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We prove James’s sequential characterization of (compact) reflexivity in set-tA@nDC, whereDC is

the axiom of Dependent Choices. In turn, James’s criterion implies that every infinite set is Dedekind-infinite,
whence it is not provable iZF. Our proof inZF+DC of James’ criterion leads us to various notions of
reflexivity which are equivalent iZFC but are not equivalent i#F. We also show that the weak compactness

of the closed unit ball of a (simply) reflexive space does not imply the Boolean Prime Ideal theorem : this solves
a question raised in [6].
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1 Introduction

It has been proved by James (see [12]) that a real Banach Bfaceflexiveif and only if it satisfies the following
Property :

(J) : There exists some real numhgic]0, 1[ such that for every sequen¢e, ),cn of the unit sphere
of E, there exist& € N such that the distance between the respective convex hylis of < k} and
{ai:i>k‘} is < 9.

Notice that PropertyJ) has acountable character the Banach spacg satisfieqJ) if and only if every closed
separable subspace &f satisfies(J). Say that a real Banach spagkis J-reflexiveif F satisfies Property

(J). Various proofs of James’s above characterization of reflexivity occur in the literature (see for example two
different proofs by James in [12] and [13], or the short new proof by Oja in [16]), however, all these proofs rely
on some form of théA\xiom of Choicg AC), and they involve various notions of reflexivity for Banach spaces

E (weak compactness of the closed unit balEhfSmulian property ot surjectivity of the canonical mapping

from E to its second dual, ...). Of course, equivalences between these notions of reflexivity are provable in
set-theory with choicFC, but generally, they do not hold in set-theory without chdde; most of them rely

on the axiom oDependent Choicg® C), the axiom oHahn-Banaci{HB) or theBoolean Prime Idea(BPI)
-see Section 2.1-.

In different ways, James ([13] or [2] p. 51-56) and Oja ([16]) both prove@w-HB+DC that every
J-reflexive Banach spacE is onto-reflexivei.e. : “The canonical mappingiz : £ — E” is onto.” (see
Notation 2.6). In [12]-Theoreni- which relies on [11]-Lemmd-, James proved iZF+DC that given a
J-reflexive Banach spadg, every closed separable subspdcef FE is w-reflexive i.e.: “Every descending
sequence&’y O Cy; D Cy--- D (... of nonempty closed bounded convex subset¥ dfias a nhonempty
intersection.” In this paper, given a normed spatgave define theonvex topologpn E as the topology whose
closed sets are intersections of finite unions of closed convex subdétanfl we introduce the following strong
notion of reflexivity for £, which we callconvex-reflexivity “The closed unit ball o2 is compact in the convex
topology.” We then prove iiZF+DC the following statement (see Theorem 3.9 of Section 3) :
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4 M. Morillon: James sequences and Dependent Choices

J2C, (James Criterion) Every J-reflexive Banach space is convex-reflexive.

This result improves the classical proofs because, on the one hand, convex-reflexivity impliesretéxivity

and onto-reflexivity iiZF (see Proposition 4.7) but none of the converse implications hold&'i(see Proposi-
tion 4.11) and on the other hand, our proof linksZif'+DC convex-reflexivity, J-reflexivity and well-founded
trees ; moreover, it yields i&F arank of J-reflexivityfor J-reflexive Banach spaces with a dense well-orderable
subset. Also notice that our proof can be shortened if oneA§eésee Remark 3.10), yielding a short new proof
of James'’s criterion iiZFC.

Our paper is organized as follows : in Section 2 we recall various weak forms of the Axiom of Choice, we set
out some definitions and notation, and we lay out various “weak” topologies on a normed space, in Section 3 we
show inZF+DC how to saturate a filter according to some numerical constraint -without using any maximal
filter- (Section 3.2), and we prove the statem&2€ in ZF+DC (see Theorem 3.9 in Section 3). On the way we
get inZF similar results for spaces with a dense well-orderable subset. In Section 4 we comp&reanious
notions of reflexivity, and we obtain sevef&F-equivalent characterizations of J-reflexivity (see Section 4.2).

In Section 5, we prove thal2C implies the following weak form of the axiodC : “Every infinite set is
Dedekind-infinite." It follows thatJ2C is not provable irZF. Finally, in Section 6, we solve Questi@il1 of

[6].

2 Preliminaries

2.1 Some consequences &fC, some models oZF
2.1.1 Consequences AC

In this section, we recall various weak forms of the Axiom of Choice which will be used in this paper : see [14],
and also [10] for a recent account on the relative strength of numerous consequences of the Axiom of Choice.
Given a non-empty family 4;);cr of non-empty sets, any elemefite []._; A; is called achoice functiorfor

the family (A;);er.

icl

(AC, Axiom of Choice). For every non-empty family4;);c; of non-empty setg ], A; is non-empty.

The following well-known consequence AfC, is not provable irZF, and it does not imphAC :

(BPI, Boolean Prime Ideal axion). Every non-trivial Boolean algebra has a prime ideal.

In ZF, the axiomBP1 is known (see [10]) to be equivalent to the Tychonov axiéar,every family(X;);c;
of compact Hausdorff spaces, the topological prodygt ; X; is compact.

The Hahn-Banach axiom is not provableZilr, it is a consequence &PI but does not imply it :

(HB, axiom of Hahn-Banach, analytic form). If £ is a normed space over the field of real numbgrsf
p: E — Ris asublinear mapping and jf : F' — Ris a linear mapping defined on a subspdcef E satisfying
Vx € F, f(x) < p(z), then, there exists a linear mappigg: £ — R extendingf and dominated by (i.e.
Vo € E g(z) < p(x)).

Here, amapping : £ — Ris said to besublinearif for everyz,y € E and evenp € R, p(z+y) < p(x)+p(y)
andp(\x) = Ap(z).

Here are some “countable” axioms of choice.

(DC, axiom of Dependent Choices For every non-empty séf and every binary relatio? on X satisfying
Vo € X Jy € X xRy, there exists a sequence,, ),y Of elements oK such thatvn € N z,, Rz, 1.

(AC(N), Countable axiom of Choicg. For every sequenced,,),cn of nonempty sets, the prodddt, . A»
is nonempty.

A setl is Dedekind-finitg D-finite for short) if there is no one-to-one mapping frofinto 7. In the opposite
case, the sett is Dedekind-infinitg D-infinite).

(D, Dedekind-infinite). "Every infinite set is Dedekind-infinite”.
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(AC(N, fin), Countable Axiom of Choice for Finite set3. For every sequencéd,,),cn 0f nonempty finite
sets, the seff],, .y A is nonempty.

Notice thatAC(N, fin) is equivalent to the fact that any countable union of finite sets is countable.
It is known that, (see [14]DC = AC(N) = D = AC(N, fin) and that none of the converse implications

holds. Links between axionI3C, D, HB, andBPI are well known : see [14], and also [10]. In particular, it is
known thatBPT does not implyD and thatDC does not implyHB.

The following models will be referred to later on to compar&iF various notions of reflexivity.

2.1.2 The “basic Cohen model”

This model satisfieZF+-D. More precisely, there is a dense subsef R which is Dedekind-finite (see [14]
p. 66). Notice that sincé = U, cz(I N [n,n + 1)), it admits an onto mapping : I — N. However, sincd

is totally orderable AC(N, fin) restricted to non-empty, finite subsetsioholds. (In fact, the model at stake
satisfies BPI1.)

2.1.3 The “Second Cohen model”

This model (see [14]) satisfie&F + -AC(N, fin) : indeed, in this model, there exists a sequefg),,cn Of
two-element subsets @(RR), the set of all subsets &, satisfying[ [, .y A» = @.

2.1.4 A model due to Pincus
In [17] is given a model oZF+—-HB.

2.2 Well-founded relations

Given a binary relation< on a setF/, we denote by~ the reverserelation (thuse > yiff y < x). A binary
relation< on a sett is well-foundedf every nonempty subset C E has a<-minimal elementi.e. an element
a € Asuchthatz € A (z < a = z = a). LetN := NU {N}. Given someV € N, anascending sequencd
(E, <) (or a<-ascending sequence B is a sequencér,, ),y of E such that for every, if n + 1 € N then
Tn < Tnpe1. Anincreasing sequencasf (E, <) is a sequencer, ),cn of E such that for every, if n +1 € N
then(z,, < z,4+1 andz, # z,4+1). A descending sequencé (E, <) is an ascending sequence(df, >). A
decreasing sequenad (E, <) is an increasing sequence(d, ). Clearly, a well-founded binary relation has
no infinite decreasing sequence, and the converse statement is equividisee Proposition 2.1).

Notation (X <) Given some sek, we denote byX < the setJ,,cy X" of finite sequences oY . For every
o € X<, the natural numbet such thatr € X" is thelengthof o and is denoted bj|.

A tree of finite sequences on a s&t is a subsefl” of X <“ which is closed by restrictione. if for every
o0 € X<, (60 Co' €T)= o e T,;thetreel is endowed with the binary relation. Given some trees
S, T C X<¥, say thatS is asubtreeof T'if S C T.

The following Proposition is straightforward :
Proposition 2.1 (DC and well-founded relations) The following statements are equivalent :

1. AxiomDC ;
2. Every binary relation which is not well-founded has an infinite decreasing sequence ;

3. For every tree(T, Q), if the reverse relatio{T', D) is not well-founded, thef’ has an infinite increasing
sequencéo,,)nen-

Thus, iNZF+DC, a binary relation< on a setX is well-founded if and only if(X, <) has no infinite
decreasing sequence. HowevelrXifis well-orderable, this equivalence holdsAi.
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6 M. Morillon: James sequences and Dependent Choices

2.3 Lattices and filters

Given a setX, we denote byP(X) the set of all subsets of. A nonemptysubsetl. C P(X) is alattice of
subsets ofX if L is closed under finite unions and finite intersections ; in particélas L andX € L. A
nonemptysubsetF of the latticeL is called &filter of L when the following three conditions are satisfied :

o¢F 1)
VAe FVBeF ANnBeF (2)
VA€ FVBeL (ACB= BcF) 3)

A filter on the setX is a filter of the latticeP (X).

2.4 Topological spaces

A family (A;);c; of subsets of a seX satisfies thefinite intersection propertyf for every nonempty finite

subsetF' of I, the set;cr A4, is non-empty. A topological space is compactf every family of closed subsets
of X satisfying the finite intersection property has a nonempty intersection (the Sp&caot required to be
Hausdorff). Given a subset of a topological spacé&l, we denote b its topological closure.

2.5 Metric spaces

Notation (ball, diameter, radius) Given a metric spacéX, d), for everya € X, and everyr € R,, we
denote byl'(a, ) the closed bal{z € X : d(a,z) < r}, and byB(a,r) the open bal{z € X : d(a,z) < r}.
For every subsetd, B of X, we denote byl(A, B) thedistance betweeA and B :

A,B):= inf R
d(A, B) xeir.,lyeBd@’y)e + U {400}

For every subset C X, thediameterof A is

diam(A) := sup d(z,y) € Ry U{+oo} 4)

z,ycA

theradiusof A is :
rad(A) :=inf{r e Ry : Ja€ X ACT(a,7)} € RyU{+o0} (5)

Notice that for every non-empty sét rad(A) < diam(A) < 2 rad(A). In particular,A is not bounded if
and only ifdiam(A) = rad(A) = +oc0. For everyA C P(X), let

0(A) :=inf {diam(A) : A e A} (6)

p(A) :=inf {rad(A) : A € A} @
Then,p(A) < 5(4) < 2p(A).

Afilter F of subsets of the metric spadeis aCauchy filterif its diameters (F) is 0, or, equivalently, ifo(F)
is 0. The metric spac& is completef for every Cauchy filtetF on X, the sen{F : F' ¢ F} is nonempty (and
in this case it is a singleton). Sauchy sequencaf the metric spac& is a sequencér,, ),y 0f X such that
the filter generated by{z\ : kK > n} : n € N} is Cauchy.

Notation (s-neighborhood) Given some real number> 0, and some subset of the metric spacé€X, d),
denote byA, thes-neighborhoof A : A, := {z € X : d(z, A) < e}. Notice thatA. is a closed subset df.

A subsetK of a metric space iprecompactif for every real numbet > 0, there exists a finite subsetC K
such thatK is contained inF.. Every compact metric space is precompact. Every subset of a precompact metric
space is precompact. The convex hull of every finite subset of a normed space is compact, hence precompact.
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2.6 Continuous dual of a normed space

In this papemll vector spaces are spaces over the figldf real numbers.

Given a normed vector spa¢€, ||.||), we denote bY'g (resp. Sg) the closed unitbal{z € E : ||z| < 1}
(resp. the unit spheréz € E : ||z|| = 1}) of E. The normed spacE is aBanach spacé it is complete (v.r.t.
Cauchy filters of the metric spade).

We denote byE’ the continuous duabf E endowed with the dual norm : thu&;’ is the vector space of
continuous linear mappings : £ — R, endowed with the norm given byf| := sup,cr, |f ()| for every
f € E’. Thesecond duabf F is the continuous dual af’, and it is denoted by"'.

Notation (canonical mapping) For everyz € F, we denote by : E’ — R the “evaluation mapping at point
2", associating the numbgfi(z) to eachf € E’. We denote byjr the canonical mappindrom E to the second
dual E”, associating to every € F the evaluation mapping.

Clearly,jg is linear, continuous anliz|| < 1. In ZF+HB, one proves thatg isisometric: Vz € E, ||Z|| =
]]-

Remark 2.2 In ZF+-HB, one can prove the existence of an infinite dimensional Banach gpaaeh that
E' = {0} (see Lemm& p. 12 in [9] or Theoren? in [15]). For such a spack, E” = {0} sojg is onto butjg is
not one-to-one. In [1], Sectiofy several other examples of pathologies occurring in functional analysis without
the axiom of choice are provided.

Question 1 Given a normed spack, if the canonical mappingg : E — E” is isometrical, thenjg is
one-to-one. Is the converse statement true ?

2.7 Weak topologies on a hormed space

Given some normed vector spaEeand some vector subspaceC E’, denote by (E, V') the coarsest topology
7 on E such that everyf € V is continuous from(E,7") to R. It is easy to prove thak endowed with this

topology7 is a linear topological vector spade9) : this means that the addition: £ x E — E and the scalar
multiplication. : R x £ — F are continuous. Moreover thes F is locally convex.

The weak topologyon the normed spac# is the topologys(E, E’). Thus, the weak topology oR is
generated by the (strict) hemi-spaces :

Hiy:={reE:f(zx)<A}, feFE, AeR
Moreover, closed sets of( F, E’) are intersections of finite unions of (large) hemi-spaces of the following form :

Hiy={z€E:fx)<\}, fEF, 6 XeR
The weak* topologyon the normed spack’ is the topologys(E’, jr[E]). The weak* topology onE’ is
also denoted by (E’, E). Thus, hemi-spaces di’ of the following type form a sub-basis of open subsets of

o(E"E):
Hi,={f€E:f(x)<)\}, z€E, AeR

Question 2 Let £ be a normed space such that there exists a bounded convex subset with non-empty interior
which is weakly closed. Then, clearly, singletonsfbare weakly closed. Are closed balls Bfweakly closed ?
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8 M. Morillon: James sequences and Dependent Choices

2.8 Convex topology on a normed space

Definition 2.3 (convex lattice of a normed space)siven a normed spack, we denote byl g the lattice
generated by closed convex subsetdiofNotice thatL z is the set of finite unions of closed convex subsets of
E : we call it theconvex lattice of-.

The following Fact will be used in Lemma 3.4 :

Fact 1 Let C be a convex subset of a normed sp#teands € R’. Then thes-neighborhood”. of C is
convex (whencé. € Lg).

Proof. Giventwo convex subsets B of E, thenA + B is convex. Now(. = (._, (C+T(0,s)) whence
C. is convex. O

Definition 2.4 (convex topology) The convex topologyn a normed spac# is the topology for which a
subset ofF is closed if and only if it is the intersection of a subset of the convex lattidé. of

Remark 2.5 (convex-topologyersusweak topology) The convex topology on a normed spaces inter-
mediate between the weak topolog{~, E’) and thestrong topologyassociated to the norm &f). Also notice
that closed balls of, closed subspaces &f (for example finite dimensional subspaced®fare closed for the
convex topology. I'ZF+HB, every closed convex subset of a normed spadg weakly closed, in which case
the convex topology oiv and the weak topology of are equal. However, the weak topology on some infinite
dimensional normed spacésmay be trivial inZF+—-HB : indeed, in such a theory, there exists an infinite
dimensional Banach spade satisfyingE’ = {0} (see Remark 2.2) ; such a space has only two weakly open
subsets® and E), hence the weak topology is strictly coarser than the convex topolody'on

Notice that given a Banach spage the convex topology and the weak topology may differ even wheis
isometrical (see Remark 4.9, Section 4.4).

Remark 2.6 In a Hilbert space, the weak topology and the convex topology are eqd itbecause in a
Hilbert space, every closed convex subset is weakly closed, see [9]).

2.9 4-sequences

James’ criterion of “reflexivity” introduced in [12] and [13] is formulated in termg)efequences.

2.9.1 9-sequences and triangular sequences

Recall that (see Section 2.2) we denoteNbthe setN U {N}.

Notation For every subsefl of a vector space, we denote bynv(A) the convex hull ofd, and we denote
by span(A) the vector subspace linearly spannedby

Definition 2.7 (¥-sequence)Given some) € R* , and someV € N, a sequencéu;)xen of the normed space
E is at-sequencd for every integeri < N, the distance betweepan{ay, : k < i} andconv{a; : i <k < N}
is > 9. Notice that the empty sequeneeis a¥-sequence

Notice that if¢ > 0, everyid-sequence is linearly independent. This notiot-agfequence can be reformulated
usingtriangular sequences

Definition 2.8 (triangular sequence)Let E be a normed spac#, €]0,1[, and N € N. Given a sequence
(ar)k<n Of E, and a sequendg}, )<~ Of the closed unit ball of the continuous dualsptin{a, : kK < N}, say
that the sequende, fx) k< is 9-triangular when for everyk, ! < N, fr(a;) = 0if I < k, and fx(a;) > 9 if
k<I.

Thus the sequendg? )r<n Witnessegay )< being ad-sequence. Conversely indeed :

Proposition 2.9 Let E be a normed space} €]0,1[, N € N, ando be a sequencéa;);-n of E. Let
V = span{a; : i < N}. The following properties are equivalent :

1. The sequence is av-sequence of ;
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2. There exists a sequentg,)r<n of Sy such that(a;, f;):<n is U-triangular.
3. There exists a sequentf; )i« n of I'y+ such that(a;, f;):<n is J-triangular.

Proof. 1.= 2. Assume thata;);<n is al-sequence o¥. SinceV is separable, one can buildZF some
sequencéfy,)q<n of Sy satisfyingf, = 0onspan({a; : 0 <i < k})andf, > 9 onconv({a; : k <i < N}).

2. = 3. Straightforward.

3. = 1. Assume that there exists a sequefyggr < n 0f 'y such thata,, f;):<n is ad-triangular sequence of
V. Given some integeris, n such that < n < N, if (\;);<x € R¥, if (i) k<i<n € IR{+”*’“ With >, oy i =

1, thenfk.(— Zi<k Ai.a; + Zk§i<n ,uz-.ai) = fk(2k§i<n /Li.ai) > 1 hence

Z/\i.ai— Z Wi-Qg >

i<k k<i<n

(becausd| fx|| < 1). 0

Fact 2 (norming av-sequence)Lete, 9, 9. > 0 satisfyingd(1 +¢) < 9. < 1. Letn € N, and(a;);<, be a
J.-sequence of the closed b&|(0, 1 + ) of the normed spack. Then(H‘;—ZH)Kn is av-sequence o g.

Proof. Indeed, leV := span{a; : i < n} and let(f;);<, be some sequence 6f such thata;, f;)i<n
is J.-triangular. Then,(ﬁ, fi)i<n is O-triangular because for every < n, for every (\;);«; € R?, for

every real numbers,;, ..., A, € Ry satisfying)_, o, A = 1 fi(Ricicn Mqaiy — 2t Mealy) =
795 195 P 195
fi(2i§t<n At |\ZZ|\) = Zi§t<n At M.l = Zi§t<n )‘tm — I+e > . H

2.9.2 Associated sequences

“Associated sequences” of convex sets will be used to hsdg@quences, see Definition 3.5 and Lemma 3.7 :

Definition 2.10 (associated sequence§iven some real numbet > 0, someN < N, and some sequence
(a;)i<n Of the normed spack, say that & -descending sequen¢€;); . of closed convex sets is-associated
to (a;)i<n if for each: < N the following two conditions are satisfied :

spang({a; :t <i})NC; =@ (8)

a; € C;  (whenceconv({a; :i < t}) C C) ©)

Notice that given a (finite or infinite) sequenge ); <y of @ normed spacé, the following three conditions
are equivalent: (a;);< v is av-sequence” ; (conv({a; : i < t}))i<N is ¥-associated to the sequerieg);«n";
“There exists a-descending sequence of closed convex subsdisvaiich is¥-associated tda;);« N

3 DCimpliesJ2C

3.1 Stationary sets

Given a latticeL. of subsets of some séf, a filter F of the latticeL, we denote by5(F) the set ofF-stationary
sets i.e. elements of the latticé meeting every element of. Then, for everyA, B € L, the following easy
conditions are fulfilled :

FCS(F) (10)

(A€ S(F)andA C B) = B € 8(F) (11)
Moreover,

AUB e S(F)= (A€ S(F)orB e S(F)) (12)
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10 M. Morillon: James sequences and Dependent Choices

In particular, if AU B = X thenA € S(F) or B € S(F).
(Ae S(F)andB e F) = ANB e S(F) (13)

Notice that the filtetF of L is amaximalfilter of the latticeL if and only if S(F) = F.

3.2 Saturating filters w.r.t. numerical constraints

Given a latticelL of subsets of a set’, and a mapping : P(L) — [0, +o0], define the mapping : P(P(L)) —
[0,4+00] by ®(A) = inf{p(A) : A € A} and say that a filtefF of L is ¢-saturatedif &(S(F)) = ®(F). For
example, if¢ is the “radius” functionrad (resp. “diameter” functiondiam) -see Section 2.5- the® is the
function p (resp. ). Notice that for a given function, the function® is order reversing fronfP(P(L)), C) to
([0, +o0], <). Besides, every maximal filter df is trivially saturatedw.r.t. any suchp.

Remark 3.1 Given somep-saturated filtet;, every filterH containingg is also¢-saturated : indeed,

®(S(H)) < (H) < ©(G) = ©(S(9)) < 2(S(H))

Lemma 3.2 Let (X, d) be a metric space, ldt be a lattice onX and let¢ : P(L) — [0, +oo.
1. In ZF+DC, every filterF of L is contained in ap-saturated filter ofL.

2. The same conclusion holdsZ¥F in the particular case of the “radius” functiop, whenevel. contains all
closed balls ofX and X has a dense well orderable subset.

Proof. (1). For every > 0, for every filterG of L, there exists somé’ € S(G) such thatp(F) <
®(S(G9)) + ¢, thus, the filterG generated by and F' satisfies®(G) < ®(S(G)) + €. UsingDC, define an
infinite C-ascending sequen¢&, ), Of filters such thatF, = F and such that for each € N,

1

O(Fns1) < O(S(Fn)) + T (14)
Then, for everyh € N, the filterG := U,;enF; satisfies the following inequality :
D(S(Fn)) < 2(S(Fnt1)) < 2(S(9)) < (G) < ©(Fnta) (15)

Using inequalities (14) and (15) for evenye N, it follows that®(S(G)) = ®(G).

(2). By definition ofp, for everye > 0, for every filterG of L, there exists some € X and some- € R
satisfyingl'(a, ) € S(G) andr < p(S(G)) + ¢ ; thus®(G) < ®(S(G)) + « whereg is the filter generated by
andI'(a,r). Given some well-ordered dense subBetf X, the proof of (1) goes through WF : defineF,,;1
as the filter generated b¥,, andI'(a, r), where(a, r) is the first element oD x Q satisfyingl'(a,r) € S(F,,)
andr < p(S(F,)) + %H O

Lemma 3.3 (Filters with positive radius) Let (X, d) be a metric spacd, be a lattice of closed subsets®f
containing the closed balls of, and F be a filter of L. For every real number satisfyingd < r < p(S(F)),
and every precompact subgétof X, K, ¢ S(F).

Proof. If K is finite, thenk, ¢ S(F) because of Property (12) f¢f-stationary sets (see Section 3.1). In
the general case, let be a real number such that< ' < p(S(F)) ; using precompactness &f, let F' be a
finite subset ofX" such thatk’ C F,._, ; thenK,. C F,.. Using the first casef, ¢ S(F), soK, ¢ S(F). O

Lemma 3.4 (Filters with positive radius in normed spaces)Let E be a normed space, arfl be a filter of
the convex latticd. ; containing some bounded set. Then, for every finite-dimensional vector subspgade,
and every real number satisfyingd < r < p(S(F)), V.. ¢ S(F).
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Proof. Use precompactness of every bounded subset of the finite dimensional’spgdoee precisely, let
R be some real number such thgD, R) € F. Observe that

V,NT(0,R) C [VNT(0, R +7)l,

SinceV N T'(0, R + r) is precompact, Lemma 3.3 implies tHat N T(0, R + )], ¢ S(F). It follows that
V. NT(0, R) ¢ S(F) whenceV, ¢ S(F). O

Definition 3.5 (Tree of finite -sequences)Given a normed spacg, somed € R’ and some subset of
E, we denote byl'4  the set of finited-sequences ofl ; thus(7'4 », C) is a subtree of A<¥, C).

Definition 3.6 (Subtree(Zg 4.9, C)) Given some normed spadg somed € R*, some subsedl of E and
some collectiorg of subsets o2, we denote by 4 » the set of finite)-sequenceéa; )<, of A admitting an
associated sequenge€;); ., such that for ali < n, C; € G : notice that(Zg 4,9, C) is a subtree ofT’4 », ).

Lemma 3.7 Let E be a Banach space. Assume that there exists a filtef Lz, containing some closed
bounded convex subgét and satisfying(G) = p(S(G)) > 0. Letd €]0, p(G)].

1. Every element of the tre€s ) ¢ 9 has a successor in this tree.

2. If D is a dense well-orderable subset@f then every element of the tré® ), p v has a successor in this
tree.

Proof. 1. Letr = (ai)i<n € Zs(g),c,9- LELV := span{a; : i < n} and let(C;);<,, be someC-descending
sequence of convex setsS(G) which isg-associated te ; let H the filter generated b§ U{C; : i < n} : notice
that, using Remark 3.1(S(H)) = p(H) = p(G). Using Lemma 3.4, the closed convex §gtdoes not belong
to S(H), whence there exists sonfiec H such thal’y N F' = & ; sinceF is a finite union of closed convex sets,
there exists also some convex $éte S(H) satisfyingVy N K = & (see Property (12) df{-stationary sets).
Now, using Property (13) df{-stationary sets(,, := K N(),_,, CiNC € S(H) C S(G) : leta, € Cy. Then
(ai)i<n is asuccessor af in Zsg) c,9 and(C;)<y, is ¥-associated t6a;)i<n-

2. The proof is similar : just use some real numbes 0 such thatly.,, does not belong t@{ ; this yields
some convex seék € S(H) satisfyingVy,,, N K = @ whenceVy N K, = @ ; thenC,, := (K N(),_, Ci),NC
meetsD andVy N C,, = . O

Remark 3.8 Given somed €]0,1[, a sequence € Ts, y may fail to admit any successor s, 4 : for
example if the nornj|.|| is locally uniformly rotundat pointa € Sg (cf. [8] p. 42), namely ifve > 0 3. >
0vz € E ((|||2£2] — 1| < neand|[jz]| — 1| < n:) = (||l= —a|l < ¢€)), then, given some €]0, 1], for
everyd €le V (1 — n.), 1], the 1-sequencéda) does not have any successorTig, ¢ ; indeed, forz € Sg,
(e —al| =9 >¢e) = 1— |22 = n= |2 - 0|| < 1—n =4, thusd(conv{z,a}, span{}) < ¥ so that
(a, z) cannot be aj-sequence.

Theorem 3.9 DC implies J2C) Let FE be a Banach space. Assume thais a closed bounded convex subset
of E which is not compact in the convex topology.

1. In ZF+DC, there exists som&, > 0 and somej,-sequence ir”. Moreover, if['(0, 1) is not compact in
the convex topology, then, for evetye|0, 1], the unit sphereSz contains a-sequence.

2. If C has a dense well-orderable subdetthen there exists son#g > 0, and some)y-sequence itD, which
is definable from¥, ¥y, D and any well-ordering orD. Moreover, if['(0, 1) is not compact in the convex
topology, then for every €]0, 1[, every dense well-orderable subg€ebf Sy contains a’-sequence, which
is definable fron¥, 9, D and any well-ordering orD.
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12 M. Morillon: James sequences and Dependent Choices

Proof. (1) LetF be a filter of the latticelz containingC, such thanF = @. By Lemma 3.2.1, lef
be some filter ofLz containingF and satisfyingy(G) = p(S(G)) : thennG C NF = @. Sinceg contains
the bounded sef’, p(G) < +oo. SinceF is a Banach spacéj is not a Cauchy filter, whende < p(G). Let
Yo €]0, p(G)[. Using Lemma 3.7.1, every element of the té&g ) ¢ », has a successor in this tree ; usidg,
there exists an infinite increasing sequefeg),.cn in (Zs(g),c,9,, ) ; then(a, )nen := Unenoy, is an infinite
Jp-sequence of.

Now, assume thaF(0,1), and then, closed balls df with radius> 0 fail to be compact in the convex
topology. Letd €]0, 1[. Lete > 0 satisfyingd(1 + €) < 1 and letd. €]9(1 + ), 1[. Applying DC, build some
filter G of L containing some closed ball and satisfying both relatjgigd = p(S(G)) andnNg = @. Up to an
homothetie, one may assume th&g) = 1. Up to a translation, one may assume thél, 1 + ¢) € G. Using
DC and Lemma 3.7.1, this yields an infinife-sequencéa,, ),en 0f T'(0, 1 + ). Using Fact Z(H(‘ﬁ)neN is a
¥-sequence of .

(2) The proof is similar to (1), using Lemma 3.2-(2) instead of Lemma 3.2-(1), and Lemma 3.7.2 instead of
Lemma 3.7.1. O

Remark 3.10 A shorter proof ofJ2C in ZFC can be obtained by usingnaaximalfilter F of L satisfying
NF = &. Notice that the existence of a maximal filter containing a proper filter in an arbitrary lattice of sets is
equivalent toA C (see [3]).

4 Various notions of reflexivity

4.1 Various notions of compactness

Given a closed convex subsétof a Banach space, say thatis w-compactif every C-descending sequence
(Cn)nen of non-empty closedonvexsubsets of” has a non-empty intersection.

Proposition 4.1 LetC be some closed bounded convex subseta Banach spac&. Consider the following
notions of compactness fat :

a) C'is compact in the convex topology.

b) C'is w-compact.

c) Every closed convex subset@fvith a dense well-orderable subsetiscompact.
d) Every separable closed convex subset'o$ w-compact.

e) For every sequencer, ) en 0f C, C N (), o Conv{zy : k > n} is non-empty.

f) For every sequencer,, )nen Of C,

inlf\]d(com){xk k< n},conv{z : k>n})=0
ne

g) For every sequence,,),cn Of C,

irelgd(span{a:k k< n},conv{zy : k>n}) =0

1. InZF+DC, g) = a).
2. In ZF, if C has a dense well-orderable subset, thgn= a).
3.INZF,a)=b)=c) o d) e & f)eg).
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Proof. 1. and 2. : Use Theorem 3.9 in Section 3.

3. We first prove e} f). The five other direct implications are straightforward. Now assume that for every
sequenceér, ) cn of C, the seCN(, .y conv{xy : k > n}is non-empty. Given a sequengs, )<y of C, there
exists somé € C' N[, oy convizy : k > n}. Then,l € Upen-conv{zy : k <n} N[, oy cOnO{zg 1 k > n}.

It follows thatinf,,c, v d(conv{zy, : k < n},conv{zy : k > n}) =0.
The proof ofg) = ¢) follows from 2. O

Definition 4.2 (J-compactness)Say that a closed convex subgébf a normed space i&compaciJames-
compact) if for everyy) > 0, C does not contain ang-sequence.

Thus, if C' is some closed convex subset of a Banach spaaesach Property c), d), e), f) and g) of Proposi-
tion 4.1 is equivalent ifZF to J-compactness @f.

Remark 4.3 (index of J-compactness)n ZF, every well-founded binary relatioR on a sett' has arank:
there exists a smallest ordinal= rk(R) for which there is a (unique) mappinfy: £ — « satisfying for all
z,y € E, (zRyandz # y) = f(z) < f(y). Given a Banach spadeé and some J-compact closed bounded
convex subsef’ of F, define thandex of J-compactness C as

ind;(C) = sup{rk(Tc9,2) : ¥ > 0} = {rk(T 1,2) : n € N}

=

Given someanalyticwell founded binary relatiolk on a complete metric spacé having a dense well orderable
subsetD of cardinala, the rank of the well-founded relatioR is some ordinak o™, and there is a one-to-one
mapping fromrk(R) to «, which is definable fronE, D and any bijection betweelR and« (see [7] where no
choice is needed in the proof). In particular, given a Banach spaaed some closed bounded convex suliset
of E which is J-compact, it has a dense well-orderable subgetwith cardinala, then for everyd > 0, the
rankr, of the (analytic) well-founded binary relatidfi- 4, 2) is some ordinak o, and there is a one-to-one
mapping fromry to «, which is definable fronE, D, ¢ and any bijection betweeh anda. Letd be thedensity

of the topological spac€, i.e. the first ordinal equipotent with some dense subsé&t.oNow given a sequence
(rn)nen Of ordinals< §, if there exists a sequenég, )< such that eaclj,, is a one-to-one mapping from,
into 4, thensup,,c 7, < 6T. It follows thatind;(C') < §*. In particular, given @eparableclosed bounded
convex subsef’ of a Banach space which is J-compact, thed; (C) is a countable ordinal. [There exist models
of ZF containing a sequendev, ),en Of countable ordinals with least upper bound the first uncountable ordinal

wl.]

4.2 J-reflexivity
Lemma 4.4 Given a Banach spack, the following properties are equivalent.

1. For every closed subspadé of E with a dense well-orderable subset, the closed unit ball @ compact
in the convex topology.

2. For every separable closed subspacef E, the closed unit ball oV is w-compact.
3. For every sequencr,, )nen Of I'g, (), oy COnU({z) : k> n}) is non-empty.
4. For every sequencgr,,)nen Of T'g,

7illellf\7d(conv({xk 1k <n}), (conv({zy : k>n})) =0

5. There exist®) €]0, 1[ such that for every sequen¢e,, ),y of Sk,
ingd(spcm{xk k< n},conv{zy : k>n}) <V
ne

Proof. Each property 1., 2., 3., 4., is equivalent to J-compactndsg (gee Proposition 4.1). Finally, 5>
1 follows from Theorem 3.9.2. O
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14 M. Morillon: James sequences and Dependent Choices

According to our definition of J-reflexivity at the beginning of our paper, say that a Banach Bpiscé-
reflexiveif E satisfies one of the above equivalent properties. Recall that J-reflexivity has a countable character :
a Banach spacg is J-reflexive if and only if every closed separable subspadeé isfJ-reflexive. Thendex of
J-reflexivityof a J-reflexive Banach space is the index of J-compactness of its closed unit ball.

Remark 4.5 Given some sequence,,),cn Of @ vector spacé’, say that some sequengs,),.cy of £ is a
block-sequencef (x,,).cn if there exists an increasing sequerieg ),y and a sequencg\;);en € RY such
that

VEEN b= Y N

nEp<i<npi1

Moreover, if for everyk € N, 0 < g <’;1ndzm<i<nk+1 A; = 1, then say thath,, )..cn is aconvex block-sequence

of (x,,)nen. Now, given a Banach spadeg, J-reflexivity of E' (see Property 3. in Lemma 4.4) can be formulated
as follows : “Every bounded sequenceofidmits a convex block-sequence which (strongly) converges.”

4.3 Various distinct notions of reflexivity

Definition 4.6 (various notions of reflexivity) Say that a Banach spaégis :

e convex-reflexivé the closed unit ball'; of F is compact in the convex-topology ;
o w-reflexiveif I'g is w-compact ;

o simply-reflexivef the canonical mappingg : £ — E” is isometric and onto ;

o onto-reflexivef the canonical mappingg is onto.

We will now compare irZF these various notions of “reflexivity”, see Figure 1. Notice that non-implications
in Figure 1 follow from Proposition 4.11.

Proposition 4.7 Let £ be a Banach space.
1. In ZF, “ E is convex-reflexive"= “ F is w-reflexive” = “ E is J-reflexive”.
2. In ZF+DC, if E is J-reflexive thert is convex-reflexive.
3. In ZF, if E has a dense well-orderable subset an#ifs J-reflexive, thet® is convex-reflexive.
4. Convex-reflexivitys onto-reflexivity.
5. Simple-reflexivity= onto-reflexivity.

Proof. 1., 2. and 3. : use Proposition 4.1.

4. Assume that the Banach spaEeis convex-reflexiva.e. thatT'g is compact in the convex topology ;
a fortiori, the balll's is o(E, E’)-compact. Endow the second dua! with the weak* topologys (E”, E’).
Since the canonical mapping : (E,0(E,E")) — (E",o(E",E")) is continuous;g[I'g] is compact inE” ;
it follows that jz[T'g] is closed in the Hausdorff spade’. Besides, according to Goldstine’s lemma (which
is provable inZF, cf. [4]), the subsefjg[I'g] is dense inC'g~. It follows that jg[I'r] = ' whenceFE is
onto-reflexive.

5. is trivial. m
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4.4 Some classical normed spaces

Given a set/, we denote byP(I) the set of finite subsets dt Also recall that’®(I) is the following normed
vector space endowed by the “sup” norm :

O(I) == {(x:)icr : Ve > 03F € Ps(I) Vi € I\F |z;] < ¢}

The continuous dual af (1) is (isometrically isomorphic with) the following normed vector space endowed with
the “sum” norm :

O(I) = {(@i)ier = Y wi] < +o0}

icl

Moreover, the continuous dual 6f(1) is the following space endowed with the “sup” norm :
0°(I) == {(z:)ier : S,UII) |z;| < 400}
1€
For everyp €]1, +o0[, the vector space

(I) == {(xi)ier = 3 |ail? < +oo}

i€l

is endowed with theV, norm : Ny, ((z;)icr) = (3¢ [24l7)

Denote byR (") the vector space of all mappingsc R’ such that the sei € I : (i) # 0)} is finite. Clearly
RU) is dense in each spaé®(I) for p € {0} U[1, +ocl. It follows that the Banach spa¢&(7) is the completion
of the normed spacR (/) endowed with the “sup” norm and for evepyc [1,+oc], the Banach spac® (I) is
the completion of the normed spaé’) endowed with theV,, norm.

If Iis finite, then, the continuous dual &F (1) is (isometrically) isomorphic witti! (). UsingHB, for every
infinite set/ the continuous dual o (1) strictly containg* (7) whence/! (1) is not onto-reflexive irZF+HB.
However :

Proposition 4.8 There are models &8F+DC where the continuous dual 6f°(N) is ¢} (N).

Proof. According to Pincus and Solovay (see [18], “Discussion” p. 187), there exists a m&HdDC
where every measure dnis trivial. Here, aneasureon a setl is a mappingn associating to every subsétof 1
areal numbem(A) € R, and satisfying for every disjoint subsets B of I the equalitym(AU B) = m(A) +
m(B). In particularm(@) = 0. Clearly, for everya € I, the “Dirac mapping’s,, associating to every subsét
of I the real numbet if a € A and0 if a ¢ A is a measure of. More generally, ifJ is a subset of and if
(Mi)ies is afamily of[0,1] such thad _,_ ; \; = 1then}_,_ ; \id,, is a measure ohwhich is said to beliscrete
or “trivial”. Notice that every measure on a finite set is trivial. We now show that in a mod&Foivhere every
measure oV is trivial, the continuous dual @ (N) is ¢*(N). Denote by(e,, ),cn the canonical basis &™) :
for eachn € N, the mapping:, is defined bye,,(t) = 1if ¢ = nande, (t) = 0if ¢ # n. Say that a linear mapping
® : ¢>*°(N) — Ris positiveif for everyz € £>°(N), z > 0 = ®(x) > 0. Notice that for every continuous linear
mapping® : />°(N) — R, there exist positive linear mappings", @~ : £*°(N) — R such thatb = &+ — &~
(see [5]). We are to show that evegpgsitivelinear mappingd : />°(N) — Ris in ¢}(N). For everyn € N, let
An = ®(e,,). Let us show that := (A, ),en € £1(N) and that for every, € (>°(N), ®(a) = jr(A)(a). First,
Donen Anl = 2 nen An = supacp, v P(1a) < @(1n) < [|@]| < +o00. Moreover, for every positive element
a = (a;)ien € L*(N), jp(A)(a) = > ey Niai = SUP Aep;(N) DicaNia; = SUP Aep; () (X ienai) < 0(a)
(because ;. 4 a; < a) whencejp(A)(a) < ®(a). Itfollows that the linear mapping := ® — jz(A) is positive
Letm be the measure dN which is associated té via the formulam(A) = d(1,4) for every subsetl of N. For
everyn € N, m({n}) = u(e,) — A\, = 0. Since every measure ois trivial, it follows that the measure: is
null. In particularm(N) = 0 whenced(1y) = 0. It follows that the positive linear mappindis null. O
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16 M. Morillon: James sequences and Dependent Choices

Remark 4.9 Given a Banach spadg such that the canonical mapping : £ — E” is isometric (whence the
topologyo (E, E’) is Hausdorff), then, it is not provable iGF that the convex topology and the weak topology
o(E, E') are equal. For example, consider a modeZat where the continuous dual of the spate= ¢>°(N)
is ¢*(N) (see Proposition 4.8). Then the subspdb@) is a closed convex subset 6F (N), but (°(N) is not
closed in the weak topology(E, E') : in fact, using Goldstine’s Lemmaf( [4]), ¢°(N) is dense in’>°(N) for
the *-weak topologyr (¢>°(N), /(N)) = o(E, E').

4.5 Counter-examples about “reflexivity” of spaces
Lemma 4.10 Let [ be an infinite set.

1. (a) The spacé®(I) is not onto-reflexive.

(b) The closed unit ball of*(I) is not compact in the weak topology (in particulé(7) is not convex-
reflexive).

(c) If there exists an onto-mapping: I — N, then/! (1) is notw-reflexive. Moreover, if there is a finite-to-
one suchy (i.e. if for everyn € N the setf 1 ({n}) is finite) ther¢’(I) is notw-reflexive. In particular,
(9(N) is notw-reflexive.

2. If I is Dedekind-finite, and iAC(N, fin) restricted to finite non-empty subsetsiofiolds, then, the unit
sphere oft°(I) does not contain any infinite linearly independent sequéngg,cy ; in particular, for
every real numbep € {0} U [1, +o0[, the space?(I) is J-reflexive.

Proof. 1a. Sincd is infinite, 1; € £>°(1)\¢°(I), whence®(I) is not onto-reflexive.

1b. Foreveryi € I, letK; := {f € Tpn(py : > _cp f(k) =1 andf(i) = 0}. Then the family of (weakly)
closed convex sefss;);cr of I'y1 (1) satisfies the finite intersection property, but thersey K; is empty.

1c. Likewise, given an onto mappinfg: I — N, for eachn € N, denote by, the setf~({n}) :={i € I :
f(i) = n}, and letk,, == {f € Tp(p) = Y .cr f(k) =1 and(Vi € I, f(i) = 0)} ; then theC-descending
sequencek, ) en of nonempty closed convex subsetd of ;) has an empty intersection. Now,fifis finite-to-
one, each sel,, := {f € T'yo(y) : Vi € U<, Ix f(i) = 1} is a closed convex subsetlbf ), and the sequence
(Ln)nen is aC-descending. Sing@),,cy Ln = 2, the spacé®(I) is notw-compact.

2. Recall that in the “basic Cohen model”, (see Section 2.1.2), there is an infinite Dedekind-finite set such that
AC(N, fin) restricted to finite non-empty subsetsiafiolds. Given such a sétand some: = (a; )1 € ¢°(1),
the supports(a) := {i € I : a; # 0} of a is a countable union of finite sets : in fasla) = UkenFi(a)
where Fi(a) := {i € I : |a(i)] > Th}- Let (a,)nen be a sequence of the unit sphere/®fl). Then
S = Unen 8(an) = Unen Uren Fi(a,) whencesS is finite. Now span{a, : n € N} C ¢°(S) whence
span{a, : n € N} is finite-dimensional. O

Proposition 4.11 1. In ZF, J-reflexivity does not imply-reflexivity. J-reflexivity does not imply onto-
reflexivity.

2. In ZF, w-reflexivity does not imply convex-reflexivity.

3. In ZF+DC, simple-reflexivity does not imply J-reflexivity. In particulardi’+DC, onto-reflexivity does
not imply convex-reflexivity.

Proof. 1. Consider a model @F where there exists some infinite, Dedekind-finitelssatisfyingAC(N, fin)
and admitting an onto mappinfl : I — N, for example the basic Cohen model (see Section 2.1.2). Using
Lemma 4.10.2, the spacdé([) is J-reflexive but using Lemma 4.10.2¢(1) is notw-reflexive. Moreover, the
spacel’ (1) is J-reflexive (Lemma 4.10.2) bét(7) is not onto-reflexive (Lemma 4.10.1a).

2. Consider some model @F+-AC(N, fin), for example the second Cohen model (see Section 2.1.3). Then,
in such a model, there exists, (see [9]-Theofjna Hilbert spacdd with a C-descending sequen¢g,,),,cn of
nonempty weakly closed subsets of the closed unitlballof H satisfyingn,,cnF,, = . However, the space

H is w-reflexive and even more : every family of closeahvexsubsets of'; satisfying the finite intersection

Copyright line will be provided by the publisher



mlqg header will be provided by the publisher 17

property has a non-empty intersection (see [9]-Coroltaty

3. The spacé’(N) is not J-reflexive since the canonical basi’tfN) is a 1-sequence. However, there is a
model of ZF+DC where the continuous dual 6f°(N) is ¢! (N) (for example in Pincus and Solovay’s model,
see Proposition 4.8). In such a model, the sga¢R) is simply reflexive. O

5 Weaker axioms thanJ2C

Recall that given a normed spa(, ||.||), the mapping

dp:e—inf{l — x;—y

H;xerE,yerE, |z — yl| > <}

is called themodulus of convexitgf E. Notice thatdg :]0,2] — R, is continuous and order-preserving. The
spaceF is uniformly convexf and only if Ve > 0, dg(¢) > 0. In other wordsE is uniformly convex if there
exists a mapping : R} — R* such that, for every real number> 0, for everyz,y € I'g,

o=z e = | 5 <1- a0 (16)
Any mappingé :]0,2] — R satisfying (16) is called aitness of uniform convexity fdr, and theng is the

best witness of uniform convexity. The following Lemmas are well-known :

. . . . . 2
Lemma 5.1 Every Hilbert space is uniformly convex, with modulus of convexity 1 — /1 — <.

Proof. See[2] p. 189-190. O

Lemma 5.2 Every uniformly convex Banach space is J-reflexive. More preciselyzlét ||) be a uniformly
convex normed space, with a continuous witness of uniform congefihen, there exists a real numh&e]0, 1]
such thatl < 9 + §(99). For such a, the spacd?” does not have ang-triangular sequence of length

Proof. The functiory : € — ¢ + §(¢) is continuous ang(1) > 1, hence there exist$ €]0, 1] such that
1 < g(9). If ((a1,a2), (f1, f2)) is av-triangular sequence, the1542 || > 9 > 1 — §(9) and||a; — az|| > ¥
this is contradictory since by definition 6f [|a; — ao| > 9 = || 22| < 1 - §(¢). O
Now, consider the two following statements :

A1 : Hilbert spaces are convex-reflexive.
A2 : Uniformly convex Banach spaces are convex-reflexive.
RCuc : “The closed unit ball of a uniformly convex Banach space is weakly compact”.
The implicationsDC = RCuc andDC = A1 were obtained in [6].
Theorem 5.3 1. J2C = A2 = RCuc = Al = AC(N, fin).
2. J2C = D.

Proof. 1. The statemedi2C = A2 follows from Lemma 5.2. The implicatioA2 = RCuc is straight-
forward since the weak topology on a normed space is contained in the convex topology. The implication
RCuc = A1 follows from Lemma 5.1 and the fact that in a Hilbert space, the weak topology and the con-
vex topology are equal. Finallx1 = AC(N, fin) has been proved in [9].

2. LetI be an infinite set. Then, using Lemma 4.10.214]) is not convex-reflexive. Let €]0, 1[. UsingJ2C,
the closed unit sphere df (1) has an infinited-sequencea,, ),cn. Such a sequence is linearly independent.
Using Lemma 4.10.2 and the consequeAd&8(N, fin) of J2C, it follows that! is Dedekind-infinite. O
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18 M. Morillon: James sequences and Dependent Choices

Remark 5.4 In particular,J2C is not provable inZF+BPI since in the basic Cohen mod@PI holds
wheread fails.

Question 3 Does the statemed2C imply DC ?
Question 4 DoesJ2C imply AC(N) ?
Question 5 DoesAC(N) imply A2 or A1 ?

Question 6 Are statementA2 and A1 equivalent ?

6 A statement strictly weaker thanBPI

It is well known (see [14]) that the axioBPI, being equivalent to the compactness{0f1} for every setl,
implies numerous compactness results. In particular, the classical proof of Alaoglu’s theorem shdBlhat
implies the following result of functional analysis :

(RC, Reflexive compactnegs The closed unit ball of every simply-reflexive Banach space is weakly compact.

We will now prove thalRC does not implyBPI, and this solves Questidh11of [6].

Proposition 6.1 The axiomHB implies that every closed subspace of an onto-reflexive Banach space is
onto-reflexive.

Proof. Given a closed subspateof E, letr : E/ — V'’ be the “restriction” mapping which associates to
eachf € E’ the mappingf;y. Given someP € V", ® or € E” ; sinceE is onto-reflexive, let. € E such
that® o » = a, whence® = a;y. We now show that € V' ; seeking a contradiction, assume that E\V :
then, usingddB Property forE, let f € E’ such thatf[V] = 0 andf(a) > 0. We now get a contradiction, since
®(fyv) = f(a) > 0, and on the other han@, f;1) = ®(0) = 0. O

Theorem 6.2 1. The axiomHB implies that every onto-reflexive Banach space is J-reflexive.

2. (HB+DC) implies that every onto-reflexive Banach space is convex-reflexive (mMI&B:eDC) implies
RC).

3. RC does not imphBPI.

Proof. 1. LetE be an onto-reflexive Banach space. We show ihat J-reflexive. Seeking a contradiction,
assume that for some €]0, 1], £ has aj-triangular sequencg,,, f,)nen (S€€ Proposition 2.9). Léf be the
closed subspace generated{ay, : n € N}, and letC' := conv({f, : n € N}). Thend(C,0) > 6, hence, using
HB, there exists som& € I'y» such tha®[C] > . UsingHB, Proposition 6.1 implies that the subspacés
onto-reflexive, whence there exists some V such thatb = 7 ; letn € N and(\;)o<i<, € R"*! such that

Haz — Spcicn Niti]| < 9. TheNB(fur )| = | fur1 (@) = | frs1 (@ — Sgeien ias)| < 9 this is contradictory
with ®[C] > 9.

2. Use Theorem 3.9 and 1.

3. Use 2. and the fact that, ([10]FHIB+DC) does not implyBPI. O

Question 7 It follows from our study that, iZ F+D C+HB, convex-reflexivityw-reflexivity, simple-reflexivity,
J-reflexivity and onto-reflexivity are equivalent. Is there some “classical” notion of reflexivity which is not equiv-
alent to these notions BF+DC+HB ?
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convex-reflexive
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" HB, Th. 621
Fig. 1 Reflexivity inZF.
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