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Multiple Regression Is Not Multiple Regressions:
The Meaning of Multiple Regression and the

Non-Problem of Collinearity

Michael B. Morrissey∗ and Graeme D. Ruxton†

Simple regression (regression analysis with a single explanatory variable), and multiple re-
gression (regression models with multiple explanatory variables), typically correspond to
very different biological questions. The former use regression lines to describe univariate
associations. The latter describe the partial, or direct, effects of multiple variables, condi-
tioned on one another. We suspect that the superficial similarity of simple and multiple
regression leads to confusion in their interpretation. A clear understanding of these meth-
ods is essential, as they underlie a large range of procedures in common use in biology.
Beyond simple and multiple regression in their most basic forms, understanding the key
principles of these procedures is critical to understanding, and properly applying, many
methods, such as mixed models, generalised models, and causal inference using graphs
(including path analysis and its extensions). A simple, but careful, look at the distinction
between these two analyses is valuable in its own right, and can also be used to clarify
widely-held misconceptions about collinearity (correlations among explanatory variables).
There is no general sense in which collinearity is a problem. We suspect that the perception
of collinearity as a hindrance to analysis stems from misconceptions about interpretation
of multiple regression models, and so we pursue discussions about these misconceptions
in this light. In particular, collinearity causes multiple regression coefficients to be less
precisely estimated than corresponding simple regression coefficients. This should not be
interpreted as a problem, as it is perfectly natural that direct effects should be harder to
characterise than univariate associations. Purported solutions to the perceived problems of
collinearity are detrimental to most biological analyses.
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1 Introduction

Simple and multiple regression are two of the most-used statistical procedures in biology. Stat-
istical results from both procedures are commonly interpreted as metrics of the degree of rela-
tionship between (sometimes multiple) explanatory and response variables. This rough inter-
pretation may generally be satisfactory for simple regressions, i.e., models involving only one
explanatory variable. However, this interpretation can lead to confusion for multiple regression,
where the coefficients of a multiple regression model measure something subtly but crucially dif-
ferent. In this paper we first discuss what multiple regression is, what coefficients arising from
multiple regression analysis are, and how the purpose of multiple regression is different from
that of simple regression. We then build on this to clear up some misleading advice that we con-
sider prevalent on the consequences of (multi)collinearity, i.e. of correlations among explanatory
variables.

Our primary goal is to aid empiricists in understanding what aspects of the literature on
collinearity should be considered when conducting analyses of data sets wherein correlations
occur among predictor variables. We argue that the biostatistical literature contains a great deal
of advice that could be leading empiricists to believe that they are seriously violating assumptions
of their models, when in fact they are not. We hope that by promoting more understanding of
how this is the case, many analyses of biological data can be better understood. Furthermore,
it may be possible that properly understanding multiple regression and collinearity will reduce
the use of complex and also counterproductive perceived solutions to non-existent problems.

2 What are simple and multiple regression analyses?

Regression is a set of statistical methods that can be used to estimate functions by which a re-
sponse variable is related to one or more explanatory variables. In simple regression, expected
values of a response variable are described as a linear function of a single explanatory variable;
in multiple regression, expected values of a response variable may be described by multiple ex-
planatory variables.

The key statistic of simple regression is the slope of the fitted linear function. The inter-
pretation of this slope is that groups of observations that differ by one unit in the explanatory
variable differ in the means of their response variable by the value of the slope. If there is a
reason to believe that no quantities that are correlated with the explanatory variable also in-
fluence the response variable, then a causal interpretation of a simple regression model’s slope
is possible. Such an interpretation may hold, for example, in an experiment where only the
value of the explanatory variable is varied across experimental treatments. More rarely, in ob-
servational data, such a causal interpretation may be possible if we know a lot of background
information, and can make use of that information to make an argument about low influence of
such third variables on the response variable. Pearl et al. (2016) provide an accessible discussion
of the conditions under which direct effects estimated by multiple regression may be interpreted
as causal effects. The causal interpretation of simple regression is that increasing the value of
an explanatory variable by one unit will increase the value of the response variable by the value
of the slope. Another way to interpret simple regression is as a measure of the direct effect of
a single explanatory variable on the response variable under the assumption that there are no
strong indirect influences through any third variables. These interpretations require that a linear
function provides a reasonable model of the relationship between the explanatory variable and
the response variable.

Multiple regression simultaneously describes the direct effects of multiple explanatory vari-
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ables on a response, accounting for the direct effects of each explanatory variables included in
the model. These estimated direct effects are called partial regression coefficients.

The distinction between simple and partial regression coefficients is probably best demon-
strated by an example. Consider two correlated explanatory variables, x1 and x2, one of which,
x1, influences a response variable, y, while the other, x2, does not. Both explanatory variables
will be correlated with the response variable; for both, there will be a non-zero regression slope
in a simple regression. That is, the simple regression of y on x2 will have a non-zero regression
slope even though x2 has no direct effect on y, because x2 is correlated with x1 and x1 does have
a direct effect on y.

The signs of the simple regression coefficients will depend on the correlation between x1

and x2, and the effect of x1 on y. This situation is depicted in Figure 1, for a correlation of 0.5
between the explanatory variables, and an effect of x1 on expected values of y of 0.5. Figure 1
parts (a) and (b) show the simple regressions of y on x1 and x2, respectively. Figure 1c depicts
the multiple regression of y on x1 and x2. y is only affected by x1, but because x1 and x2 are
correlated, large values of x2 are associated with large values of x1, which in turn are linked to
large values of y. Two simple regressions of y on x1 and of y on x2 would imply that high values
of both these explanatory variables are associated with high values of y. In contrast, multiple
regression simultaneously recovers the direct effect of y on x1, and also that x2 only has an
indirect association with y through its correlation with x1.

The example scenario in Figure 1 reflects just one of the patterns where simple and partial
regression coefficients can differ. Another example may be useful before constructing a care-
ful, but simple, statement of what partial regression coefficients are. Figure 2 shows how an
explanatory variable that is uncorrelated with a response variable may nonetheless have a direct
effect on the response variable. As in Figure 1, this example also has a correlation between x1

and x2 of 0.5. However, in this time we simulated y values with expectation 0.5x1 − 0.25x2.
In this scenario, the effect of x1 on y, in combination with the positive correlation of x1 and
x2, is a source of positive covariance between x1 and y. However, the negative effect of x2 on
y ultimately has an equivalent negative effect on the covariance of x2 and y, resulting in no
correlation of x2 and y. Consequently, the simple regression slope of y on x2 is zero (Fig. 2b).
However, a multiple regression of y on x1 and x2 (Fig. 2c) is able to recover the full picture of
how both x1 and x2 influence y.

Partial regression coefficients thus represent very different quantities from simple regression
coefficients. These quantities do not represent improved or more sophisticated inferences about
slopes than are provided by simple regression. Rather, partial regression coefficients are distinct
quantities that will typically correspond to different biological questions from those that can
best be explored with simple regression. Partial regression coefficients represent the difference
in a response variable, per unit difference in a specified explanatory variable, holding all other
explanatory variables constant (despite the fact that the other explanatory variables may covary
and so are not themselves constant if regressed on one another). A causal interpretation of a
given partial regression coefficient is possible, under the assumption that all quantities that both
(i) are correlated with the given explanatory variable and (ii) have direct effects on the response
are included as explanatory variables in the model. The causal interpretation is then that a par-
tial regression coefficient represents how much the response variable would increase, per unit
increase of a given explanatory variable, if that explanatory variables value were increased while
holding the values of all other explanatory variables constant. For example, imagine that indi-
vidual reproductive success has been regressed on both body-length and body-mass in a multiple
regression analysis. The partial regression of reproductive success on mass would represent how
much reproductive success would increase if the mass of an individual were increased by one
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Figure 1: Multiple regression example scenario 1. When two explanatory variables (x1 & x2) are both
correlated with a response variable (y; depicted in parts a and b), it is possible that only one directly
affects the response (c). In (c), contour lines (red) indicate expected values of the response variable (i.e.,
y in parts a and b) corresponding to the range of joint values of the explanatory variables.
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Figure 2: Multiple regression example scenario 2. An explanatory variable (x2) that has little or no
correlation with a response variable (y), e.g., (b), the explanatory variable may nonetheless have a direct
effect on the response (c). As in Figure 1, contour lines in (c) indicate expected values of the response
variable (i.e., y in parts a and b) corresponding to the range of joint values of the explanatory variables.
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unit, while its length were held constant, regardless of whether or not a real individual that were
heavier would also be longer.

3 Correlations among explanatory variables: information or problem?

Collinearity is a non-zero correlation among explanatory variables. An understanding of how
simple and multiple regression are different analyses can be used to clarify some apparent mis-
understandings about multi-collinearity.

To streamline our presentation, we avoid point-by-point accounting of where and how the
principles we discuss conflict with existing information about (multi)collinearity in the liter-
ature. Each of the misunderstandings we discuss is explicitly expressed in multiple sources.
Recent and/or influential sources with which material we present conflicts include statistics text-
books aimed at biologists (e.g., Legendre and Legendre 1998, Crawley 2007, Zur et al. 2007
and Quinn and Keough 2002), reviews (e.g., Graham 2003, Dormann et al. 2013 and Zur et
al. 2010), and methodological primary research articles (e.g., Ray-Mukherjee et al. 2014 and
Prunier et al. 2015). We believe that our readers will see that statistical advice contained in these
and other sources is based on a range of misunderstandings, and that these can be rectified by
considering the meaning of partial regression coefficients.

We focus primarily on two properties of partial effects in multiple regression models: the
ability to make unbiased estimates, and the ability to make credible statements about the un-
certainty in those estimates. We treat bias formally; i.e., when we discuss bias of an estimator,
we are referring to the difference between the expected value of the estimator (in our case, this
will be and ordinary least squares estimate of a simple or partial regression coefficient) and
the true value of its estimand (the true value of the regression coefficient). Our discussion of
statements about uncertainty (e.g., standard errors) focus on whether they correctly portray the
(un)certainty in estimates of simple and partial regression coefficients.

Misunderstanding 1: Collinearity is a potential problem

If we seek tests of the overall relationship different individual explanatory variables have with the
response, then indeed correlations among variables in amultiple regressionmodel will mean that
we cannot interpret partial regression coefficients, or their statistical significance, as indicators
of this overall relationship. For example, in the simple example depicted in Figure 2, there is no
overall relationship between x2 and y, but multiple regression does not reflect this. However,
exploring the overall relationship between one of the explanatory variables and the response
variable is not the purpose of multiple regression; it is the purpose of simple regression. Multiple
regression is not a system of automating multiple individual tests for relationships, nor is it a
system for controlling for multiple tests for relationships. As we have seen (Figures 1 and 2) the
purpose of multiple regression is to determine, among multiple correlated explanatory variables,
what the direct effects of each is on the response. Correlations among predictor variables are
not a problem for multiple regression; rather, they are part of the information that multiple
regression uses to infer direct effects, as opposed to overall relationships (see Appendix 1 for
more on this).

Our treatments of other, specific misunderstandings are all essentially elaborations on this
argument. We contend that the behaviour of multiple regression analysis when predictors are
correlated is perfectly natural, provided that we clearly understand that multiple regression—
and the partial regression estimates that it generates—is distinct from simple regression.
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Misunderstanding 2: Collinearity leads to misleading inferences because it causes parameter estimates
to change—even to change sign—when other model terms are added to, or removed from, a model

This change in estimated coefficients is commonly seen as an indication that a model is unreli-
able. However, again, this concern disappears when the distinction between simple and partial
regression coefficients is considered. It is perfectly reasonable that simple and partial regres-
sion coefficients for a given explanatory variable should have different signs, and indeed such
a difference conveys valuable information that aids biological interpretation. Such a pattern
indicates that the contributions of correlated explanatory variables to the covariance of a given
focal explanatory variable with the response are greater than, and of opposite sign to, the direct
effect. This same process causing differences between simple and partial regression coefficients
can occur for comparisons between multiple regression models with different sets of explanatory
variables. It does not mean that the method is unreliable. Rather, it means that comparison
between different models provides an opportunity to understand potentially interesting reasons
why explanatory variables covary with the response variable.

Misunderstanding 3: Collinearity inflates p-values and standard errors

“Inflating” is not a synonym for “increasing”: inflation of standard errors suggests that that some
methodological failing means that they are larger than they should be to correctly describe the
level of uncertainty in predictions from the data. Correlations among predictor variables do not
inflate either standard errors or p-values. Determining which of multiple predictor variables
have direct effects on a response variable is a harder problem than determining whether each
explanatory variable, individually, is related to the response variable. Consequently, we should
not be surprised that, for a given data set, inference of direct effects is more challenging than
inference of pairwise relationships. Consider a situation where a multiple regression of y on x1

and x2 suggests that neither partial regression coefficient is statistically significant, but one or
both slopes of the associated simple regressions are significantly different from zero. This does
not imply the collinearity has inflated type II errors in the multiple regression. Rather, it reflects
the statistical and biological reality that direct effects considered in multiple regression are more
difficult to characterise empirically than overall effects studied in simple regression.

We can show that statements about statistical uncertainty in estimates of partial regression
coefficients remain valid under collinearity. The simplest approach is by simulation. We re-
peated the exercises that generated Figures 1 and 2, but with correlations among the explanat-
ory variables x1 and x2 ranging between 0.99 and –0.99. The true partial regression coefficients
remained the same as in Figures 1 and 2 across all values of the correlation between x1 and x2.
We used sample sizes of 10 and 100 observations. We repeated each simulation scenario 10,000
times. For each scenario, we calculated the standard deviation of estimated simple and partial
regression coefficients, and the average standard error of each regression coefficient estimator.
We also recorded the distribution of p-values for the effect of x2 on y in the simulation scenario
for Figure 1 (but across a wide range of correlations between x1 and x2). Since the true effect of
x2 on y is zero in this scenario, a tendency of collinearity to inflate p-values would be manifested
in a pattern where p<0.05 occurs in less than 5% of simulations.

Results of the simulations are given in Figure 3. All mean standard errors (black lines)
closely match the empirical standard deviations (grey lines) of replicated simulated estimates.
For extremely small sample sizes (n = 10 in Fig. 3a,c), standard errors from the ordinary least
squares regressions are slightly smaller than the empirical standard deviation of simulated es-
timates. This happens regardless of the degree of collinearity (i.e., it happens even when the
predictor variables are uncorrelated), and it is a result of the fact that calculations of standard
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errors for ordinary least squares regression rely on large sample theory. The close match of
standard deviations of estimates with mean standard errors demonstrates that statements about
statistical uncertainty in multiple regression analysis are not adversely affected by correlations
among predictor variables.

The p-values for the effect of x2 on y, in the simulations where x2 has no effect, are not
inflated by sampling error (Fig. 4). Across all simulation scenarios, including those with very
high correlations between predictor variables, p-values less than 0.05 occurred almost exactly
5% of the time. If collinearity were to inflate p-values, then the proportion of significant tests
would be lower than α.

However, standard errors of partial regression coefficients are larger when explanatory vari-
ables are highly correlated. This quite naturally reflects that when there is less variation in any
explanatory predictor variable that is independent of variation in other explanatory variables,
there is less information from which to make inference about direct effects. In the limit of
correlations among predictor variables approaching ±1, both standard errors and the standard
deviation of estimates become extremely large. This too is perfectly natural: if there is no in-
formation in one predictor, independent of other predictor variables, there is no information,
and multiple regression analysis correctly reflects this fact with appropriately large standard er-
rors. When correlations are perfect (or in practice, very near perfect) partial effects cannot be
calculated. (The OLS mechanics fail because the matrix algebra equivalent of division by zero
occurs.) This too, is perfectly natural. It is no different from the fact that division by zero
would occur if one were to attempt to apply the standard formula for the mean of a variable
with n = 0. In other words, this is another manifestation of the biological reality that inference
of direct effects is harder than inference of overall effects.

Misunderstanding 4: Collinearity leads to biased parameter estimates

The fact that partial regression coefficients change due to inclusion or exclusion of correlated
predictor variables could easily lead to a misunderstanding that the estimates from models con-
taining correlated predictor variables must be biased. However, we can use our simulations to
check whether parameter estimates are in fact biased by the presence of collinearity. Formally,
bias is the difference between the expected value of an estimator and the true value of an asso-
ciated estimand. In the case of multiple regression, the estimators are the values of estimated
partial regression coefficients from a multiple regression analysis. The estimands are the true
effects of the predictor variables on the response. Figure 5 shows the mean values of estimated
partial regression coefficients for every simulated scenario represented in Figure 3. This gives
the expected value of the estimators. The estimands are the simulated values. Figure 5 shows
that estimator and estimand have the same values, plus or minus trivial error due to a finite
number of replicate simulations. That is, there is no bias.

Misunderstanding 5: Variance inflation factors (VIFs) can indicate when collinearity is a problem,
and can inform deletion of variables from regression models to address the problem

Armed with an understanding of the distinction between simple and partial regression coeffi-
cients, we can see clearly that collinearity is not a problem. Consequently, no statistic can tell us
when this non-existent problem exists. However, measures of the amount of collinearity among
a set of predictor variables are potentially very useful: Variance Inflation Factors (VIFs) are a
statistic that measures the degree to which collinearity affects inferences for each variable in a
multiple regression analysis. Discussions on using VIFs primarily centre on threshold values
of VIFs above which collinearity is considered a problem. Curiously, these discussions rarely
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Figure 3: Simulation-based demonstration that collinearity in multiple regression analysis does not lead
to unreasonable statements about precision. Solid lines show mean standard errors of estimates of the
effect of x1 on y, and dashed lines show mean standard errors estimates of the effect of x2 on y, across a
range of correlations of x1 and x2. Gray lines show standard deviations of estimates for each simulation
scenario. If the standard errors are valid, they should match the standard deviations of estimates. (a)
and (b) use the true values of the partial regression coefficients from Fig. 1, and (c) and (d) use the true
parameter values from Fig. 2. Simulations for (a) and (c) use a sample size of 10, and those for (b) and (d)
use a sample size of 100. The variance inflation factors for both x1 and x2 are identical in the bivariate
analyses depicted.
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Figure 4: Simulation-based demonstration that collinearity in multiple regression analysis does not lead
to inflated p-values. Black lines indicate the proportion of significant tests of the effect of x2 on y in
the simulation scenario for Fig. 1 (where the true effect is zero), across a range of correlations between
x1 and x2, and for n = 10 (a) and n = 100 (b). The variance inflation factors for both x1 and x2 are
identical in the bivariate analyses depicted.
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Figure 5: Simulation-based demonstration that collinearity in multiple regression analysis is not biased
by any degree of colinearity among explanatory variables. Solid lines show estimates of the effect of x1
on y, and dashed lines show estimates of the effect of x2 on y, across a range of correlations of x1 and
x2. Gray lines show true values of the partial regression coefficients. (a) and (b) use the true values of
the partial regression coefficients from Fig. 1, and (c) and (d) use the true parameter values from Fig. 2.
Simulations for (a) and (c) use a sample size of 10, and those for (b) and (d) use a sample size of 100.
The variance inflation factors for both x1 and x2 are identical in the bivariate analyses depicted.
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consider what VIFs are. The variance inflation factor associated with a given explanatory vari-
able is the proportion by which the sampling variance (i.e., standard error squared) of its partial
regression coefficient will be larger than the sampling variance of its associated simple regres-
sion coefficient, in the instructive circumstance where the residual variances of the associated
simple and multiple regression models are the same. Thus, VIFs are potentially very useful, as
they inform us about how much more challenging a given multiple regression analysis will be
than a corresponding simple regression analysis. Researchers’ ‘feels’ for how powerful a regres-
sion analysis might be (e.g., what sample size is typically useful in a given field) probably relate
most intuitively to simple, rather than multiple, regression. VIFs can tell us how much larger
our sample size must be in a given multiple regression analysis such that its precision will be
equivalent to that of a simple regression analysis.

Most discussions about themagnitude of VIFs at which collinearity is understood to become
an issue make no mention of sample size. Rather, many sources simply indicate values of VIF
over which problems are likely to occur. However, with sufficient sample size, it is possible to
resolve partial effects, even among predictors that are highly correlated. Figures 3, 4, and 5 all
show, for sample sizes of n = 10 and n = 100, that multiple regression analysis is neither biased,
nor generates misleading information about uncertainty, regardless of VIF (which is calculated
directly from the correlation between variables). Figure 6 further illustrates the point, showing
the mean standard errors from 10,000 replicate analyses for a range of sample sizes from 10 to
104. The analyses in these simulations attempt to resolve the direct effects of two variables that
are correlated such that they have VIFs of either 1.3 or 10. (The latter is very high, according
to most sources.) No true effects of either predictor exist in these simulations, both predictors
have a variance of one unit, and the response has a residual variance of one unit. For both values
of VIF, robust inference is achievable, given sufficient sample size. VIFs are thus probably very
useful, as they may alert the analyst to variables for which partial effects may be very difficult to
resolve. (This may not as immediately evident from correlations, in analyses with more than two
predictors.) However, VIFs should never be treated as containing any information that can be
interpreted without other quantities that determine precision. These quantities are the residual
variance of the response variable, and the sample size.

Ironically, those who see collinearity as a problem often offer procedures for dealing with
the perceived problem, and these procedures will generally cause bias—these are often but not
exclusively based on VIFs. In the real world, the null hypothesis will rarely be true. Some
quantities may have trivial direct effects on response variables of interest in any given study
system, but they will not have effects of exactly zero. Imagine now that many researchers are
interested in how explanatory variable x1 influences quantity y. Suppose that x1 has a consistent
effect on y. In any given study system, there are naturally-occurring and/or experimental (e.g.,
time of day) variables, x2, that might be correlated with x1, and that might confound inferences
about the effect of x1 on y. If these x2 variables are often removed on account of being correlated
with x1 (as recommended by for example Zur et al. 2010), then within each study, there will be
a bias in the estimated effect of x1 on y. This bias will be in the direction of the product of the
correlation of x1 and x2 and the effect of x2 on y. If a given x2 variable is relevant across studies
and has consistent true effects across studies, then estimates will be biased on average.

Removal of variables from models due to values of VIFs will be a detriment to biological
studies in which the values of regression coefficients are of interest. This is because deletion of a
variable causes the values of other partial coefficients to change. The values of the partial regres-
sion coefficients for remaining variables will then be neither simple regression coefficients nor
partial effects, insofar as available data would have allowed. Removal of variables from models
for any other reason will also be detrimental to biological studies. Because predictor variables
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Figure 6: Simulation-based demonstration that variance inflation factors (VIFs) are meaningless unless
considered together with other factors that determine precision. Lines indicate mean standard error of
estimates of the partial effect of x1 on y, as a function of sample size, in analyses where y is regressed on
x1 and x2, where both x1 and x2 have variances of 1 but different correlations, where neither predictor
has an effect on y, and the residual variance in y is one.
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that are correlated with other explanatory variables will be associated with less precise para-
meter estimates, they will be disproportionately eliminated by any variable selection procedure.
This includes variable selection based on p-values, and information criterion-based selection of
models or sets of models.

Misunderstanding 6: Collinearity makes predictions unreliable

Prediction from a fitted model is the exercise of describing the expected value of the response
value, given hypothetical or observed values of the explanatory variables. In prediction, values
of explanatory variables at points where one wishes to obtain expectations of the response are
multiplied by their associated (partial) regression coefficients. Under collinearity, a multiple
regression model in which there are undoubtedly some relationships (as might be characterised
with precision by simple regression) between explanatory variables and predictors might rightly
have partial effects with high uncertainty (large standard errors, perhaps non-significant effects).
It may initially seem that such a model will give poor predictions. If prediction occurs via the
partial regression coefficients, and these coefficients have (legitimately) larger standard errors,
then surely the predictions will be highly uncertain. In fact, this is not necessarily the case.

Standard errors of individual parameter estimates are not complete descriptors of uncertainty
in any given fitted multiple regression model. Under collinearity, there will also be sampling
error covariance among parameter estimates. Not only will there be uncertainty in the values of
each parameter in isolation, but also there will be combinations of parameters that aremore likely
than others. Each estimate in a set of partial regression coefficients will not have been generated
by the model fitting algorithm in isolation, but rather will be the most likely combination of
parameter values.

An example may be most instructive in this case. Suppose that x1 affects y, the associated
regression coefficient is 0.5, and the residual variance in y is 0.75. (y thus has a total variance
of 1, if the explanatory variables are standardized to have variances of 1 themselves.) Suppose
that x2 has no effect on y, and has a correlation with x1 of 0.9. If the sample size is n = 30,
then the simple regressions of y on x1 and of y on x2 would be very likely to be statistically
significant, but the partial regression coefficients of the multiple regression of y on x1 and x2

would typically be non-significant.
In this example, the sampling covariance matrix of the partial regression coefficients is

cov
(
β̂
)
=

[
0.132 −0.118
−0.118 0.132

]
,

in which the diagonal entries are the sampling variances of the regression slopes for the effects
of x1 and x2 on y—for simplicity, we need not consider statistical noise in the estimate of the
intercept, for the present purposes—and the diagonal value is the sampling covariance of the
slopes. We give a fuller explanation of this sampling covariance matrix, and of other results
in this subsection, in Appendix 2. This sampling covariance corresponds to expected standard
errors of approximately 0.36 (i.e.,

√
0.132) for both estimated partial regression coefficients.

Converting the sampling covariance matrix to a correlation matrix, we get

cor
(
β̂
)
=

[
1 −0.9

−0.9 1

]
.

This means that the estimates we get are not just drawn from distributions with a standard
deviation of 0.36 around the true values. But when one coefficient is overestimated, the other is
almost always underestimated. The consequence of this for prediction is that the large sampling
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errors that legitimately arise under collinearity cancel out in appropriate ways when predictions
are made.

Suppose we wanted to know the expected value for a prediction with values of x1 = 1 and
x2 = 1. (Since x1 and x2 are highly positively correlated, such a data point would be quite
likely to occur in nature, and may be of interest.) Suppose also that our analysis had been
lucky in that it had quite closely estimated the true values of 0.5 and 0 for the partial regression
coefficients (even though they would each be non-significant), and our prediction would be
1 · 0.5 + 1 · 0 = 0.5. If the standard errors (0.36 and 0.36 for the coefficients for x1 and
x2) were to completely describe uncertainty in the model, our standard error of the prediction
would be

√
0.362 × 1 + 0.362 × 1 = 0.51. Our 95% prediction interval would be –0.5 to 1.5,

which would probably be disappointing. Either the simple regression model of y on x1 (the
true model) or the simple regression of y on x2 would make a better prediction. (The latter
would be downwardly biased, but for many purposes the benefit of increased precision would
probably outweigh cost of the bias.) However intuitive the above calculation of the standard
error of the prediction may seem, it is wrong. The standard error of the prediction depends on
both the sampling variance of the partial regression coefficients and their sampling correlation.
(Because of the positive correlation of x1 and x2, there is a sampling correlation of –0.9; see
above and Appendix 2.) Accounting for these, we would expect the multiple regression model
to have a prediction standard error1 of

√
0.362 × 1 + 0.362 × 1 + 2× 0.362 × (−0.9) = 0.16.

The associated 95% prediction interval (around an unbiased prediction of 0.5) would, on average,
be 0.18 to 0.81. This is much more satisfying precision for a small study (n = 30), and could be
regarded as a prediction that is significantly different from zero, even though the coefficients of
the multiple regression model are both non-significant.

An issue that is commonly raised about collinearity and prediction concerns changing cor-
relations among predictor variables from the data to which a model is fitted, to situations where
a model is used for prediction. If covariances among predictors change in such scenarios, then
some predictions can be highly uncertain. This is perfectly natural if it is understood as a case
of out of sample prediction. Imagine a model were fitted where two predictor variables, x1 and
x2, were strongly positively correlated. Since data with large values of x1 and small values of x2

will be rare or absent from the data, predictions in new settings that may contain large values
of x1 and small values of x2 will be highly uncertain. However, it should be seen as appropriate
that such scenarios generate large uncertainty: the data to which the model was originally fitted
contained little information about such scenarios, and so high uncertainty should be expected.
If correlations among predictors change between data sets used for model fitting and prediction,
and variable selection is applied as part of the model fitting procedure, then it is possible that
highly biased predictions (with inappropriately small uncertainty) will result. We do not view
this as a problem arising from collinearity itself, but rather as a problem with variable selection
procedures.

4 Example

Loyn (1987) investigated the effects of several properties of forest habitat patches in Australia
on an index of bird abundance (average number of birds seen or heard in 20-minute surveys).
Our analysis first recapitulates, and then revisits the interpretations, of previous didactic uses
of Loyn’s (1987) data by Quinn and Keough (2002) and Zur et al. (2009). The explanatory

1This is the standard formula for the variance of a product of random variables, i.e., Var(a + b) = Var(a) +
Var(b) + 2Cov(a, b), where a is x1β1 and b is x2β2, x1 and x2 are the values of the predictor variables at which
we seek a prediction, and β1 and β2 are the partial regressions of the response on x1 and x2
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variables for bird abundance are: (log) patch area, (log) distance of each patch to the nearest
neighbour patch, (log) distance of each patch to the nearest large patch, the year in which
each patch was isolated from similar habitat, patch altitude, and a 5-level factor indicating the
intensity of grazing experienced in each patch. Correlations among the predictor variables are
depicted in Figure 7.

There are significant associations of bird abundance with habitat patch area, year of isola-
tion, altitude, and grazing intensity in simple regression analyses (Table 1a). In particular, larger
patches, more recently isolated patches, and patches at higher altitudes have higher bird abund-
ance. Patches with the most intense grazing have the lowest bird abundance. In a multiple
regression (Table 1b) considering all variables simultaneously, the partial effects of year of isol-
ation and altitude are much more modest and are not statistically significantly different from
zero.

Should the fact that very different results, especially for year of isolation and altitude, are ob-
tained by models containing different predictor variables be viewed as an indication that some-
thing is wrong? In particular, should we be concerned that correlations among the predictor
variables could be invalidating some, or all, of our simple and multiple regression models?

There is no need for concern. It is perfectly natural that the coefficients of different mod-
els, containing different predictor variables, will have different values. It may be instructive to
unpack the distinction between the simple and partial regression effects of year of isolation and
altitude on bird abundance, in order to illustrate how it is natural that a simple regression effect
exists in the absence of a partial effect. We can begin this unpacking by noting the correlations
of grazing intensity with both year of isolation and altitude: The patches with the highest graz-
ing intensity are those that have been isolated the longest (Fig. 7, 7a). The correlation of altitude
and grazing intensity is less intense, but the main feature is similar: the patches with the highest
grazing intensity are predominantly those at the lowest altitude. Figure 8 shows the correlations
of year of isolation and altitude with grazing, and also shows predicted value of bird abundance
from multiple regression models including year of isolation and grazing (Fig. 8a) and altitude
and grazing (Fig. 8b). The coefficients of these additional illustrative models are given in the
supplemental information and are qualitatively similar to effects of year of isolation and grazing
intensity in the full multiple regression model (Table 1b). Both year of isolation and altitude are
negatively associated with grazing, and grazing has a negative effect on bird abundance. Con-
sequently, the grazing effect induces positive correlations of year of isolation and altitude with
bird abundance, each of which is reflected in simple regressions.

Other discussions about collinearity in many sources, including influential texts, indicate
that various aspects of the multiple regression model of bird abundance could be inappropriate
or unreliable. However, insofar as wemay have wished to generate estimates of the partial effects
of different variables on bird abundance and may have wished to make valid statements about
uncertainty in those partial effects, there are no aspects of these results that should be considered
inappropriate as a result of the correlations that exist among the predictor variables. Importantly,
the cases where significant effects exist in simple regressions (e.g., a significant simple regression
of bird abundance on year of isolation) but not in the multiple regression (e.g., isolation does not
have a significant partial effect on bird abundance), should not be seen as a failure of the multiple
regressionmodel. Rather, the partial effects simply represent different quantities than the simple
regression effects, and as such, there should be no cause for concern that the two parameters
take different values. Furthermore, the larger standard errors of the partial effects (see Table
1a,b) reflect the fact that partial regressions are legitimately more difficult to characterise than
simple regressions, and are not symptoms of any inappropriate effects of collinearity either.
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Figure 7: Correlations among predictor variables in an analysis of determinants of bird abundance. Values
above the diagonal are correlation coefficients corresponding to bivariate plots below the diagonal. The
grazing intensity is treated as a multi-level factor for the purpose of analyses, but treated as a continuous
variable for the purpose of calculating a correlation coefficient.
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Table 1: Simple (a) and partial (b) regression coefficients of the regression of Loyn’s (1987) index of
bird abundance on available predictor variables. Two predictor variables, year of isolation and altitude,
share non-trivial univariate relationships with bird abundance (as assessed by simple regression in part
a), but have little direct effect in the multiple regression model (part b). These differences arise because
of correlations among predictor variables, but should not be interpreted as failures of either the simple
regressions, the multiple regression model, or both. Rather, consideration of the distinction between
simple and partial regression coefficients reveals how the differences between models that contain differ-
ent predictor variables (in this case simple vs. multiple regression models) can be informative about how
different predictor variables come to covary with response variables. Further illustration of the distinc-
tion between simple and partial effects of year of isolation and grazing are given in Figure 7. The bird
abundance index is the number of birds seen or heard per 20 minute survey. We denote this quantity by
A when presenting units for estimated parameters.

Regression coefficient Units Estimate SE p-value
(a) Simple regression coefficients
(log) area A/ln(h) 4.25 0.52 7.2 × 10−11

(log) distance to nearest patch A/ln(km) 1.43 1.52 0.352
(log) distance to nearest large patch A/ln(km) 0.96 1.10 0.836
year of isolation A/year 0.211 0.049 7.7 × 10−5

altitude A/m 0.095 0.031 3.3 × 10−3

grazing intensity index

level 2 A (contrast) −6.67 3.38 0.053
level 3 A (contrast) −7.34 2.84 0.013
level 4 A (contrast) −8.05 3.52 0.026
level 5 A (contrast) −22.33 2.95 6.8 × 10−10

(b) Partial regression coefficients
(log) area A/ln(ha) 2.96 0.65 4.9 × 10−5

(log) distance to nearest patch A/ln(km) 0.14 1.16 0.904
(log) distance to nearest large patch A/ln(km) 0.35 0.93 0.711
year of isolation A/year −0.013 0.058 0.827
altitude A/m 0.011 0.024 0.656

grazing intensity index

level 2 A (contrast) 0.53 3.25 0.872
level 3 A (contrast) 0.07 2.96 0.982
level 4 A (contrast) −1.25 3.20 0.698
level 5 A (contrast) −12.47 4.78 0.012
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Figure 8: Illustrations of the distinction between simple and partial regression coefficients, using data on
bird abundance from Loyn (1987). Grazing intensity (an index with five levels), year of isolation, and
altitude are all related to the index of bird abundance in simple regressions (Table 1a). However, only
grazing intensity has a direct effect in a multiple regression model containing these (and other) variables
as predictors (Table 1b). (a) and (b) show the correlations of year of isolation and altitude with the grazing
intensity index. In both cases, there is a negative correlation with grazing intensity, and this covariance
of predictors, combined with the negative effect of high grazing on bird abundance, generates positive
correlations (and corresponding positive simple regressions) of grazing intensity with year of isolation and
altitude. Thus, it is not necessary to invoke any failure of the multiple regression model to explain the
differences between the simple and partial regression coefficients for year of isolation and altitude; rather,
the models containing different predictors help us to understand different things about how different
predictor variables come to be related to bird abundance.
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5 Conclusions

The views we advocate on collinearity certainly do not guarantee correct biological interpreta-
tions from multiple regression models. Partial regression coefficients and associated biological
interpretations always risk being wrong: aside from statistical error due to finite sample size, un-
measured, important variables may exist in any given study. The important feature of analyses
where predictor variables have been removed due to collinearity is that they unnecessarily risk
being wrong, when they could have been right about a partial effect, insofar as available data
would have allowed. To the extent that an analysis can be judged successful if it returns statist-
ically significant results (or that results fulfil some other criterion that, rightly or wrongly, gets
interpreted as analogous to statistical significance), excluding variables on the basis of collinear-
ity, significance, or any other means of variable selection will generate successful analysis. To
the extent that an analysis can be considered successful if it can be relied upon to give unbiased
estimates of the direct effects of predictor variables on responses, so far as available data allow,
and that the analysis can yield credible statements about our uncertainty in these estimates, col-
linearity is not a problem, and procedures to address the supposed problem lead to unsuccessful
analysis.

What has led to widespread confusion about the various supposed problems that collinearity
causes? This is very hard to determine. We suspect that a lack of appreciation for the distinction
between simple and partial regression coefficients could be a major underlying contributor to
confusion in this area. Many of the perceived problems with collinearity begin to make sense
if one expects multiple regression coefficients to behave like simple regression coefficients. For
example, if multiple regression were simply a mechanism for automating the application of
multiple simple regressions, and a researcher were asking questions for which simple regression
coefficients provided the answers, then the behaviour of multiple regression coefficients under
collinearity would indeed be a cause for consternation! Given the widespread nature of misun-
derstandings about the behaviour of multiple regression coefficients, it seems possible that the
specific questions that researchers often ask might be better served, or at least well complemen-
ted, by fitting multiple simple regression analyses (i.e., one to calculate the regression describing
the total association of each predictor variable of interest) in place of or in addition to multiple
regression analyses.

A plethora of methods exist that are widely understood to deal with different aspects of the
problem of collinearity. In many cases, the problems of collinearity are simply misunderstand-
ings: if we understand what partial effects are, then the fact that partial effects take different
values when different covariates are included in a model will not be seen as a problem in need of
a solution. Similarly, when partial effects are correctly understood to be different quantities than
simple regression effects, then the fact that they have bigger standard errors and p-values should
not be cause for consternation: there is no reason to expect to ask different questions of the same
data set and get equally precise answers. If one question (partial regression) is harder than the
other (simple regression, or regression models from which collinear terms have been removed),
then we should be shocked and suspicious if we somehow obtain equally precise answers. Vari-
ants of multiple regression analysis (variable selection, different kinds of regularised regression,
model averaging) generally sacrifice the desirable features of unadulterated multiple regression
(in particular, unbiasedness and ability to make credible statements about uncertainty). Some
of these methods may provide tangible benefits in return, in some settings. However, these
alternative methods absolutely should not be adopted on the understanding that they correct or
counterbalance problems with bias or uncertainty in multiple regression; such understanding is
incorrect.
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The purpose of this paper has been twofold. First, we have sought to provide the clearest
possible illustration of the meaning of the coefficients that multiple regression provides. Second,
we have used this clarification to rectify commonmisunderstandings pertaining to collinearity in
multiple regression. We hope this focus on collinearity has been useful in its own right, but also
in that it has provided an opportunity to explore, reiterate, and reinforce key concepts about
multiple regression. The issues raised here about collinearity in multiple regression translate
across to other statistical procedures that use multiple explanatory variables, such as generalised
linear models, mixed models, generalised additive models, and causal inference using graphs
(i.e., path analysis and related procedures). Collinearity is in no general way a problem for
statistical analysis. Rather, collinearity is an often-interesting facet of biological systems under
study; and it is a facet that familiar statistical techniques such as multiple regression are perfectly
able to accommodate.

Appendix 1: Covariance among explanatory variables as a source of informa-
tion in multiple regression

One way to see how correlations among explanatory variables are not assumed in multiple re-
gression to take any particular values (e.g., small values or zero) is to examine the equations by
which partial regression coefficients are estimated. These are generally presented in matrix form
with vectors of responses and parameter estimates, and design matrices. Such a presentation is
not conducive to general understanding. The various matrix products that occur are actually just
the covariances of explanatory variables with responses, and variances and covariances of explan-
atory variables, scaled by the sample size. The mechanics of estimation of multiple regression
coefficients actually boils down to dividing the covariances of responses with predictors by the
variance-covariance matrix of the predictors. Without affecting any subsequent arguments, we
can assume that explanatory variables are mean centered, and then not worry about the model
intercept. The formula for estimating partial regression coefficients, b̂, is

b̂ = Σ−1c,

whereΣ is the matrix of variances and covariances among explanatory variables, and c is a vector
of covariances of the explanatory variables with the response variable.

In the example in Figure 1, the covariance matrix of x1 and x2 is[
1 1/2
1/2 1

]
,

and the covariances of x1 and x2 with y are [
1/2
1/4

]
.

Consequently, the partial regression coefficients are

b̂ = Σ−1c =
[
1 1/2
1/2 1

]−1 [
1/2
1/4

]
=

[
4/3 −2/3
−2/3 4/3

] [
1/2
1/4

]
=

[
1/2
0

]
,

which is fortunate since we simulated each value of y from a normal distribution with mean of
1/2 x1, no effect of x2, and a variance of one.

Rather than being a hindrance to multiple regression, covariance among explanatory vari-
ables is in fact the source of information that allows us to infer direct effects.
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Appendix 2: A little more about sampling (co)variance and its effect on predic-
tion

The sampling variance-covariance matrix of the parameters of a multiple regression with a given
design matrix X is given by

Var
[
b̂
∣∣∣X] = σ2

e(XtX)−1
.

The design matrix is a slightly intimidating quantity at first. But it is just a way of organizing
the predictor variables. For example, in a multiple regression of some response on two predictor
variables, where for the first three records the values of the first predictor variable were 1, 2, and
2, and of the second predictor variable were 2, 1 and 3, the top of the design matrix would be

1 1 2
1 2 1
1 2 3
... ... ...

 .

The first column of ones indicates the model intercept, and the next two columns are the values
of the two predictor variables.

Correlations among predictor variables come into the calculation of sampling variances and
covariances via (XtX)−1. If Σ is the covariance matrix of columns of X, and µ is the vector of
means of columns of X, then

(XtX)−1
=

1

n
(Σ+µtµ)

−1
.

Recall that for estimating regression coefficients, far from there being some assumption
that predictors are uncorrelated, or are not correlated above some level, the correlations among
predictors, whatever they may be, are actually part of the information used to estimate partial
regression coefficients. Similarly, we can see here that, rather than there being some assumption
about no or little correlation among predictor variables in the machinery for calculating import-
ant measures of statistical uncertainty (e.g., standard errors or p-values), whatever correlations
among predictor variable occur, they are used by multiple regression analysis.

In the example in the text, the predictor variables have a correlation of 0.9, the sample size
is 30 and the residual variance is 0.75. Using the expressions above (and assuming that the
covariates are mean centred; this is not necessary, but it makes the maths more transparent, as
we need only consider the second two columns of X), we expect the sampling variances and
covariances to be

Var
[
b̂
∣∣∣X,σ2

e

]
= σ2

e(XtX)−1
=
σ2
e

n
(Σ+µtµ)

−1
=

3/4

30

1

1− 0.92

[
1 −0.9

−0.9 1

]
≈

[
0.132 −0.118
−0.118 0.132

]
.

The variances of predictions (i.e., of b̂x) are then given by the standard expression for the
variance of a linear transformation of a random variable,

Var
[
E[y|x, b̂,Var

[
b̂
∣∣∣X,σ2

e

]
]
]
= x

(
Var

[
b̂
∣∣∣X,σ2

e

])
xt.

So, while it may seem as though precise prediction is impossible, since the standard errors of
the estimated regression coefficients are very large

√
0.132 = 0.363, quite precise prediction
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is possible, because of the sampling covariance. Using, as an example (see text) an attempt to
predict y when x1 = 1 and x2 = 1,

Var[E[y]] =
[
1 1

] [ 0.132 −0.118
−0.118 0.132

] [
1
1

]
= 0.0263.

The standard error of the prediction is
√
0.0263 = 0.162, which is likely to represent far more

useful precision than does the impression given from the standard errors of the regression coef-
ficients alone.
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