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We prove James’s sequential characterization of (compact) reflexivity in set-theoryZF+DC, whereDC is
the axiom of Dependent Choices. In turn, James’s criterion implies that every infinite set is Dedekind-infinite,
whence it is not provable inZF. Our proof inZF+DC of James’ criterion leads us to various notions of
reflexivity which are equivalent inZFC but are not equivalent inZF. We also show that the weak compactness
of the closed unit ball of a (simply) reflexive space does not imply the Boolean Prime Ideal theorem : this solves
a question raised in [6].
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1 Introduction

It has been proved by James (see [12]) that a real Banach spaceE is reflexiveif and only if it satisfies the following
Property :

(J) : There exists some real numberϑ ∈]0, 1[ such that for every sequence(an)n∈N of the unit sphere
of E, there existsk ∈ N such that the distance between the respective convex hulls of{ai : i ≤ k} and
{ai : i > k} is≤ ϑ.

Notice that Property(J) has acountable character: the Banach spaceE satisfies(J) if and only if every closed
separable subspace ofE satisfies(J). Say that a real Banach spaceE is J-reflexiveif E satisfies Property
(J). Various proofs of James’s above characterization of reflexivity occur in the literature (see for example two
different proofs by James in [12] and [13], or the short new proof by Oja in [16]), however, all these proofs rely
on some form of theAxiom of Choice(AC), and they involve various notions of reflexivity for Banach spaces
E (weak compactness of the closed unit ball ofE, Šmulian property onE, surjectivity of the canonical mapping
from E to its second dual, . . . ). Of course, equivalences between these notions of reflexivity are provable in
set-theory with choiceZFC, but generally, they do not hold in set-theory without choiceZF ; most of them rely
on the axiom ofDependent Choices(DC), the axiom ofHahn-Banach(HB) or theBoolean Prime Ideal(BPI)
-see Section 2.1-.

In different ways, James ([13] or [2] p. 51-56) and Oja ([16]) both proved inZF+HB+DC that every
J-reflexive Banach spaceE is onto-reflexive, i.e. : “The canonical mappingjE : E → E′′ is onto.” (see
Notation 2.6). In [12]-Theorem1- which relies on [11]-Lemma1-, James proved inZF+DC that given a
J-reflexive Banach spaceE, every closed separable subspaceV of E is ω-reflexive, i.e. : “Every descending
sequenceC0 ⊇ C1 ⊇ C2 · · · ⊇ Cn . . . of nonempty closed bounded convex subsets ofV has a nonempty
intersection.” In this paper, given a normed spaceE, we define theconvex topologyonE as the topology whose
closed sets are intersections of finite unions of closed convex subsets ofE, and we introduce the following strong
notion of reflexivity forE, which we callconvex-reflexivity: “The closed unit ball ofE is compact in the convex
topology.” We then prove inZF+DC the following statement (see Theorem 3.9 of Section 3) :
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4 M. Morillon: James sequences and Dependent Choices

J2C, (James Criterion) Every J-reflexive Banach space is convex-reflexive.

This result improves the classical proofs because, on the one hand, convex-reflexivity implies bothω-reflexivity
and onto-reflexivity inZF (see Proposition 4.7) but none of the converse implications holds inZF (see Proposi-
tion 4.11) and on the other hand, our proof links inZF+DC convex-reflexivity, J-reflexivity and well-founded
trees ; moreover, it yields inZF a rank of J-reflexivityfor J-reflexive Banach spaces with a dense well-orderable
subset. Also notice that our proof can be shortened if one usesAC (see Remark 3.10), yielding a short new proof
of James’s criterion inZFC.

Our paper is organized as follows : in Section 2 we recall various weak forms of the Axiom of Choice, we set
out some definitions and notation, and we lay out various “weak” topologies on a normed space, in Section 3 we
show inZF+DC how to saturate a filter according to some numerical constraint -without using any maximal
filter- (Section 3.2), and we prove the statementJ2C in ZF+DC (see Theorem 3.9 in Section 3). On the way we
get inZF similar results for spaces with a dense well-orderable subset. In Section 4 we compare inZF various
notions of reflexivity, and we obtain severalZF-equivalent characterizations of J-reflexivity (see Section 4.2).
In Section 5, we prove thatJ2C implies the following weak form of the axiomDC : “Every infinite set is
Dedekind-infinite.” It follows thatJ2C is not provable inZF. Finally, in Section 6, we solve Question2.11of
[6].

2 Preliminaries

2.1 Some consequences ofAC, some models ofZF

2.1.1 Consequences ofAC

In this section, we recall various weak forms of the Axiom of Choice which will be used in this paper : see [14],
and also [10] for a recent account on the relative strength of numerous consequences of the Axiom of Choice.
Given a non-empty family(Ai)i∈I of non-empty sets, any elementf ∈

∏
i∈I Ai is called achoice functionfor

the family(Ai)i∈I .

(AC, Axiom of Choice). For every non-empty family(Ai)i∈I of non-empty sets,
∏

i∈I Ai is non-empty.

The following well-known consequence ofAC, is not provable inZF, and it does not implyAC :

(BPI, Boolean Prime Ideal axiom). Every non-trivial Boolean algebra has a prime ideal.

In ZF, the axiomBPI is known (see [10]) to be equivalent to the Tychonov axiom,For every family(Xi)i∈I

of compact Hausdorff spaces, the topological product
∏

i∈I Xi is compact.

The Hahn-Banach axiom is not provable inZF, it is a consequence ofBPI but does not imply it :

(HB, axiom of Hahn-Banach, analytic form). If E is a normed space over the field of real numbersR, if
p : E → R is a sublinear mapping and iff : F → R is a linear mapping defined on a subspaceF of E satisfying
∀x ∈ F, f(x) ≤ p(x), then, there exists a linear mappingg : E → R extendingf and dominated byp (i.e.
∀x ∈ E g(x) ≤ p(x)).

Here, a mappingp : E → R is said to besublinearif for everyx, y ∈ E and everyλ ∈ R+, p(x+y) ≤ p(x)+p(y)
andp(λx) = λp(x).

Here are some “countable” axioms of choice.

(DC, axiom of Dependent Choices). For every non-empty setX and every binary relationR onX satisfying
∀x ∈ X ∃y ∈ X xRy, there exists a sequence(xn)n∈N of elements ofX such that∀n ∈ N xnRxn+1.

(AC(N), Countable axiom of Choice). For every sequence(An)n∈N of nonempty sets, the product
∏

n∈N An

is nonempty.

A setI is Dedekind-finite(D-finite for short) if there is no one-to-one mapping fromN into I. In the opposite
case, the setI is Dedekind-infinite(D-infinite).

(D, Dedekind-infinite). ”Every infinite set is Dedekind-infinite”.
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(AC(N,fin), Countable Axiom of Choice for Finite sets). For every sequence(An)n∈N of nonempty finite
sets, the set

∏
n∈N An is nonempty.

Notice thatAC(N,fin) is equivalent to the fact that any countable union of finite sets is countable.

It is known that, (see [14]),DC ⇒ AC(N) ⇒ D ⇒ AC(N,fin) and that none of the converse implications
holds. Links between axiomsDC, D, HB, andBPI are well known : see [14], and also [10]. In particular, it is
known thatBPI does not implyD and thatDC does not implyHB.

The following models will be referred to later on to compare inZF various notions of reflexivity.

2.1.2 The “basic Cohen model”

This model satisfiesZF+¬D. More precisely, there is a dense subsetI of R which is Dedekind-finite (see [14]
p. 66). Notice that sinceI = tn∈Z(I ∩ [n, n + 1)), it admits an onto mappingf : I → N. However, sinceI
is totally orderable,AC(N,fin) restricted to non-empty, finite subsets ofI holds. (In fact, the model at stake
satisfiesBPI.)

2.1.3 The “Second Cohen model”

This model (see [14]) satisfiesZF + ¬AC(N,fin) : indeed, in this model, there exists a sequence(An)n∈N of
two-element subsets ofP(R), the set of all subsets ofR, satisfying

∏
n∈N An = ∅.

2.1.4 A model due to Pincus

In [17] is given a model ofZF+¬HB.

2.2 Well-founded relations

Given a binary relation≺ on a setE, we denote by� the reverserelation (thusx � y iff y ≺ x). A binary
relation≺ on a setE is well-foundedif every nonempty subsetA ⊆ E has a≺-minimal element,i.e. an element
a ∈ A such that∀x ∈ A (x ≺ a ⇒ x = a). Let N := N ∪ {N}. Given someN ∈ N, anascending sequenceof
(E,≺) (or a≺-ascending sequence ofE) is a sequence(xn)n∈N of E such that for everyn, if n + 1 ∈ N then
xn ≺ xn+1. An increasing sequenceof (E,≺) is a sequence(xn)n∈N of E such that for everyn, if n + 1 ∈ N
then(xn ≺ xn+1 andxn 6= xn+1). A descending sequenceof (E,≺) is an ascending sequence of(E,�). A
decreasing sequenceof (E,≺) is an increasing sequence of(E,�). Clearly, a well-founded binary relation has
no infinite decreasing sequence, and the converse statement is equivalent toDC (see Proposition 2.1).

Notation (X<ω ) Given some setX, we denote byX<ω the set∪n∈NXn of finite sequences ofX. For every
σ ∈ X<ω, the natural numbern such thatσ ∈ Xn is thelengthof σ and is denoted by|σ|.

A tree of finite sequences on a setX is a subsetT of X<ω which is closed by restrictioni.e. if for every
σ, σ′ ∈ X<ω, (σ ⊆ σ′ ∈ T ) ⇒ σ ∈ T ; the treeT is endowed with the binary relation⊆. Given some trees
S, T ⊆ X<ω, say thatS is asubtreeof T if S ⊆ T .

The following Proposition is straightforward :

Proposition 2.1 (DC and well-founded relations) The following statements are equivalent :

1. AxiomDC ;

2. Every binary relation which is not well-founded has an infinite decreasing sequence ;

3. For every tree(T,⊆), if the reverse relation(T, )) is not well-founded, thenT has an infinite increasing
sequence(σn)n∈N.

Thus, inZF+DC, a binary relation≺ on a setX is well-founded if and only if(X,≺) has no infinite
decreasing sequence. However, ifX is well-orderable, this equivalence holds inZF.
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6 M. Morillon: James sequences and Dependent Choices

2.3 Lattices and filters

Given a setX, we denote byP(X) the set of all subsets ofX. A nonemptysubsetL ⊆ P(X) is a lattice of
subsets ofX if L is closed under finite unions and finite intersections ; in particular,∅ ∈ L andX ∈ L. A
nonemptysubsetF of the latticeL is called afilter of L when the following three conditions are satisfied :

∅ /∈ F (1)

∀A ∈ F ∀B ∈ F A ∩B ∈ F (2)

∀A ∈ F ∀B ∈ L (A ⊆ B ⇒ B ∈ F) (3)

A filter on the setX is a filter of the latticeP(X).

2.4 Topological spaces

A family (Ai)i∈I of subsets of a setX satisfies thefinite intersection propertyif for every nonempty finite
subsetF of I, the set∩i∈F Ai is non-empty. A topological spaceX is compactif every family of closed subsets
of X satisfying the finite intersection property has a nonempty intersection (the spaceX is not required to be
Hausdorff). Given a subsetA of a topological spaceX, we denote byA its topological closure.

2.5 Metric spaces

Notation (ball, diameter, radius) Given a metric space(X, d), for everya ∈ X, and everyr ∈ R+, we
denote byΓ(a, r) the closed ball{x ∈ X : d(a, x) ≤ r}, and byB(a, r) the open ball{x ∈ X : d(a, x) < r}.
For every subsetsA,B of X, we denote byd(A,B) thedistance betweenA andB :

d(A,B) := inf
x∈A,y∈B

d(x, y) ∈ R+ ∪ {+∞}

For every subsetA ⊆ X, thediameterof A is

diam(A) := sup
x,y∈A

d(x, y) ∈ R+ ∪ {+∞} (4)

theradiusof A is :

rad(A) := inf{r ∈ R+ : ∃a ∈ X A ⊆ Γ(a, r)} ∈ R+ ∪ {+∞} (5)

Notice that for every non-empty setA, rad(A) ≤ diam(A) ≤ 2 rad(A). In particular,A is not bounded if
and only ifdiam(A) = rad(A) = +∞. For everyA ⊆ P(X), let

δ(A) := inf {diam(A) : A ∈ A} (6)

ρ(A) := inf {rad(A) : A ∈ A} (7)

Then,ρ(A) ≤ δ(A) ≤ 2ρ(A).

A filter F of subsets of the metric spaceX is aCauchy filterif its diameterδ(F) is 0, or, equivalently, ifρ(F)
is 0. The metric spaceX is completeif for every Cauchy filterF onX, the set∩{F : F ∈ F} is nonempty (and
in this case it is a singleton). ACauchy sequenceof the metric spaceX is a sequence(xn)n∈N of X such that
the filter generated by{{xk : k ≥ n} : n ∈ N} is Cauchy.

Notation (ε-neighborhood) Given some real numberε > 0, and some subsetA of the metric space(X, d),
denote byAε theε-neighborhoodof A : Aε := {x ∈ X : d(x, A) ≤ ε}. Notice thatAε is a closed subset ofX.

A subsetK of a metric space isprecompactif for every real numberε > 0, there exists a finite subsetF ⊆ K
such thatK is contained inFε. Every compact metric space is precompact. Every subset of a precompact metric
space is precompact. The convex hull of every finite subset of a normed space is compact, hence precompact.
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2.6 Continuous dual of a normed space

In this paperall vector spaces are spaces over the fieldR of real numbers.

Given a normed vector space(E, ‖.‖), we denote byΓE (resp.SE) the closed unit ball{x ∈ E : ‖x‖ ≤ 1}
(resp. the unit sphere{x ∈ E : ‖x‖ = 1}) of E. The normed spaceE is aBanach spaceif it is complete (w.r.t.
Cauchy filters of the metric spaceE).

We denote byE′ the continuous dualof E endowed with the dual norm : thus,E′ is the vector space of
continuous linear mappingsf : E → R, endowed with the norm given by‖f‖ := supx∈ΓE

|f(x)| for every
f ∈ E′. Thesecond dualof E is the continuous dual ofE′, and it is denoted byE′′.

Notation (canonical mapping) For everyx ∈ E, we denote bỹx : E′ → R the “evaluation mapping at point
x”, associating the numberf(x) to eachf ∈ E′. We denote byjE thecanonical mappingfrom E to the second
dualE′′, associating to everyx ∈ E the evaluation mapping̃x.

Clearly,jE is linear, continuous and‖jE‖ ≤ 1. In ZF+HB, one proves thatjE is isometric: ∀x ∈ E, ‖x̃‖ =
‖x‖.

Remark 2.2 In ZF+¬HB, one can prove the existence of an infinite dimensional Banach spaceE such that
E′ = {0} (see Lemma5 p. 12 in [9] or Theorem2 in [15]). For such a spaceE, E′′ = {0} sojE is onto butjE is
not one-to-one. In [1], Section4, several other examples of pathologies occurring in functional analysis without
the axiom of choice are provided.

Question 1 Given a normed spaceE, if the canonical mappingjE : E → E′′ is isometrical, thenjE is
one-to-one. Is the converse statement true ?

2.7 Weak topologies on a normed space

Given some normed vector spaceE, and some vector subspaceV ⊆ E′, denote byσ(E, V ) the coarsest topology
T on E such that everyf ∈ V is continuous from(E, T ) to R. It is easy to prove thatE endowed with this
topologyT is a linear topological vector space (tvs) : this means that the addition+ : E×E → E and the scalar
multiplication. : R× E → E are continuous. Moreover thetvsE is locally convex.

The weak topologyon the normed spaceE is the topologyσ(E,E′). Thus, the weak topology onE is
generated by the (strict) hemi-spaces :

Hs
f,λ := {x ∈ E : f(x) < λ}, f ∈ E′, λ ∈ R

Moreover, closed sets ofσ(E,E′) are intersections of finite unions of (large) hemi-spaces of the following form :

H l
f,λ := {x ∈ E : f(x) ≤ λ}, f ∈ E′, λ ∈ R

The weak* topologyon the normed spaceE′ is the topologyσ(E′, jE [E]). The weak* topology onE′ is
also denoted byσ(E′, E). Thus, hemi-spaces ofE′ of the following type form a sub-basis of open subsets of
σ(E′, E) :

Hs
x̃,λ = {f ∈ E′ : f(x) < λ}, x ∈ E, λ ∈ R

Question 2 Let E be a normed space such that there exists a bounded convex subset with non-empty interior
which is weakly closed. Then, clearly, singletons ofE are weakly closed. Are closed balls ofE weakly closed ?
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8 M. Morillon: James sequences and Dependent Choices

2.8 Convex topology on a normed space

Definition 2.3 (convex lattice of a normed space)Given a normed spaceE, we denote byLE the lattice
generated by closed convex subsets ofE. Notice thatLE is the set of finite unions of closed convex subsets of
E : we call it theconvex lattice ofE.

The following Fact will be used in Lemma 3.4 :

Fact 1 Let C be a convex subset of a normed spaceE, andε ∈ R∗
+. Then theε-neighborhoodCε of C is

convex (whenceCε ∈ LE).

P r o o f. Given two convex subsetsA,B of E, thenA+B is convex. Now,Cε =
⋂

ε<s

(
C +Γ(0, s)

)
whence

Cε is convex.

Definition 2.4 (convex topology)The convex topologyon a normed spaceE is the topology for which a
subset ofE is closed if and only if it is the intersection of a subset of the convex lattice ofE.

Remark 2.5 (convex-topologyversusweak topology) The convex topology on a normed spaceE is inter-
mediate between the weak topologyσ(E,E′) and thestrong topology(associated to the norm ofE). Also notice
that closed balls ofE, closed subspaces ofE (for example finite dimensional subspaces ofE) are closed for the
convex topology. InZF+HB, every closed convex subset of a normed spaceE is weakly closed, in which case
the convex topology onE and the weak topology onE are equal. However, the weak topology on some infinite
dimensional normed spacesE may be trivial inZF+¬HB : indeed, in such a theory, there exists an infinite
dimensional Banach spaceE satisfyingE′ = {0} (see Remark 2.2) ; such a space has only two weakly open
subsets (∅ andE), hence the weak topology is strictly coarser than the convex topology onE !

Notice that given a Banach spaceE, the convex topology and the weak topology may differ even whenjE is
isometrical (see Remark 4.9, Section 4.4).

Remark 2.6 In a Hilbert space, the weak topology and the convex topology are equal inZF (because in a
Hilbert space, every closed convex subset is weakly closed, see [9]).

2.9 ϑ-sequences

James’ criterion of “reflexivity” introduced in [12] and [13] is formulated in terms ofϑ-sequences.

2.9.1 ϑ-sequences and triangular sequences

Recall that (see Section 2.2) we denote byN the setN ∪ {N}.
Notation For every subsetA of a vector space, we denote byconv(A) the convex hull ofA, and we denote

by span(A) the vector subspace linearly spanned byA.

Definition 2.7 (ϑ-sequence)Given someϑ ∈ R∗
+, and someN ∈ N, a sequence(ak)k∈N of the normed space

E is aϑ-sequenceif for every integeri < N , the distance betweenspan{ak : k < i} andconv{ak : i ≤ k < N}
is > ϑ. Notice that the empty sequence∅ is aϑ-sequence.

Notice that ifϑ > 0, everyϑ-sequence is linearly independent. This notion ofϑ-sequence can be reformulated
usingtriangular sequences:

Definition 2.8 (triangular sequence)Let E be a normed space,ϑ ∈]0, 1[, andN ∈ N. Given a sequence
(ak)k<N of E, and a sequence(fk)k<N of the closed unit ball of the continuous dual ofspan{ak : k < N}, say
that the sequence(ak, fk)k<N is ϑ-triangular when for everyk, l < N , fk(al) = 0 if l < k, andfk(al) > ϑ if
k ≤ l.

Thus the sequence(fk)k<N witnesses(ak)k<N being aϑ-sequence. Conversely indeed :

Proposition 2.9 Let E be a normed space,ϑ ∈]0, 1[, N ∈ N, and σ be a sequence(ai)i<N of E. Let
V := span{ai : i < N}. The following properties are equivalent :

1. The sequenceσ is aϑ-sequence ofV ;
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2. There exists a sequence(fk)k<N of SV ′ such that(ai, fi)i<N is ϑ-triangular.

3. There exists a sequence(fk)k<N of ΓV ′ such that(ai, fi)i<N is ϑ-triangular.

P r o o f. 1.⇒ 2. Assume that(ai)i<N is aϑ-sequence ofV . SinceV is separable, one can build inZF some
sequence(fk)k<N of SV ′ satisfyingfk = 0 onspan

(
{ai : 0 ≤ i < k}

)
andfk > ϑ onconv({ai : k ≤ i < N}).

2.⇒ 3. Straightforward.
3.⇒ 1. Assume that there exists a sequence(fk)k<N of ΓV ′ such that(ai, fi)i<N is aϑ-triangular sequence of

V . Given some integersk, n such thatk < n < N , if (λi)i<k ∈ Rk, if (µi)k≤i<n ∈ R+
n−k with

∑
k≤i<N µi =

1, thenfk(−
∑

i<k λi.ai +
∑

k≤i<n µi.ai) = fk(
∑

k≤i<n µi.ai) > ϑ hence∥∥∥∥∥∥
∑
i<k

λi.ai −
∑

k≤i<n

µi.ai

∥∥∥∥∥∥ > ϑ

(because‖fk‖ ≤ 1).

Fact 2 (norming aϑ-sequence)Letε, ϑ, ϑε > 0 satisfyingϑ(1 + ε) < ϑε < 1. Letn ∈ N, and(ai)i<n be a
ϑε-sequence of the closed ballΓ(0, 1 + ε) of the normed spaceE. Then( ai

‖ai‖ )i<n is aϑ-sequence ofSE .

P r o o f. Indeed, letV := span{ai : i < n} and let(fi)i<n be some sequence ofSV ′ such that(ai, fi)i<n

is ϑε-triangular. Then,( ai

‖ai‖ , fi)i<n is ϑ-triangular because for everyi < n, for every (λt)t<i ∈ Ri, for
every real numbersλi, . . . , λn−1 ∈ R+ satisfying

∑
i≤t<n λt = 1, fi(

∑
i≤t<n λt

at

‖at‖ −
∑

t<i λt
at

‖at‖ ) =
fi(

∑
i≤t<n λt

at

‖at‖ ) ≥
∑

i≤t<n λt
ϑε

‖at‖ ≥
∑

i≤t<n λt
ϑε

1+ε = ϑε

1+ε ≥ ϑ.

2.9.2 Associated sequences

“Associated sequences” of convex sets will be used to buildϑ-sequences, see Definition 3.5 and Lemma 3.7 :

Definition 2.10 (associated sequence)Given some real numberϑ > 0, someN ∈ N, and some sequence
(ai)i<N of the normed spaceE, say that a⊆-descending sequence(Ci)i<N of closed convex sets isϑ-associated
to (ai)i<N if for eachi < N the following two conditions are satisfied :

spanϑ({at : t < i}) ∩ Ci = ∅ (8)

ai ∈ Ci (whence conv({at : i ≤ t}) ⊆ Ci ) (9)

Notice that given a (finite or infinite) sequence(ai)i<N of a normed spaceE, the following three conditions
are equivalent : “(ai)i<N is aϑ-sequence” ; “

(
conv({at : i ≤ t})

)
i<N

isϑ-associated to the sequence(ai)i<N ” ;
“There exists a⊆-descending sequence of closed convex subsets ofE which isϑ-associated to(ai)i<N ”.

3 DC implies J2C

3.1 Stationary sets

Given a latticeL of subsets of some setX, a filterF of the latticeL, we denote byS(F) the set ofF-stationary
sets, i.e. elements of the latticeL meeting every element ofF . Then, for everyA,B ∈ L, the following easy
conditions are fulfilled :

F ⊆ S(F) (10)

(A ∈ S(F) andA ⊆ B) ⇒ B ∈ S(F) (11)

Moreover,

A ∪B ∈ S(F) ⇒ (A ∈ S(F) or B ∈ S(F)) (12)
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10 M. Morillon: James sequences and Dependent Choices

In particular, ifA ∪B = X thenA ∈ S(F) or B ∈ S(F).

(A ∈ S(F) andB ∈ F) ⇒ A ∩B ∈ S(F) (13)

Notice that the filterF of L is amaximalfilter of the latticeL if and only if S(F) = F .

3.2 Saturating filters w.r.t. numerical constraints

Given a latticeL of subsets of a setX, and a mappingφ : P(L) → [0,+∞], define the mappingΦ : P(P(L)) →
[0,+∞] by Φ(A) = inf{φ(A) : A ∈ A} and say that a filterF of L is φ-saturatedif Φ(S(F)) = Φ(F). For
example, ifφ is the “radius” functionrad (resp. “diameter” functiondiam) -see Section 2.5- then,Φ is the
functionρ (resp.δ). Notice that for a given functionφ, the functionΦ is order reversing from(P(P(L)),⊆) to
([0,+∞],≤). Besides, every maximal filter ofL is trivially saturatedw.r.t. any suchφ.

Remark 3.1 Given someφ-saturated filterG, every filterH containingG is alsoφ-saturated : indeed,

Φ(S(H)) ≤ Φ(H) ≤ Φ(G) = Φ(S(G)) ≤ Φ(S(H))

Lemma 3.2 Let (X, d) be a metric space, letL be a lattice onX and letφ : P(L) → [0,+∞[.

1. In ZF+DC, every filterF of L is contained in aφ-saturated filter ofL.

2. The same conclusion holds inZF in the particular case of the “radius” functionρ, wheneverL contains all
closed balls ofX andX has a dense well orderable subset.

P r o o f. (1). For everyε > 0, for every filterG of L, there exists someF ∈ S(G) such thatφ(F ) ≤
Φ(S(G)) + ε, thus, the filterG̃ generated byG andF satisfiesΦ(G̃) ≤ Φ(S(G)) + ε. UsingDC, define an
infinite⊆-ascending sequence(Fn)n∈N of filters such thatF0 = F and such that for eachn ∈ N,

Φ(Fn+1) ≤ Φ(S(Fn)) +
1

n + 1
(14)

Then, for everyn ∈ N, the filterG := ∪i∈NFi satisfies the following inequality :

Φ(S(Fn)) ≤ Φ(S(Fn+1)) ≤ Φ(S(G)) ≤ Φ(G) ≤ Φ(Fn+1) (15)

Using inequalities (14) and (15) for everyn ∈ N, it follows thatΦ(S(G)) = Φ(G).
(2). By definition ofρ, for everyε > 0, for every filterG of L, there exists somea ∈ X and somer ∈ R+

satisfyingΓ(a, r) ∈ S(G) andr ≤ ρ(S(G)) + ε ; thusΦ(G̃) ≤ Φ(S(G)) + ε whereG̃ is the filter generated byG
andΓ(a, r). Given some well-ordered dense subsetD of X, the proof of (1) goes through inZF : defineFn+1

as the filter generated byFn andΓ(a, r), where(a, r) is the first element ofD × Q satisfyingΓ(a, r) ∈ S(Fn)
andr ≤ ρ(S(Fn)) + 1

n+1 .

Lemma 3.3 (Filters with positive radius) Let (X, d) be a metric space,L be a lattice of closed subsets ofX
containing the closed balls ofX, andF be a filter ofL. For every real numberr satisfying0 ≤ r < ρ(S(F)),
and every precompact subsetK of X, Kr /∈ S(F).

P r o o f. If K is finite, thenKr /∈ S(F) because of Property (12) forF-stationary sets (see Section 3.1). In
the general case, letr′ be a real number such thatr < r′ < ρ(S(F)) ; using precompactness ofK, let F be a
finite subset ofK such thatK ⊆ Fr′−r ; thenKr ⊆ Fr′ . Using the first case,Fr′ /∈ S(F), soKr /∈ S(F).

Lemma 3.4 (Filters with positive radius in normed spaces)LetE be a normed space, andF be a filter of
the convex latticeLE containing some bounded set. Then, for every finite-dimensional vector subspaceV ⊆ E,
and every real numberr satisfying0 ≤ r < ρ(S(F)), Vr /∈ S(F).
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P r o o f. Use precompactness of every bounded subset of the finite dimensional spaceV . More precisely, let
R be some real number such thatΓ(0, R) ∈ F . Observe that

Vr ∩ Γ(0, R) ⊆ [V ∩ Γ(0, R + r)]r

SinceV ∩ Γ(0, R + r) is precompact, Lemma 3.3 implies that[V ∩ Γ(0, R + r)]r /∈ S(F). It follows that
Vr ∩ Γ(0, R) /∈ S(F) whenceVr /∈ S(F).

Definition 3.5 (Tree of finite ϑ-sequences)Given a normed spaceE, someϑ ∈ R∗
+ and some subsetA of

E, we denote byTA,ϑ the set of finiteϑ-sequences ofA ; thus(TA,ϑ,⊆) is a subtree of(A<ω,⊆).

Definition 3.6 (Subtree(ZG,A,ϑ,⊆)) Given some normed spaceE, someϑ ∈ R∗
+, some subsetA of E and

some collectionG of subsets ofE, we denote byZG,A,ϑ the set of finiteϑ-sequences(ai)i<n of A admitting an
associated sequence(Ci)i<n such that for alli < n, Ci ∈ G : notice that(ZG,A,ϑ,⊆) is a subtree of(TA,ϑ,⊆).

Lemma 3.7 Let E be a Banach space. Assume that there exists a filterG of LE , containing some closed
bounded convex subsetC, and satisfyingρ(G) = ρ(S(G)) > 0. Letϑ ∈]0, ρ(G)[.

1. Every element of the treeZS(G),C,ϑ has a successor in this tree.

2. If D is a dense well-orderable subset ofC, then every element of the treeZS(G),D,ϑ has a successor in this
tree.

P r o o f. 1. Letσ = (ai)i<n ∈ ZS(G),C,ϑ. LetV := span{ai : i < n} and let(Ci)i<n be some⊆-descending
sequence of convex sets∈ S(G) which isϑ-associated toσ ; letH the filter generated byG∪{Ci : i < n} : notice
that, using Remark 3.1,ρ(S(H)) = ρ(H) = ρ(G). Using Lemma 3.4, the closed convex setVϑ does not belong
toS(H), whence there exists someF ∈ H such thatVϑ∩F = ∅ ; sinceF is a finite union of closed convex sets,
there exists also some convex setK ∈ S(H) satisfyingVϑ ∩ K = ∅ (see Property (12) ofH-stationary sets).
Now, using Property (13) ofH-stationary sets,Cn := K ∩

⋂
i<n Ci ∩ C ∈ S(H) ⊆ S(G) : let an ∈ Cn. Then

(ai)i≤n is a successor ofσ in ZS(G),C,ϑ and(Ci)i≤n is ϑ-associated to(ai)i≤n.
2. The proof is similar : just use some real numberη > 0 such thatVϑ+η does not belong toH ; this yields

some convex setK ∈ S(H) satisfyingVϑ+η ∩K = ∅ whenceVϑ ∩Kη = ∅ ; thenCn := (K ∩
⋂

i<n Ci)η ∩C
meetsD andVϑ ∩ Cn = ∅.

Remark 3.8 Given someϑ ∈]0, 1[, a sequenceσ ∈ TSE ,ϑ may fail to admit any successor inTSE ,ϑ : for
example if the norm‖.‖ is locally uniformly rotundat pointa ∈ SE (cf. [8] p. 42), namely if∀ε > 0 ∃ηε >
0 ∀x ∈ E

(
(|

∥∥x+a
2

∥∥ − 1| < ηε and| ‖x‖ − 1| < ηε) ⇒ (‖x− a‖ < ε)
)
, then, given someε ∈]0, 1[, for

everyϑ ∈]ε ∨ (1 − ηε), 1[, the 1-sequence(a) does not have any successor inTSE ,ϑ ; indeed, forx ∈ SE ,
(‖x− a‖ ≥ ϑ > ε) ⇒ 1−

∥∥x+a
2

∥∥ ≥ η ⇒
∥∥x+a

2 − 0
∥∥ ≤ 1− η = ϑ, thusd(conv{x, a}, span{∅}) ≤ ϑ so that

(a, x) cannot be aϑ-sequence.

Theorem 3.9 (DC impliesJ2C) LetE be a Banach space. Assume thatC is a closed bounded convex subset
of E which is not compact in the convex topology.

1. In ZF+DC, there exists someϑ0 > 0 and someϑ0-sequence inC. Moreover, ifΓ(0, 1) is not compact in
the convex topology, then, for everyϑ ∈]0, 1[, the unit sphereSE contains aϑ-sequence.

2. If C has a dense well-orderable subsetD, then there exists someϑ0 > 0, and someϑ0-sequence inD, which
is definable fromE, ϑ0, D and any well-ordering onD. Moreover, ifΓ(0, 1) is not compact in the convex
topology, then for everyϑ ∈]0, 1[, every dense well-orderable subsetD of SE contains aϑ-sequence, which
is definable fromE, ϑ, D and any well-ordering onD.
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12 M. Morillon: James sequences and Dependent Choices

P r o o f. (1) LetF be a filter of the latticeLE containingC, such that∩F = ∅. By Lemma 3.2.1, letG
be some filter ofLE containingF and satisfyingρ(G) = ρ(S(G)) : then∩G ⊆ ∩F = ∅. SinceG contains
the bounded setC, ρ(G) < +∞. SinceE is a Banach space,G is not a Cauchy filter, whence0 < ρ(G). Let
ϑ0 ∈]0, ρ(G)[. Using Lemma 3.7.1, every element of the treeZS(G),C,ϑ0 has a successor in this tree ; usingDC,
there exists an infinite increasing sequence(σn)n∈N in (ZS(G),C,ϑ0 , () ; then(an)n∈N := ∪n∈Nσn is an infinite
ϑ0-sequence ofC.

Now, assume thatΓ(0, 1), and then, closed balls ofE with radius> 0 fail to be compact in the convex
topology. Letϑ ∈]0, 1[. Let ε > 0 satisfyingϑ(1 + ε) < 1 and letϑε ∈]ϑ(1 + ε), 1[. Applying DC, build some
filter G of LE containing some closed ball and satisfying both relationsρ(G) = ρ(S(G)) and∩G = ∅. Up to an
homothetie, one may assume thatρ(G) = 1. Up to a translation, one may assume thatΓ(0, 1 + ε) ∈ G. Using
DC and Lemma 3.7.1, this yields an infiniteϑε-sequence(an)n∈N of Γ(0, 1 + ε). Using Fact 2,( an

‖an‖ )n∈N is a
ϑ-sequence ofSE .

(2) The proof is similar to (1), using Lemma 3.2-(2) instead of Lemma 3.2-(1), and Lemma 3.7.2 instead of
Lemma 3.7.1.

Remark 3.10 A shorter proof ofJ2C in ZFC can be obtained by using amaximalfilter F of LE satisfying
∩F = ∅. Notice that the existence of a maximal filter containing a proper filter in an arbitrary lattice of sets is
equivalent toAC (see [3]).

4 Various notions of reflexivity

4.1 Various notions of compactness

Given a closed convex subsetC of a Banach space, say thatC is ω-compactif every⊆-descending sequence
(Cn)n∈N of non-empty closedconvexsubsets ofC has a non-empty intersection.

Proposition 4.1 LetC be some closed bounded convex subsetC of a Banach spaceE. Consider the following
notions of compactness forC :

a) C is compact in the convex topology.

b) C is ω-compact.

c) Every closed convex subset ofC with a dense well-orderable subset isω-compact.

d) Every separable closed convex subset ofC is ω-compact.

e) For every sequence(xn)n∈N of C, C ∩
⋂

n∈N conv{xk : k ≥ n} is non-empty.

f) For every sequence(xn)n∈N of C,

inf
n∈N

d
(
conv{xk : k < n}, conv{xk : k ≥ n}

)
= 0

g) For every sequence(xn)n∈N of C,

inf
n∈N

d
(
span{xk : k < n}, conv{xk : k ≥ n}

)
= 0

1. In ZF+DC, g) ⇒ a).

2. In ZF, if C has a dense well-orderable subset, theng) ⇒ a).

3. In ZF, a) ⇒ b) ⇒ c) ⇔ d) ⇔ e) ⇔ f) ⇔ g).
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P r o o f. 1. and 2. : Use Theorem 3.9 in Section 3.
3. We first prove e)⇒ f). The five other direct implications are straightforward. Now assume that for every

sequence(xn)n∈N of C, the setC∩
⋂

n∈N conv{xk : k ≥ n} is non-empty. Given a sequence(xn)n∈N of C, there

exists somel ∈ C ∩
⋂

n∈N conv{xk : k ≥ n}. Then,l ∈ ∪n∈N∗conv{xk : k < n} ∩
⋂

n∈N∗ conv{xk : k ≥ n}.
It follows thatinfn∈IN d

(
conv{xk : k < n}, conv{xk : k ≥ n}

)
= 0.

The proof ofg) ⇒ c) follows from 2.

Definition 4.2 (J-compactness)Say that a closed convex subsetC of a normed space isJ-compact(James-
compact) if for everyϑ > 0, C does not contain anyϑ-sequence.

Thus, ifC is some closed convex subset of a Banach spaceE, each Property c), d), e), f) and g) of Proposi-
tion 4.1 is equivalent inZF to J-compactness ofC.

Remark 4.3 (index of J-compactness)In ZF, every well-founded binary relationR on a setE has arank :
there exists a smallest ordinalα = rk(R) for which there is a (unique) mappingf : E → α satisfying for all
x, y ∈ E, (xRy andx 6= y) ⇒ f(x) < f(y). Given a Banach spaceE and some J-compact closed bounded
convex subsetC of E, define theindex of J-compactnessof C as

indJ(C) := sup{rk(TC,ϑ, )) : ϑ > 0} = {rk(TC, 1
n
, )) : n ∈ N∗}

Given someanalyticwell founded binary relationR on a complete metric spaceX having a dense well orderable
subsetD of cardinalα, the rank of the well-founded relationR is some ordinal< α+, and there is a one-to-one
mapping fromrk(R) to α, which is definable fromE, D and any bijection betweenD andα (see [7] where no
choice is needed in the proof). In particular, given a Banach spaceE and some closed bounded convex subsetC
of E which is J-compact, ifC has a dense well-orderable subsetD with cardinalα, then for everyϑ > 0, the
rankrϑ of the (analytic) well-founded binary relation(TC,ϑ, )) is some ordinal< α+, and there is a one-to-one
mapping fromrϑ to α, which is definable fromE,D, ϑ and any bijection betweenD andα. Let δ be thedensity
of the topological spaceC, i.e. the first ordinal equipotent with some dense subset ofC. Now given a sequence
(rn)n∈N of ordinals< δ+, if there exists a sequence(jn)n∈N such that eachjn is a one-to-one mapping fromrn

into δ, thensupn∈N rn < δ+. It follows that indJ(C) < δ+. In particular, given aseparableclosed bounded
convex subsetC of a Banach space which is J-compact, thenindJ(C) is a countable ordinal. [There exist models
of ZF containing a sequence(αn)n∈N of countable ordinals with least upper bound the first uncountable ordinal
ω1.]

4.2 J-reflexivity

Lemma 4.4 Given a Banach spaceE, the following properties are equivalent.

1. For every closed subspaceV of E with a dense well-orderable subset, the closed unit ball ofV is compact
in the convex topology.

2. For every separable closed subspaceV of E, the closed unit ball ofV is ω-compact.

3. For every sequence(xn)n∈N of ΓE ,
⋂

n∈N conv({xk : k ≥ n}) is non-empty.

4. For every sequence(xn)n∈N of ΓE ,

inf
n∈N

d
(
conv({xk : k < n}), (conv({xk : k ≥ n})

)
= 0

5. There existsϑ ∈]0, 1[ such that for every sequence(xn)n∈N of SE ,

inf
n∈N

d
(
span{xk : k < n}, conv{xk : k ≥ n}

)
< ϑ

P r o o f. Each property 1., 2., 3., 4., is equivalent to J-compactness ofΓE (see Proposition 4.1). Finally, 5.⇒
1 follows from Theorem 3.9.2.
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14 M. Morillon: James sequences and Dependent Choices

According to our definition of J-reflexivity at the beginning of our paper, say that a Banach spaceE is J-
reflexiveif E satisfies one of the above equivalent properties. Recall that J-reflexivity has a countable character :
a Banach spaceE is J-reflexive if and only if every closed separable subspace ofE is J-reflexive. Theindex of
J-reflexivityof a J-reflexive Banach space is the index of J-compactness of its closed unit ball.

Remark 4.5 Given some sequence(xn)n∈N of a vector spaceE, say that some sequence(bn)n∈N of E is a
block-sequenceof (xn)n∈N if there exists an increasing sequence(nk)k∈N and a sequence(λi)i∈N ∈ RN such
that

∀k ∈ N bk =
∑

nk≤i<nk+1

λixi

Moreover, if for everyk ∈ N, 0 ≤ λk and
∑

nk≤i<nk+1
λi = 1, then say that(bn)n∈N is aconvex block-sequence

of (xn)n∈N. Now, given a Banach spaceE, J-reflexivity ofE (see Property 3. in Lemma 4.4) can be formulated
as follows : “Every bounded sequence ofE admits a convex block-sequence which (strongly) converges.”

4.3 Various distinct notions of reflexivity

Definition 4.6 (various notions of reflexivity) Say that a Banach spaceE is :

• convex-reflexiveif the closed unit ballΓE of E is compact in the convex-topology ;

• ω-reflexiveif ΓE is ω-compact ;

• simply-reflexiveif the canonical mappingjE : E → E′′ is isometric and onto ;

• onto-reflexiveif the canonical mappingjE is onto.

We will now compare inZF these various notions of “reflexivity”, see Figure 1. Notice that non-implications
in Figure 1 follow from Proposition 4.11.

Proposition 4.7 LetE be a Banach space.

1. In ZF, “ E is convex-reflexive‘”⇒ “ E is ω-reflexive”⇒ “ E is J-reflexive”.

2. In ZF+DC, if E is J-reflexive thenE is convex-reflexive.

3. In ZF, if E has a dense well-orderable subset and ifE is J-reflexive, thenE is convex-reflexive.

4. Convex-reflexivity⇒ onto-reflexivity.

5. Simple-reflexivity⇒ onto-reflexivity.

P r o o f. 1., 2. and 3. : use Proposition 4.1.
4. Assume that the Banach spaceE is convex-reflexivei.e. that ΓE is compact in the convex topology ;

a fortiori, the ballΓE is σ(E,E′)-compact. Endow the second dualE′′ with the weak* topologyσ(E′′, E′).
Since the canonical mappingjE : (E, σ(E,E′)) → (E′′, σ(E′′, E′)) is continuous,jE [ΓE ] is compact inE′′ ;
it follows that jE [ΓE ] is closed in the Hausdorff spaceE′′. Besides, according to Goldstine’s lemma (which
is provable inZF, cf. [4]), the subsetjE [ΓE ] is dense inΓE′′ . It follows that jE [ΓE ] = ΓE′′ whenceE is
onto-reflexive.

5. is trivial.
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4.4 Some classical normed spaces

Given a setI, we denote byPf (I) the set of finite subsets ofI. Also recall that̀ 0(I) is the following normed
vector space endowed by the “sup” norm :

`0(I) := {(xi)i∈I : ∀ε > 0 ∃F ∈ Pf (I) ∀i ∈ I\F |xi| ≤ ε}

The continuous dual of̀0(I) is (isometrically isomorphic with) the following normed vector space endowed with
the “sum” norm :

`1(I) := {(xi)i∈I :
∑
i∈I

|xi| < +∞}

Moreover, the continuous dual of`1(I) is the following space endowed with the “sup” norm :

`∞(I) := {(xi)i∈I : sup
i∈I

|xi| < +∞}

For everyp ∈]1,+∞[, the vector space

`p(I) := {(xi)i∈I :
∑
i∈I

|xi|p < +∞}

is endowed with theNp norm :Np((xi)i∈I) =
(∑

i∈I |xi|p
)1/p

.

Denote byR(I) the vector space of all mappingsf ∈ RI such that the set{i ∈ I : f(i) 6= 0)} is finite. Clearly
R(I) is dense in each space`p(I) for p ∈ {0}∪ [1,+∞[. It follows that the Banach space`0(I) is the completion
of the normed spaceR(I) endowed with the “sup” norm and for everyp ∈ [1,+∞[, the Banach spacèp(I) is
the completion of the normed spaceR(I) endowed with theNp norm.

If I is finite, then, the continuous dual of`∞(I) is (isometrically) isomorphic with̀1(I). UsingHB, for every
infinite setI the continuous dual of̀∞(I) strictly contains̀ 1(I) whencè 1(I) is not onto-reflexive inZF+HB.
However :

Proposition 4.8 There are models ofZF+DC where the continuous dual of`∞(N) is `1(N).

P r o o f. According to Pincus and Solovay (see [18], “Discussion” p. 187), there exists a model ofZF+DC
where every measure onN is trivial. Here, ameasureon a setI is a mappingm associating to every subsetA of I
a real numberm(A) ∈ R+ and satisfying for every disjoint subsetsA,B of I the equalitym(A∪B) = m(A) +
m(B). In particularm(∅) = 0. Clearly, for everya ∈ I, the “Dirac mapping”δa associating to every subsetA
of I the real number1 if a ∈ A and0 if a /∈ A is a measure onI. More generally, ifJ is a subset ofI and if
(λi)i∈J is a family of[0, 1] such that

∑
i∈J λi = 1 then

∑
i∈J λiδai

is a measure onI which is said to bediscrete
or “trivial”. Notice that every measure on a finite set is trivial. We now show that in a model ofZF where every
measure onN is trivial, the continuous dual of̀∞(N) is `1(N). Denote by(en)n∈N the canonical basis ofR(N) :
for eachn ∈ N, the mappingen is defined byen(t) = 1 if t = n anden(t) = 0 if t 6= n. Say that a linear mapping
Φ : `∞(N) → R is positiveif for everyx ∈ `∞(N), x ≥ 0 ⇒ Φ(x) ≥ 0. Notice that for every continuous linear
mappingΦ : `∞(N) → R, there exist positive linear mappingsΦ+,Φ− : `∞(N) → R such thatΦ = Φ+ − Φ−

(see [5]). We are to show that everypositivelinear mappingΦ : `∞(N) → R is in `1(N). For everyn ∈ N, let
λn := Φ(en). Let us show thatΛ := (λn)n∈N ∈ `1(N) and that for everya ∈ `∞(N), Φ(a) = jE(Λ)(a). First,∑

n∈N |λn| =
∑

n∈N λn = supA∈Pf (N) Φ(1A) ≤ Φ(1N) ≤ ‖Φ‖ < +∞. Moreover, for every positive element
a = (ai)i∈N ∈ `∞(N), jE(Λ)(a) =

∑
i∈N λiai = supA∈Pf (N)

∑
i∈A λiai = supA∈Pf (N) Φ(

∑
i∈A ai) ≤ Φ(a)

(because
∑

i∈A ai ≤ a) whencejE(Λ)(a) ≤ Φ(a). It follows that the linear mappingd := Φ−jE(Λ) is positive.
Let m be the measure onN which is associated tod via the formulam(A) = d(1A) for every subsetA of N. For
everyn ∈ N, m({n}) = u(en) − λn = 0. Since every measure onN is trivial, it follows that the measurem is
null. In particularm(N) = 0 whenced(1N) = 0. It follows that the positive linear mappingd is null.
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16 M. Morillon: James sequences and Dependent Choices

Remark 4.9 Given a Banach spaceE such that the canonical mappingjE : E → E′′ is isometric (whence the
topologyσ(E,E′) is Hausdorff), then, it is not provable inZF that the convex topology and the weak topology
σ(E,E′) are equal. For example, consider a model ofZF where the continuous dual of the spaceE = `∞(N)
is `1(N) (see Proposition 4.8). Then the subspace`0(N) is a closed convex subset of`∞(N), but `0(N) is not
closed in the weak topologyσ(E,E′) : in fact, using Goldstine’s Lemma (cf. [4]), `0(N) is dense iǹ∞(N) for
the *-weak topologyσ(`∞(N), `1(N)) = σ(E,E′).

4.5 Counter-examples about “reflexivity” of spaces

Lemma 4.10 Let I be an infinite set.

1. (a) The spacè0(I) is not onto-reflexive.

(b) The closed unit ball of̀1(I) is not compact in the weak topology (in particular,`1(I) is not convex-
reflexive).

(c) If there exists an onto-mappingf : I → N, then`1(I) is notω-reflexive. Moreover, if there is a finite-to-
one suchf (i.e. if for everyn ∈ N the setf−1({n}) is finite) theǹ 0(I) is notω-reflexive. In particular,
`0(N) is notω-reflexive.

2. If I is Dedekind-finite, and ifAC(N,fin) restricted to finite non-empty subsets ofI holds, then, the unit
sphere of̀ 0(I) does not contain any infinite linearly independent sequence(an)n∈N ; in particular, for
every real numberp ∈ {0} ∪ [1,+∞[, the spacèp(I) is J-reflexive.

P r o o f. 1a. SinceI is infinite,1I ∈ `∞(I)\`0(I), whencè 0(I) is not onto-reflexive.
1b. For everyi ∈ I, let Ki := {f ∈ Γ`1(I) :

∑
k∈I f(k) = 1 andf(i) = 0}. Then the family of (weakly)

closed convex sets(Ki)i∈I of Γ`1(I) satisfies the finite intersection property, but the set∩i∈IKi is empty.
1c. Likewise, given an onto mappingf : I → N, for eachn ∈ N, denote byIn the setf−1({n}) := {i ∈ I :

f(i) = n}, and letKn := {f ∈ Γ`1(I) :
∑

k∈I f(k) = 1 and(∀i ∈ In, f(i) = 0)} ; then the⊆-descending
sequence(Kn)n∈N of nonempty closed convex subsets ofΓ`1(I) has an empty intersection. Now, iff is finite-to-
one, each setLn := {f ∈ Γ`0(I) : ∀i ∈

⋃
k≤n Ik f(i) = 1} is a closed convex subset ofΓ`0(I), and the sequence

(Ln)n∈N is a⊆-descending. Since
⋂

n∈N Ln = ∅, the spacè0(I) is notω-compact.
2. Recall that in the “basic Cohen model”, (see Section 2.1.2), there is an infinite Dedekind-finite set such that

AC(N,fin) restricted to finite non-empty subsets ofI holds. Given such a setI and somea = (ai)i∈I ∈ `0(I),
the supports(a) := {i ∈ I : ai 6= 0} of a is a countable union of finite sets : in fact,s(a) = ∪k∈NFk(a)
whereFk(a) := {i ∈ I : |a(i)| > 1

k+1}. Let (an)n∈N be a sequence of the unit sphere of`0(I). Then
S := ∪n∈N s(an) = ∪n∈N ∪k∈N Fk(an) whenceS is finite. Now span{an : n ∈ N} ⊆ `0(S) whence
span{an : n ∈ N} is finite-dimensional.

Proposition 4.11 1. In ZF, J-reflexivity does not implyω-reflexivity. J-reflexivity does not imply onto-
reflexivity.

2. In ZF, ω-reflexivity does not imply convex-reflexivity.

3. In ZF+DC, simple-reflexivity does not imply J-reflexivity. In particular, inZF+DC, onto-reflexivity does
not imply convex-reflexivity.

P r o o f. 1. Consider a model ofZF where there exists some infinite, Dedekind-finite setI satisfyingAC(N,fin)
and admitting an onto mappingf : I → N, for example the basic Cohen model (see Section 2.1.2). Using
Lemma 4.10.2, the space`1(I) is J-reflexive but using Lemma 4.10.1c,`1(I) is notω-reflexive. Moreover, the
spacè 0(I) is J-reflexive (Lemma 4.10.2) but`0(I) is not onto-reflexive (Lemma 4.10.1a).
2. Consider some model ofZF+¬AC(N,fin), for example the second Cohen model (see Section 2.1.3). Then,
in such a model, there exists, (see [9]-Theorem9-), a Hilbert spaceH with a⊆-descending sequence(Fn)n∈N of
nonempty weakly closed subsets of the closed unit ballΓH of H satisfying∩n∈NFn = ∅. However, the space
H is ω-reflexive and even more : every family of closedconvexsubsets ofΓH satisfying the finite intersection
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property has a non-empty intersection (see [9]-Corollary5 -).
3. The spacè1(N) is not J-reflexive since the canonical basis of`1(N) is a 1-sequence. However, there is a
model ofZF+DC where the continuous dual of`∞(N) is `1(N) (for example in Pincus and Solovay’s model,
see Proposition 4.8). In such a model, the space`1(N) is simply reflexive.

5 Weaker axioms thanJ2C

Recall that given a normed space(E, ‖.‖), the mapping

δE : ε 7→ inf {1−
∥∥∥∥x + y

2

∥∥∥∥ : x ∈ ΓE , y ∈ ΓE , ‖x− y‖ ≥ ε}

is called themodulus of convexityof E. Notice thatδE :]0, 2] → R+ is continuous and order-preserving. The
spaceE is uniformly convexif and only if ∀ε > 0, δE(ε) > 0. In other words,E is uniformly convex if there
exists a mappingδ : R∗

+ → R∗
+ such that, for every real numberε > 0, for everyx, y ∈ ΓE ,

‖x− y‖ ≥ ε ⇒
∥∥∥∥x + y

2

∥∥∥∥ ≤ 1− δ(ε) (16)

Any mappingδ :]0, 2] → R∗
+ satisfying (16) is called awitness of uniform convexity forE, and then,δE is the

best witness of uniform convexity. The following Lemmas are well-known :

Lemma 5.1 Every Hilbert space is uniformly convex, with modulus of convexityε 7→ 1−
√

1− ε2

4 .

P r o o f. See [2] p. 189-190.

Lemma 5.2 Every uniformly convex Banach space is J-reflexive. More precisely, let(E, ‖.‖) be a uniformly
convex normed space, with a continuous witness of uniform convexityδ. Then, there exists a real numberϑ ∈]0, 1[
such that1 ≤ ϑ + δ(ϑ). For such aϑ, the spaceE does not have anyϑ-triangular sequence of length2.

P r o o f. The functiong : ε 7→ ε + δ(ε) is continuous andg(1) > 1, hence there existsϑ ∈]0, 1[ such that
1 ≤ g(ϑ). If ((a1, a2), (f1, f2)) is aϑ-triangular sequence, then

∥∥a1+a2
2

∥∥ ≥ ϑ ≥ 1− δ(ϑ) and‖a1 − a2‖ ≥ ϑ :
this is contradictory since by definition ofδ, ‖a1 − a2‖ ≥ ϑ ⇒

∥∥a1+a2
2

∥∥ < 1− δ(ϑ).

Now, consider the two following statements :

A1 : Hilbert spaces are convex-reflexive.

A2 : Uniformly convex Banach spaces are convex-reflexive.

RCuc : “The closed unit ball of a uniformly convex Banach space is weakly compact”.

The implicationsDC ⇒ RCuc andDC ⇒ A1 were obtained in [6].

Theorem 5.3 1. J2C ⇒ A2 ⇒ RCuc ⇒ A1 ⇒ AC(N,fin).

2. J2C ⇒ D.

P r o o f. 1. The statementJ2C ⇒ A2 follows from Lemma 5.2. The implicationA2 ⇒ RCuc is straight-
forward since the weak topology on a normed space is contained in the convex topology. The implication
RCuc ⇒ A1 follows from Lemma 5.1 and the fact that in a Hilbert space, the weak topology and the con-
vex topology are equal. FinallyA1 ⇒ AC(N,fin) has been proved in [9].
2. LetI be an infinite set. Then, using Lemma 4.10.1b,`1(I) is not convex-reflexive. Letϑ ∈]0, 1[. UsingJ2C,
the closed unit sphere of`1(I) has an infiniteϑ-sequence(an)n∈N. Such a sequence is linearly independent.
Using Lemma 4.10.2 and the consequenceAC(N,fin) of J2C, it follows thatI is Dedekind-infinite.
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18 M. Morillon: James sequences and Dependent Choices

Remark 5.4 In particular,J2C is not provable inZF+BPI since in the basic Cohen model,BPI holds
whereasD fails.

Question 3 Does the statementJ2C imply DC ?

Question 4 DoesJ2C imply AC(N) ?

Question 5 DoesAC(N) imply A2 or A1 ?

Question 6 Are statementsA2 andA1 equivalent ?

6 A statement strictly weaker thanBPI

It is well known (see [14]) that the axiomBPI, being equivalent to the compactness of{0, 1}I for every setI,
implies numerous compactness results. In particular, the classical proof of Alaoglu’s theorem shows thatBPI
implies the following result of functional analysis :

(RC, Reflexive compactness). The closed unit ball of every simply-reflexive Banach space is weakly compact.

We will now prove thatRC does not implyBPI, and this solves Question2.11of [6].

Proposition 6.1 The axiomHB implies that every closed subspace of an onto-reflexive Banach space is
onto-reflexive.

P r o o f. Given a closed subspaceV of E, let r : E′ → V ′ be the “restriction” mapping which associates to
eachf ∈ E′ the mappingf�V . Given someΦ ∈ V ′′, Φ ◦ r ∈ E′′ ; sinceE is onto-reflexive, leta ∈ E such
thatΦ ◦ r = ã, whenceΦ = ã�V . We now show thata ∈ V ; seeking a contradiction, assume thata ∈ E\V :
then, usingHB Property forE, let f ∈ E′ such thatf [V ] = 0 andf(a) > 0. We now get a contradiction, since
Φ(f�V ) = f(a) > 0, and on the other hand,Φ(f�V ) = Φ(0) = 0.

Theorem 6.2 1. The axiomHB implies that every onto-reflexive Banach space is J-reflexive.

2. (HB+DC) implies that every onto-reflexive Banach space is convex-reflexive (whence(HB+DC) implies
RC).

3. RC does not implyBPI.

P r o o f. 1. LetE be an onto-reflexive Banach space. We show thatE is J-reflexive. Seeking a contradiction,
assume that for someϑ ∈]0, 1[, E has aϑ-triangular sequence(an, fn)n∈N (see Proposition 2.9). LetV be the
closed subspace generated by{an : n ∈ N}, and letC := conv

(
{fn : n ∈ N}

)
. Thend(C, 0) ≥ θ, hence, using

HB, there exists someΦ ∈ ΓV ′′ such thatΦ[C] ≥ ϑ. UsingHB, Proposition 6.1 implies that the subspaceV is
onto-reflexive, whence there exists somex ∈ V such thatΦ = x̃ ; let n ∈ N and(λi)0≤i≤n ∈ Rn+1 such that∥∥∥x−

∑
0≤i≤n λiai

∥∥∥ < ϑ. Then|Φ(fn+1)| = |fn+1(x)| = |fn+1(x−
∑

0≤i≤n λiai)| < ϑ : this is contradictory

with Φ[C] ≥ ϑ.
2. Use Theorem 3.9 and 1.
3. Use 2. and the fact that, ([10]), (HB+DC) does not implyBPI.

Question 7 It follows from our study that, inZF+DC+HB, convex-reflexivity,ω-reflexivity, simple-reflexivity,
J-reflexivity and onto-reflexivity are equivalent. Is there some “classical” notion of reflexivity which is not equiv-
alent to these notions inZF+DC+HB ?
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Fig. 1 Reflexivity inZF.

References

[1] Albius. E. and Morillon, M.,Uniform smoothness entails Hahn-Banach, Quaestiones Mathematicae 24 (2001),
p. 425-439.

[2] Beauzamy, B.,Introduction to Banach spaces and their geometry, North-Holland, Amsterdam (1985).
[3] Bell, J.L. and Fremlin, D.H.,The maximal ideal theorem for lattices of sets, Bull. London Math. Soc. 4, p. 1-2

(1972).
[4] Brezis, H.,Analyse fonctionnelle, Th́eorie et applications, Masson, Paris, 1983.
[5] Choquet, G.,Lectures on Analysis, 2, Mathematics Lecture Notes Series (Benjamin, New-York, 1969).
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