).

The interesting point is that this construction of points from regions can be
conceived as a generalisation of Dedekind’s method of cuts. That is to say, the
insertion of points as ideal or limit elements of the realm of regions is an idealising
completion process analogous to the construction of real numbers from rational
ones. Ignoring the technical details it goes like this: Assume � to be a complete
Boolean algebra of regions: This means that for two regions � and � a relation� is
defined such that ����� satisfies the axioms of a complete Boolean algebra. The
relation ‘� � �’ is to be read as ‘The region � is part of the region �’. One observes
that the existence of points is not presupposed. In order to introduce points, one
needs a further relation 	 such that � 	 � is to be intuitively read as ‘a is an
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interior part of �’ in the sense that a does not touch the boundary of �. 16

A set � of regions is a ‘round ideal’ iff it is a downset of regions, and for
� � � there is always a region � such that � 	 � � �. The set of round ide-
als IDEAL��� � of � corresponds to the Dedekind �(Q) of Q, while � corre-
sponds to Q. An embedding �–e� IDEAL��� � is given by � �� ��� � 	 ��.
IDEAL��� � can be topologically represented in the sense that there is a topolog-
ical space17 ����IDEAL������ �����IDEAL������ such that a region � � � is
represented by a regular open subset 	��� � �����IDEAL��� ��� � IDEAL��� �.
Although this construction is technically more complicated than that of Dedekind
cuts, it follows the same pattern. The upshot is that by this idealising completion
regions can be represented by point sets. This is a necessary condition if one wants
to speak of ‘motion’ in a scientific sense. More precisely, the completion of � by
IDEAL��� � allows to conceive processes as continuous mappings � �� � of a
time interval � into a topological space � defined by IDEAL��� �.

Before leaving the general discussion of idealising completions it may be ex-
pedient to emphasise once more the formal similarity of the three examples con-
sidered so far. All can be described as embeddings �–e����� of the domain �
into an ideal completion ����:

1. The completion of Q to R by a map Q �� R.

2. The completion of B to IDEAL(B) by a map B �� IDEAL(B).

3. The completion of W to IDEAL�(W) by a map W �� IDEAL�(W).

Of course, not just every map will � �� ���� will do as an honest comple-
tion, certain structural requirements have to be satisfied.18 Thus one may speak of
a general theory of completions in which the examples (1)–(3) can be considered as
paradigmatic cases,19 This corroborates Cassirer’s claim that Dedekind-like com-
pletion methods are among the important foundational syntheses on which mathe-
matics andempirical sciences are grounded. This corroboration is the more com-
pelling the more one delves into the intricacies of modern mathematics and sci-
ence. Without going into the details of this general theory of completion methods,

16Actually it is sufficient to take the relation � of interior parthood as the only primitive relation,
since the standard parthood relation � can be defined in terms of� (cf.[Mormann, 1998]).

17A topological space �������� is a set � endowed with a set ���� of open subsets of � satis-
fying certain properties. Details can be found in any textbook on topology. For a succinct presentation,
see [Davey and Priestley, 1990]. If the topology is understood, a topological space �������� is
denoted by � .

18A comprehensive general discussion of the many kinds of completions occurring in various areas
of mathematics may be found in (cf. [Adámek et al., , III.12]).

19It is a nice terminological coincidence that in these examples idealisations go together with ideals.
This is not always the case. For instance, in topological contexts, idealisations are often described as
compactifications, which have not direct idealising connotations.
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one may note that idealising completions can be conceived of as representations:
the incomplete and ‘non-ideal’ manifold� is representedby the completed ‘ideal’
manifold ����. For instance, an incomplete perceptual manifold of experiences
is represented by a completed conceptual manifold. This kind of construction is
ubiquitous in physics and other empirical sciences.

The Whiteheadean construction of physical space is a typical example but in no
way the only one. Quite the contrary, physical space is only one among a wealth of
spatial constructions employed in the empirical sciences. One may even contend
that it does not provide the best example for this kind of constructions, since its
overly simple appearance may hide its conceptually constructed character. This
misapprehension is avoided when one considers the construction of state spaces
of empirical theories in general. State spaces are defined with respect to certain
systems, i.e., a state space is always a state space of a system or a kind of systems.
The concept of a systemis taken as primitive. Examples of systems are provided by
mechanical or thermodynamic systems such as a particles, projectiles, pendulums,
planets, gases, liquids, lasers. Even entities as large as galaxies may be considered
as systems, or the universe itself taken as the largest possible system. Generally, a
system � is an appropriately chosen chunk of the world taken to be the object of
theoretical investigation. Systems are assumed to be possibly in different states.
For instance, an atom considered as a system in the sense of quantum theory may
be in an excited state or not. In order to be accessible to theoretical considerations
at all, a class of possible statesof � must be selected. This class of possible states
is denoted by ���� or simply � if � is understood. ���� is called the state space
of �.

Here, ‘possible” is to be understood in the weak sense of logical possibility.
That is to say, some of the elements of � may well turn out to be really impossi-
ble, i.e., physically impossible states for �. For instance, in first approximation,
the state space ���� of a material object � may be taken to be the whole universe,
even if most places in the universe are physically inaccessible for �. The state
space of a system � serves only as general stage on which its story is rehearsed. It
is not assumed that � has to occupy all possible locations during the play. Quite
the contrary. It is a crucial task of the theory to select certain areas as the ‘really
possible” states and to classify their complement as a sort of no-go area for �.
Thereby, a modal component is introduced in the theory’s framework. For a rough
and preliminary distinction between possible and impossible states purely set the-
oretical methods will suffice, but for a more refined determination, in particular for
the distinction between possible and impossible processes, more refined (geomet-
rical) structures of the state space come into play. Let us consider some examples.
The first is Cassirer’s and once again rehearses the case of ‘physical space’:

The individual positions of Mars, which Kepler took as a basis ...
do not in themselves alone contain the thought of the orbit of Mars;
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and all the heaping up of particular positions could not lead to this
thought, if there were not active from the beginning ideal presuppo-
sitions though which the gaps of actual perception are supplemented.
What sensation offers is and remains a plurality of luminous points in
the heavens; it is only the pure mathematical concept of the ellipses,
which has to have been previously conceived, which transforms this
discrete aggregate into a continuous system. Every assertion concern-
ing the unitary path of a moving body involves the assumption of an
infinity of possible places; however, the infinite obviously cannot be
perceived as such, but first arises in intellectual synthesis and in the
anticipation of a universal law. Motion is gained as a scientific fact
only after we produce by this law a determination that includes the
totality of the space and time points, which can be constructively gen-
erated, in so far as this determination coordinates to every moment
of continuous time one and only one position of the body in space.
[Cassirer, 1910, p. 118–119]

If even for physical space—conceived as a state space—‘real’ and ‘not-real’
elements are inseparately interwoven, this holds a fortiori for general state spaces
[Cassirer, 1910, p. 117]. Physical space is only a first evidence that idealising
elements always play an essential role. For instance, consider an elementary ther-
modynamical system � characterized by the two quantities of volume and pres-
sure only. As a first approximation of the state space ���� one may take a 2-
dimensional Euclidean plan E having an orthogonal base consisting of the two
vectors � (volume) and � (pressure). Since negative volume and pressure do not
make sense the ‘really possible’ states of S are to be found only the first quadrant
of E. Actually, further constraints will play a role. If we assume the ideal gas law
to hold, the product ��� �
��� � must be constant for all ‘really” possible states of
�. Hence, the state space ���� of possible states of � is the hyperbola defined by
the equation ��� �
��� � = constants.

State spaces are not empirical objects given by nature. Rather they depend on
the theories used. Depending on the theory different state spaces for the ‘same’
� may be obtained.20 In any case, the first step for theoretically understanding
the behaviour of any empirical system S consists in providing an appropriate state
space. In other words, a system � enters the theoretical realm only if it � rep-
resented by an appropriate state space. Now, as is already suggested by the term
space, ���� � � is usually not simply a set but a space, i.e., a set endowed with
some geometric structure. This structure is employed to differentiate between re-
ally possible and really impossible states of the system.

20Hence, one might have written ���� � � instead of ����.
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What is really interesting, however, is not the state a system occupies or does
not occupy, but rather the processes a system may run through. State spaces pro-
vide useful representations of empirical processes by representing them as paths
in the state space. Mathematically a path is defined as a map � � � �� ���� � �
of the unit interval � into the state space ���� � �. Only a few paths represent pro-
cesses allowed according to the laws of the theory, most paths represent forbidden
ones, i.e., those that are impossible according the theory. It may be considered
as the essential task of the theory to distinguish the possible and the impossible
ones. In order to do this the geometric structure of the representing state space has
to be brought into play. Typically, constraints on admissible paths are defined by
geometric concepts such as vector fields, differential and tensor forms. All these
devices are constructions based on the introduction of ideal elements. The con-
tinuous motion of a body in physical space is just the most elementary case, but
I hope to have shown that it already suffices to grasp the philosophical essence of
the huge variety of spatial constructions used in science.

Up to now we have discussed only conceptual idealisations, i.e., idealisations
that amount to an embedding or completion of an empirical manifold of percep-
tions or experiences into a conceptual framework that is richer and better structured
than the empirical manifold we started with. This might suggest that idealisation
in the sense of Cassirer is merely a conceptual activity ‘in the head’. I think, this
would amount to a misunderstanding or at least a too narrow interpretation suc-
cumbing to the old anti-idealist prejudice according to which idealism is always
concerned with the ‘mental’ (cf. [Haack, 2002]). Instead, I’d like to propose to
understand idealising as an activity to construct ‘appropriate settings’ (cf. [Wil-
son, 1992]) for certain scientific purposes. According to Cassirer, it is a matter
of science what counts as appropriate settings and how they are constructed, and
what are the means for their constructions. It may well be the case that science
will invent hitherto unknown methods of idealising, i.e., constructing ‘appropri-
ate settings’ for its purposes. Examples are the various methods of simulation
that recently have been developed and play an ever more important in many areas
of science.21 There is no reason to assume that for Cassirer’s philosophy of sci-
ence the arsenal of idealising methods is a priori restricted to purely conceptual
idealisations. Rather, idealising may involve machines, simulations and possible
other devices that bring about appropriate settings for interesting stable phenom-
ena. Thus we may speak, somewhat paradoxically, of material idealisations. I

21Another option is to conceive the so called ‘nomological machines’ of Cartwright as idealising
devices [Cartwright, 1995]. Indeed, as Pickering showed sometime ago, there are far-reaching similar-
ities between the building of highly complicated nomological machines like bubble chambers of parti-
cle physics and the construction of conceptual systems such as Hamilton’s quaternions (cf.[Pickering,
1996]). On a more elementary level, one could read Lakatos’s discussion of establishing a context for a
valid proof for Euler’s theorem as a series of attempts to build a smoothly running conceptual machine
(cf. [?]).
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think this is not a too far-fetched generalisation of Cassirer’s account. For him, the
most important feature of scientific conceptualisation has always been the serial
character of concepts through which they lawfully connect a manifold of isolated
experiences [Cassirer, 1910, p. 148]. From an algorithmic perspective, a serial
concept is nothing but a conceptual machine that produces for a given input an
output following its internal rules. According to �� this holds for scientific con-
cepts in general, they may be empirical or mathematical ones. More precisely,
physical concepts only continue what is evident for mathematical concepts:

... the physical concepts only carry forward the process that is be-
gun in the mathematical concepts, and which here gains full clarity.
The meaning of the mathematical concept cannot be comprehended,
as long as we seek any sort of presentational correlate for it in the
given; the meaning only appears when we recognize the concept as
the expression of a pure relation, upon which rests the unity and con-
tinuous connection of the members of a manifold. The function of the
physical concept also is first evident in this interpretation. The more it
disclaims every independent perceptible content and everything pic-
torial, the more clearly its logical and systematic function is shown.
[Cassirer, 1910, p. 166]

Thus, the sameness thesis �� may be conceived as providing an appropri-
ate epistemological perspective for dissolving the problem of the applicability
of mathematics in empirical science. After all, the applicability of mathematics
appears as a miracle only if the spheres of mathematics and the real world are
totally separated. This separation, however, is nothing but the result of a bad meta-
physics that erroneously reifies methodological differences. From the perspective
of �� , the concepts used in both area are based on the same foundational syn-
theses. More specifically, conceptualisation in mathematics as well as in empirical
science amounts to idealising constructions of appropriate settings (completed ide-
alized manifolds) for which lawful regularities and stable phenomena obtain.

5 Concluding Remarks
For a general assessment of Cassirer’s ‘critical idealist’ philosophy of science it is
expedient not only to discuss some of its more specific technical theses such as ��
but also to offer an attempt to locate critical idealism on the general map of 20th
century’s philosophy of science. In this respect I’d propose to conceive critical
idealism as a kind of moderate conventionalism. This is suggested by Cassirer’s
contention that ideal constructions may be characterized as conventions. From the
critical idealist’s perspective, conventionalism is the thesis

that thought does not proceed merely receptively and imitatively, but
develops a characteristic and original spontaneity. This spontaneity is
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not unlimited and unrestrained; it is connected, although not with the
individual perception, with the system of perceptions in their order
and connection. [Cassirer, 1910, p. 187]

Occasionally, Cassirer even adopts an explicitly instrumentalist stance:

The objects of physics: matter and force, atom and ether can no longer
be misunderstood as so many new realities for investigation, and real-
ities whose inner essence is to be penetrated, when once they are rec-
ognized as instruments produced by thought for the purpose of com-
prehending the confusion of phenomena as an ordered and measurable
whole. [Cassirer, 1910, p. 166]

An important feature of the critical idealist’s modest conventionalism is its rela-
tional holistic component: although the manifolds of our experiences are atomic in
the sense that sensuous experiences can be isolated from each other, the idealised
completed manifolds of our conceptualisations are connected in the sense that a
theory arising from such an idealised manifold is not confronted with isolated ex-
periences but with a relationally conceived reality as a whole.

Locating neo-Kantian philosophy of science in the neighbourhood of conven-
tionalism is not intended to offer a full description of this philosophical current
but at least it is a starting point for overcoming the allegedly unbridgeable abyss
between idealist and analytic philosophy of science, which has hindered a fruitful
discussion between both currents for such a long time.
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