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Abstract 

On 8th August 2019, Secretary of State for Health and Social Care, Matt Hancock, announced 
the creation of a £250 million NHS AI Lab. This significant investment is justified on the 
belief that transforming the UK’s National Health Service (NHS) into a more informationally 
mature and heterogeneous organisation, reliant on data-based and algorithmically-driven 
interactions, will offer significant benefit to patients, clinicians, and the overall system. These 
opportunities are realistic and should not be wasted. However, they may be missed (one may 
recall the troubled Care.data programme) if the ethical challenges posed by this transformation 
are not carefully considered from the start, and then addressed thoroughly, systematically, and 
in a socially participatory way.  To deal with this serious risk, the NHS AI Lab should create an 
Ethics Advisory Board and monitor, analyse, and address the normative and overarching 
ethical issues that arise at the individual, interpersonal, group, institutional and societal levels in 
AI for healthcare. 
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Introduction 

On 8th August 2019, the UK’s Secretary of State for Health and Care announced the creation of a 

£250 million National Health Service (NHS) AI Lab (1). The creation of the Lab shows the UK 

government’s commitment to deliver on the plans made in the NHS Long-Term Plan (2) with 

regards to data-driven technology, and the Grand Challenge to “use data, AI and innovation to 

transform the prevention, early diagnosis and treatment of chronic diseases by 2030 (3).”  

There are several reasons to see this as a positive investment in the NHS.  As (4) notes 

“cooperation between doctors and machines could represent a turning point with regards to our 

ability to tackle diseases and improve our wellbeing.” Today, AI systems can estimate bone age, 

predict which patients will not show up to an appointment (5), diagnose retinal disease, or quantify 

cardiac risk with greater consistency, speed, and reproducibility than humans (6). These and many 

other opportunities are to be valued, but capitalising on them is challenging. This is because the 

opportunities are not created by the technologies per se but by their ability to transform 

fundamentally the intrinsic nature of how healthcare is delivered in the NHS (7).  

This fundamental transformation is happening at a pace with which the system’s 

governance mechanisms are struggling to keep up. To ensure fairness, efficiency, efficacy and 

patient safety, a rigorous and robust regulatory system will be required (8) and it is being developed 

(9). However, compliance is necessary but still insufficient to steer the development of AI for 

healthcare in the right direction. Regulations, even when they are not in need of interpretation or 

extension, will only indicate what may and may not be done, but not what ought or ought not. They 

specify what is socially unacceptable but leave undetermined what is socially preferable. With an 

analogy, they are the necessary rules of the game, not the best strategy to win it. For this, we need 

soft ethics to help guide considerations of what ought and ought not to be done post-compliance 

(10). 

By ‘ethics’ we mean to refer to the need to evaluate not only the intentions and 

responsibilities of different agents in the AI for healthcare system (for example, clinicians, 

developers, policymakers),  but also the impacts that the actions of these agents will have on the 

‘receiver’ (individuals, groups, systems or indeed whole populations), their expectations, demands, 

needs, and rights. By taking this ‘patient-centric’ approach, we can collectively design a pro-ethical 

blueprint for algorithmic healthcare that ensures the “right actions are facilitated, promoted, 



amplified, and rewarded and the wrong actions hindered, prevented, mitigated, or punished in 

reparation” (p8 (11)).  

The challenge lies in creating a framework that enables a consistent approach to this kind 

of analysis. Accepted ethical principles of health research are well established, issues related to 

privacy, effectiveness, accessibility and utility are clear or becoming clearer (13), but other issues 

(see next section) are still uncertain (14). Therefore, the Lab should establish an Ethics Advisory 

Board  in order to monitor, analyse, and address the normative and overarching ethical issues that 

arise at the individual, interpersonal, group, institutional and societal levels in AI for healthcare 

(15).  

Mapping the Issues 

Building on the map developed by (12) of the normative, epistemic and overarching ethical issues 

associated with algorithmic decision making, Table 1 shows how ethical concerns can lead to harm 

when algorithms are used in the context of healthcare. They are related to (a) inconclusive, 

inscrutable or misguided evidence; (b) unfair outcomes or transformative effects; or (c) traceability. 

 Ethical Concern  Explanation Medical Example 
Epistemic concerns  Inconclusive 

Evidence  
Algorithmic 
conclusions are 
probabilities that are 
not infallible. They 
are rarely sufficient to 
posit the existence of 
a causal relationship.  

EKG readers in 
smartwatches may 
‘diagnose’ a patient as 
suffering from arrhythmia 
when it may be due to a 
fault with the watch not 
being able to accurately 
read that user’s heartbeat 
(for example due to the 
colour of their skin) or the 
‘norm’ is inappropriately 
calibrated for that 
individual (16) 

Inscrutable Evidence  Receivers of an 
algorithmic decision 
very rarely have full 
oversight of the data 
used to train or test an 
algorithm or the 
datapoints used to 
reach a specific 
decision.  
 

A clinical decision 
support system deployed in 
a hospital may make a 
treatment 
recommendation, but it 
may not be clear on what 
basis it has made that 
‘decision’ raising the risk 
that it has used data that 
are inappropriate for the 
individual in question or 
that there is a bug in the 
system leading to issues 



with over or under 
prescribing (17).  

Misguided Evidence  Conclusions can only 
be as reliable (but also 
as neutral) as the data 
they are based on.  

Watson for Oncology is in 
widespread use in China 
for ‘diagnosis’ via image 
recognition but has 
primarily been trained on 
a Western data set leading 
to issues with concordance 
and poorer results for 
Chinese patients than 
their Western 
counterparts (18). 

Normative Concerns  Unfair outcomes  An action can be 
found to having more 
of an impact (positive 
or negative) on one 
group of people  

An algorithm ‘learns’ to 
prioritise patients it 
predicts to have better 
outcomes for a particular 
disease. This turns out to 
have a discriminatory 
effect on people within the 
Black and minority ethnic 
communities (19). 

Transformative 
effects  

Algorithmic activities, 
like profiling, re-
conceptualise reality 
in unexpected ways.  
 

An individual using 
personal health app has 
limited oversight over 
what passive data it is 
collecting and how that is 
being transformed into a 
recommendation to 
improve, limiting their 
ability to challenge any 
recommendations made 
and a loss of personal 
autonomy and data 
privacy (20).   

Overarching Traceability  Harm caused by 
algorithmic activity is 
hard to debug (to 
detect the harm and 
find its cause), and it 
is hard to identify who 
should be held 
responsible for the 
harm caused.  

If a decision made by 
clinical decision support 
software leads to a 
negative outcome for the 
individual, it is unclear 
who to assign the 
responsibility and or 
liability to and therefore to 
prevent it from happening 
again (21)..  
 

Table 1: A summary of the epistemic, normative and overarching ethical concerns related 
to algorithmic use in healthcare based on (12).   



 

The examples given in Table 1 provide a broad overview of the ethical challenges that need to be 

considered if the benefits of data-driven healthcare are to be achieved (14). However, they 

primarily focus on potential risks and harms at the individual level. This is typical of the current 

literature on AI for healthcare (22). The concern is that this dominance in the literature has 

prompted policy responses that also focus solely on individual level impacts. For example, the 

NHS’s Code of Conduct for Data-Driven Health and Care Technology (23) asks developers to 

consider their ‘specific’ user when carrying out tasks, such as a data protection impact assessment, 

data minimisation processes, and evaluation of evidence of effectiveness, but gives no guidance to 

commissioners on how to assess the impact of introducing an algorithmic service at a group level 

(24).    

Although vital, this exclusive focus on an individual level fails to recognise that the ethical 

risks highlighted in Table 1 can impact relationships between people, groups of people, whole 

populations, and even institutions, not just individuals. Data are now circulating outside of the 

boundaries of formal healthcare systems, shared with third parties for research and commercial 

purposes (19), connecting personal, providers’ and population’s health information in complex 

feedback loops that exist at many levels (25). Due to these complexities, existing institutional 

review boards are struggling to evaluate increasingly technical research proposals (26). Thus, in 

order to design and manage an appropriate pro-ethical blueprint that would effectively deal with 

these new risks, an Ethics Advisory Board of ethicists, policymakers, clinicians, patients, 

developers, academics, regulators and information governance experts (as a minimum) seems 

necessary. This Board will be able to take into account a broader set of variables than those already 



recognised or protected in the above outlined policies and examples, by considering these risks at 

a number of different Levels of Abstraction (LoA)1(27).  

A recent systematised thematic review (28) of the ethics of AI for healthcare literature   

identified five main LoA at which ethical concerns with regards to AI for healthcare arise: (i) 

individual, (ii) interpersonal, (iii) group (e.g. family or population), (iv) institutional, and (v) societal. 

Take, for example, the epistemic and ethical concern of misguided evidence and AI triaging 

systems, which use patient-reported symptomatic and demographic data to help patients identify 

what they should do next (e.g. stay home, see a GP, go to hospital), or help clinicians identify 

which patients should be prioritised in a hospital setting. We have five possible LoA: 

a. Individual LoA: the algorithm could mis-judge the severity of an individual's 

symptoms. For example, nausea and back-pain are symptoms of a heart-attack in 

women but not typically in men (29), if the triaging algorithm has been trained to 

recognise a heart-attack on a dataset biased towards men, it may not identify these 

as potentially severe symptoms in a female patient.  

b.  Interpersonal LoA: there could be a negative impact on the relationship between 

clinician and patient, if the patient trusts the recommendation or diagnosis of the 

triaging system more than that of their clinician, but the clinician disagrees with it 

(30).  

c. Group LoA:  biased training datasets could lead to disproportionately better or 

worse health outcomes for different groups of people. For example, approximately 

80% of participants in genome-wide association studies are of European descent 

(31)—this is true of the majority of medical datasets—meaning that the triaging 

 
1 A level of abstraction can be imagined as an interface that enables one to observe some aspects of a system analysed, while making other aspects opaque or indeed 

invisible. For example, one may analyse a house at the LoA of a buyer, of an architect, of a city planner, of a plumber, and so on. LoAs are common in computer science, 

where systems are described at different LoAs (computational, hardware, user-centred etc.). LoAs can be combined in more complex sets, and can be, but are not 

necessarily always, hierarchical (27). 
 



algorithm could be consistently less accurate for individuals from Black and Ethnic 

Minority groups leading to overall poorer health outcomes for these individuals 

than others.  

d. Institutional LoA: there is a considerable reduction in the ability of the system to 

protect patient safety and therefore maintain patient trust, as data used to train and 

test healthcare algorithms flow from data collectors, to data aggregators, to 

analysers, (19) some of whom may be under no obligation to tell regulators or 

healthcare providers how the data were collected, aggregated, stored, or processed. 

This can significantly limit the ability of an Institution to respond if any of the 

harms associated with the other LoAs come to pass.  

e.  Societal LoA:  the triaging algorithm is just one node in a learning healthcare 

system (14). The feedback it provides to policymakers on population health—for 

example where certain diseases are more likely to occur and therefore where 

resources should be allocated—could lead to greatly inequal provisions of care. 

With no ability to audit the algorithm itself, people living in negatively affected 

areas may have no mechanisms to evidence calls for redress (32). 

This is just an example, but it makes clear the number of issues that could be missed if ethical 

considerations focus solely on individual level impacts or are reduced exclusively to a matter of 

legal compliance.  

Clearly, a pro-ethical blueprint for AI for Healthcare must consider epistemic, normative 

and traceability ethical concerns at five different LoAs, but there is one more element that needs 

to be considered: the different stages of the life-cycle of an algorithm: design, development, 

deployment, use, and possibly re-design, and so forth. It is relatively common for those 

commenting on the ethical implications of algorithms to use the phrase ‘rubbish in, rubbish out’ 

to stress that if, for example, an algorithm trained on a biased dataset will likely produce 



discriminatory outcomes. However, the ethical impact of an algorithm can be altered in either 

direction at each stage of development, from intention setting (business case development) to 

design phase, to training and test data procurement, to building phase, to testing phase, and finally 

to deployment (33), sometimes recursively. For example, an algorithm designed to recognise breast 

cancer in mammography scans more accurately—if it is built on an ethically procured and 

representative dataset, but deployed in a healthcare system that is unable to cope with the potential 

increase in volume of diagnosed patients—could lead to individuals living with a potentially 

worrying diagnosis, with no help, for significantly longer than before it was deployed. This scenario 

could result in a loss of autonomy for the individuals in question due to the very negative 

psychological impacts of the associated anxiety; an example of a negative transformative effect 

playing out at both the individual and institutional LoAs.  Thus, unless all those involved in the 

life-cycle of healthcare algorithms are encouraged to consider the ethical impacts of the decisions 

they make at each stage, there is a risk that pro-ethical design principles written into the business 

case may be coded out by the time a system gets to deployment (34). 

Conclusion 

Recent developments in the use of AI for diagnostics, drug discovery, epidemiology, system 

efficiency and ‘P4’ Medicine make it clear that the opportunities presented by the increasing use 

of algorithms in national and international healthcare systems are significant and should be 

welcomed (4). However, it is also clear that the ethical risks are broad, serious, and complex and 

need to be considered at both different LoAs and stages of algorithm development. This could 

make the challenge of pro-ethically designing AI for healthcare seem overwhelming. This is not 

our intention. We do not wish to give the impression that healthcare systems need to be timid 

about, and afraid of, adopting algorithmic solutions. On the contrary, we are recommending a bold 

and systematic approach, based on the recognition of the challenges and the need to address them 

as early as possible. and not as an afterthought, or a mere formality, by an Ethics Advisory Board. 



Those designing, developing, deploying, and using algorithms in healthcare should anticipate and 

address relevant ethical concerns so that they can make better, pro-ethical, design decisions and 

be ready to redress and change direction if a mistake becomes apparent (35). The failure of 

care.data should not be repeated and a backlash can and must be avoided. If this bold approach 

will be pursued, the significant benefits of AI for health will become a concrete possibility for all 

(14).  
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