
On computable automorphisms of the rationalnumbersA. S. Morozov, Sobolev Institute of Mathematics, Novosibirsk�, andJ. K. Truss, University of LeedsAbstractThe relationship between ideals I of Turing degrees and groups ofI{recursive automorphisms of the ordering on rationals is studied. Wediscuss the di�erences between such groups and the group of all auto-morphisms, prove that the isomorphism type of such a group completelyde�nes the ideal I, and outline a general correspondence between principalideals of Turing degrees and the �rst{order properties of such groups.1 IntroductionIn this paper we study certain subgroups of the group Aut hQ;�i of all au-tomorphisms of the set of rational numbers as an ordered set, namely thosede�ned by ideals I of the Turing degrees. This group, written Aut I hQ;�i, con-sists of all members of Aut hQ;�i which (under a suitable coding) have Turingdegree lying in I. Our main results are that the ideal can be `recovered' fromAut I hQ;�i:Theorems 2.22 and 2.23: For ideals I and J of Turing degrees,Aut I hQ;�i �= Aut J hQ;�i, I = Jand Aut I hQ;�i is embeddable in Aut J hQ;�i, I � J:In addition we prove the following results on arithmetical classes of sets (ofnatural numbers):Theorem 2.19: Let A be an arithmetical class of sets. Then there is a �rstorder sentence ' of the language of group theory such that for all Turing degreesd Aut d hQ;�i j= ', d \A 6= ;:�Supported by the Alexander von Humboldt Foundation.1



Theorem 2.20: If ' is a �rst order sentence of the language of group theory,then the union of the class of Turing degrees d such that Aut d hQ;�i j= ' isan arithmetical family of sets.The key idea involved in all these proofs is to interpret various conceptsinside Aut I hQ;�i, speci�cally the natural numbers, and �rst order arithmetic,as vehicles for reconstructing the ideal. The methods for doing this are ratherstandard in the theory of ordered permutation groups ([1] and [5]), though wegive the necessary details, and our treatment is self-contained.We use bold Roman letters to stand for Turing degrees, and � for the partialordering induced by the relation of Turing reducibility. The smallest Turingdegree, which consists of just the recursive sets, is denoted by 0. We refer thereader to [4] for background on recursion theory. We let c : ! � ! 1�1;onto�! ! bea computable pairing function, with computable inverses (�)0; (�)1 : ! ! ! suchthat (c(x; y))0 = x, (c(x; y))1 = y, and c((x)0; (x)1) = x hold for all x; y 2 !(see [2]).Let us �x some computable 1{1 onto map � : ! ! Q, that is a map �such that, given k 2 ! one can algorithmically �nd integers m and n such thatn > 0 and �(k) = mn . Our results will not depend on the precise choice of thenumbering �, since one can easily verify that for any other numbering � withthis property there is a recursive 1{1 function f such that �f = �, that is, thenumbers of elements with respect to one such numbering can be translated tothe numbers with respect to the other by a computable procedure. Note that fis a computable permutation.If for some A � Q the set ��1(A) is recursive or r.e., we say that the set Ais recursive (r.e. respectively). If a sequence of rational numbers (ai)i<! hasthe property that the mapping i 7! ��1(ai) is recursive, we call this sequencecomputable. Note that these de�nitions do not depend on the precise choice of�. Similar remarks apply to all subsequent de�nitions.Let I be an ideal of Turing degrees, i.e., 0 2 I, a � b 2 I ! a 2 I, anda, b 2 I ! supfa;bg 2 I. We say that a function is computable with respectto I provided it is computable relative to some element of I. We use the sameterminology when speaking of recursivity, recursive enumerability, etc. In allcases, `with respect to I' or `in I' means `in some element of I'.The set of all I{recursive order-preserving permutations of the rationals isdenoted by Aut I hQ;�i. Clearly this is a group under composition. If I =fs j s � dg, for some Turing degree d, we write Aut d hQ;�i for Aut I hQ;�i; inthe case d = 0, i.e., if Aut I hQ;�i is the group of all recursive automorphisms,we may also denote it by Aut r hQ;�i. Note that if I contains all Turing degreesthen Aut I hQ;�i = Aut hQ;�i.A real r is called I{recursive provided that it de�nes a recursive cut, i.e.,the sets fx 2 Q j x � rg and fx 2 Q j x > rg are I{recursive.2



Since we are studying subgroups of the group Aut hQ;�iof all order-preservingpermutations of Q, we shall need various pieces of terminology concerning thisgroup, taken from [1]. If g 2 Aut hQ;�i then for any orbit X of Q under theaction of g, the least convex set containing X is called an orbital. Thus theorbital containing x is equal to fy 2 Q : 9m;n 2 Z: gmx � y � gnxg. Thereare three kinds of possible orbitals, those on which g is increasing, decreasing,or constant (in the last of which the orbital just consists of a single point �xedby g), and we say that the orbital has parity +1, �1, or 0 in the three casesrespectively. A standard result of Holland's (which in fact applies more gen-erally) says that two elements of Aut hQ;�i are conjugate if and only if thereis an order-isomorphism between their sets of orbitals which preserves parity.Special sorts of elements of Aut hQ;�i (which are needed extensively in theremainder of the paper) are called bumps. These are elements having just onenon-trivial (parity 6= 0) orbital, so called in view of the shape of their graphicalrepresentation. If f 2 Aut hQ;�i then we denote by �f its continuous extensionto R, and we de�ne the support of f to be sp (f) = �x 2 R�� �f (x) 6= x	.2 Some de�nable propertiesLet P be some property of rational numbers. We shall call a rational numberr �{minimal with the property P if P is satis�ed by r and not by any rationalwith smaller �{number.Lemma 2.1 Assume a and b are I{recursive reals and a < b. Then thereare bumps f+ and f� in Aut hQ;�i such that sp (f+) = sp (f�) = (a; b) and8x 2 (a; b) (f+(x) > x), 8x 2 (a; b) (f�(x) < x).Proof: The proof is more-or-less standard and we give it here in order to verifythat in fact we are performing an algorithmic procedure with respect to I, andbecause similar arguments will be used several times in the sequel. We constructf = f+ using an e�ective back-and-forth argument, and we may let f� = f�1+ .At the end of each step we shall have a �nite mapping fs, whose domainand range are subsets of (a; b), such that the following are true:1. 8x 2 dom (fs) (fs(x) > x);2. 8x; y 2 dom (fs) (x < y ! fs(x) < fs(y)),3. if we let as = mindom (fs) and bs = maxrange (fs) then bs = fns (as)holds for some n < !.Description of the construction. 3



Step 0.Take some a0; b0 2 (a; b) so that a0 < b0 and let f0 *) fha0; b0ig.Step s+1.If as = mindom (fs) and bs = maxrange (fs) we let f 0s *) fs [ fhp; asi ; hbs; qig,where p and q are the �{minimal rationals in (a; as) and (bs; b) respectively.Take the �{minimal rational number r 2 (as; f�1s (bs)) n dom (fs) (for s > 0;if s = 0 this set is empty). Our goal is to add it to the domain of fs andpreserve the properties above. Consider the a0; b0 2 dom fs such that a0 < b0,(a0; b0) \ dom fs = ;, and r 2 (a0; b0). Take the �{minimal rational number tlying in (r;1)\ (fs(a0); fs(b0)), and add the pair hr; qi to f 0s: f 00s *) f 0s[fhr; qig.Similarly we can add the �{minimal rational in (fs(as); bs) to the range off 00s so that the result by f 00s will satisfy the requirements above. Denote theresult by fs+1.This completes the construction.Let f be identity outside (a; b) and coincide with Ss<! fs on (a; b).One can check by induction that if fs satis�es requirements 1{3 above thenso does fs+1. Since at each stage of the construction we took rationals withminimal �{numbers, we have that lims!1 bs = b and lims!1 as = a; for thesame reason we see that dom (f) = range (f) = Q.We check that (a; b) = �x �� 9n (f�n(c) < x < fn(c))	 (1)for any c 2 (a; b), i.e., (a; b) is an orbital. By the construction, f(as+1) = as,bs+1 = f(bs). Take an arbitrary c 2 (a; b). Then there are s and n such thatfn(as) < c < fn+1(as). By applying fk to all members of this inequality, weobtain fk+n(as) < fk(c) < fn+1+k(as). Taking limits as k !1 and k!�1,we have limk!�1 fk(c) = a and limk!1 fk(c) = b, which implies (1).Obviously, f is an element of Aut I hQ;�i, since by construction it belongsto Aut hQ;�i and is computable with respect to I. 2The following lemma, that asserts homogeneity ofQwith respect to Aut I hQ;�i,may be proved by similar methods.Lemma 2.2 Suppose that a0 < a1 < : : : < an and b0 < b1 < : : : < bn areI{recursive reals such that ai 2 Q , bi 2 Q, for i = 0; : : : ; n. Then there isf 2 Aut I hQ;�i such that �f(ai) = bi, for all i.Moreover, a stronger statement for computable sequences of rationals is alsotrue for Aut I hQ;�i. 4



Lemma 2.3 Suppose that (ai)i2Zand (bi)i2Zare I{recursive sequences of ra-tionals, both unbounded above and below, such that8i 2Z(ai � ai+1 ^ bi � bi+1 ^ (ai < ai+1), (bi < bi+1)) :Then there is f 2 Aut I hQ;�i such that f(ai) = bi, for all i.As usual, [f; g] stands for the group commutator f�1g�1fg and fg denotesthe conjugate g�1fg of f by g.Lemma 2.4 The property `p either has no orbitals of parity +1 or has no or-bitals of parity �1' (or, equivalently, 8u 2 Q(x(u)� u) _ 8u 2 Q(x(u)� u)) is�rst{order de�nable in Aut I hQ;�i by the formulaComp (x) *) 9y9z �y 6= 1 ^ z 6= 1 ^ 8t hy; zxti = 1� :Proof: The proof is the same as that of Lemma 3.1 in [5], except that in someplaces the computable versions of classical facts, here formulated as Lemmas2.1 and 2.2, are needed. `Comp ' stands for `comparability with the identity'. 2Lemma 2.5 The following property of x; y 2 Aut I hQ;�i:8u 2 sp (x)8v 2 sp (y)(u < v) _ 8u 2 sp (x)8v 2 sp (y)(u > v)(or, roughly speaking, sp (x) < sp (y) _ sp (x) > sp (y)) is �rst order de�nablein Aut I hQ;�i by the formulaApart (x; y) : 9z �Comp (z) ^ z 6= 1 ^ 8t �hx; yzti = 1�� :Proof: This is the same as that of [5, Lemma 3.2]. All additional permutationsneeded for this proof exist by Lemma 2.2. 2Lemma 2.6 The property `x has bounded support' is �rst order de�nable inAut I hQ;�i by the formula9z (Comp (z) ^ Apart (f; fz) ^ Apart (f; fz�1 )):Proof: This is immediate from the previous lemma. 2We can now illustrate some properties of computable automorphisms thatdi�er from those of the whole of Aut hQ;<i.Consider the formulaAtom (f) : Comp (f) ^ :(9f09f1 (f0 6= 1 ^ f1 6= 1 ^Apart (f0; f1) ^ f = f0f1)):5



In the whole group Aut hQ;<i, this formula clearly de�nes bumps, but this isfalse in Aut r hQ;�i, as we now show.Proposition 2.7 There is f 2 Aut r hQ;�i such that1. the set �x 2 R�� �f (x) = x	 is unbounded above and below;2. 8x 2 Q (f(x)> x);3. Aut r hQ;�i j= Atom (f):Remark. All reals x such that �f (x) = x are non{recursive, otherwise we coulddecompose f into two disjoint parts f0 and f1 so that it would satisfy the formula:Atom (f). Moreover, the �xed point set of �f has no isolated point. For if onthe contrary a real x0 with �f (x0) = x0 is an isolated point in the �xed pointset, consider a; b 2 Q such that a < x0 < b and x0 is the only point of [a; b] notin sp (f). In this case x0 will be a recursive real, since the setsfx 2 Q j x < x0g = fx j 9n 2 ! (x < fn(a))gand fx 2 Q j x > x0g = �x �� 9n 2 ! (x > f�n(b))	are recursively enumerable, their union is the whole Q, and consequently theyare recursive, contrary to what we said above.Lemma 2.8 There is a recursively enumerable equivalence relation � on Q suchthat1. all classes of � are convex;2. if A is a recursive set of rationals which is a union of classes of � thenA = ; or A = Q;3. all classes of � are open and bounded.Proof: First we de�ne a uniform enumeration of all disjoint pairs of r.e. subsetsofQ. LetWn be nth r.e. set (see [4] or [2]). Given n 2 !, enumerate the sets bUnand bVn as follows: simultaneously enumerate sets W(n)0 and W(n)1 so that ateach step at most one new element appears either in the enumeration of W(n)0or in the enumeration of W(n)1. If at some step this newly enumerated elementis still not enumerated either in bUn or in bVn, and appears �rst in W(n)0 then weadd it to bUn and add it to bVn otherwise. Note that for any two disjoint r.e. setsA and B there is n 2 ! such that bUn = A and bVn = B.6



The �nite parts of the sets bUn and bVn enumerated up to step t are denotedby bU tn and bV tn, respectively.Let rk *) �(k) be the kth rational number, and letU tn *) nrk ��� k 2 bU tno ;V tn *) nrk ��� k 2 bV tno ;Un *) [t2!U tn = nrk ��� k 2 bUno ;Vn *) [t2! V tn = nrk ��� k 2 bVno :For us it is important that if Q is the union of disjoint recursive sets A0 and A1then A0 = Un and A1 = Vn for some n 2 !.Our task is to avoid the situation when Un and Vn form a nontrivial partitionof Q such that Un and Vn are unions of classes of �. In the course of theforthcoming construction, we shall search for pairs of rationals a; b such that ais suspected of belonging to one class of the partition, while b belongs to theother. In this situation we shall add all pairs between a and b to �, i.e., thewhole interval [a; b] will be a subset of its equivalence class. In order to obtaina nontrivial equivalence, we only add rather small such intervals, in such a waythat their whole measure will be �nite. This will ensure that there are pairs ofnonequivalent elements.De�ne the set of pairs P , that will generate the required equivalence, insteps, and simultaneously enumerate the set S of natural numbers, for whichthere is no reason to execute our construction at further steps. The �nite partsof P and S that have been enumerated up to step t are denoted by Pt and Strespectively.Step 0.P0 *) ;, S0 *) ;.Step t > 0.For all n < t such that there are a 2 U tn and b 2 V tn with ja � bj < 12n andn 62St�1, we consider such a pair ha; bi having minimal code. Let a0 = minfa; bg,b0 = maxfa; bg, and add the pair ha0; b0i to P , and n to S. Thus, at the end ofthis step the sets Pt and St are de�ned.If we de�ne P to be St2! Pt, then the construction ensures that P is r.e.Let � be the equivalence relation containing P which is the transitive closureof ��, where hx; yi 2 �� *) 9 ha; bi 2 P (a � x; y � b):7



Clearly, � is r.e. and all its classes of are convex. Note that each equivalenceclass of � is the union of intervals of the form [a; b], ha; bi 2 P , and has measureat most Pk2! 12k = 2.Each r 2 Q is in some nontrivial class of � because, if n0 is such thatUn0 = nr � 1m+1 ��� m < !o and Vn0 = nr + 1m+1 ��� m < !o, then some pairDr � 1m0 ; r + 1m1 E will be added to P and, thus, r will be �{equivalent to anyq 2 hr � 1m0 ; r + 1m1 i. This also shows that � 6= fhx; xi j x 2 Qg.If Q= A0 [A1 is a partition of Q into non-empty recursive sets A0 and A1,let n be such that Un = A0 and Vn = A1. At some step of the constructionthere will be a 2 A0 and b 2 A1 such that ja � bj < 12n , thus at some stepan element from A0 and an element from A1 become equivalent and thereforeneither A0 nor A1 can be union of equivalence classes of �. 2Lemma 2.9 Suppose that I is an ideal of Turing degrees, and A is an I{recursive subset of Q which is a union of some open classes of an I{r.e. equi-valence relation �. Then there is f 2 Aut I hQ;�i such that1. f is the identity outside A;2. f(x) > x for all x 2 A;3. a subset of A is a nontrivial orbital of f if and only if it is a class of �.Proof: This lemma is proved by a stepwise construction similar to that ofLemma 2.1. 2Proposition 2.7 follows from this lemma, since no automorphism f corre-sponding to the � of Lemma 2.8 can be expressed as a product of two automor-phisms f0 and f1 in the group Aut r hQ;�i so that Aut r hQ;�i j= Apart (f0; f1).For if such f0 and f1 exist, the set sp (f0) = fx 2 Q j f0(x) > xg is recursive,and thus � fails to satisfy property 2 of Lemma 2.8. The remaining parts ofthe proposition are trivial. Nevertheless, it can be easily seen that f can be sodecomposed within Aut I hQ;�i. 2The proposition can be relativized to Aut d hQ;�i, for any Turing degree d.The only change necessary is to consider the d{r.e. family of sets fWdn gn<!instead of fWngn<!.Corollary 2.10 For any Turing degree d, Aut d hQ;�i is not an elementarysubstructure of Aut hQ;�i.The property we used to show that Aut d hQ;�i is not an elementary sub-structure of Aut hQ;�i is rather complicated. Now we give an example of avery easy property to establish this that uses only one existential quanti�er.8



Proposition 2.11 For each Turing degree d there are automorphisms f; g 2Aut d hQ;�i which are conjugate in Aut hQ;�i but not in Aut d hQ;�i.Proof: We give a sketch proof. Fix a d{recursive enumerable non{d{recursiveset A. We start the step{by{step process of construction of a d{recursive per-mutation f such that for all x holds f(x) > x and whose support is (0; 1) [(1; 2) [ (2; 3) [ : : :, i.e., we start a countable family of processes as in Lemma2.1, for intervals (0; 1), (1; 2), (2; 3). . . In the course of the construction, weslightly change this process, introducing new points in addition to 0; 1; 2; : : : Ifat some step of the construction n appears in the enumeration of A, we take a�{minimal rational point r 2 (n; n+1) which is less than all elements in the do-main of the �nite part of f enumerated so far in (n; n+1), and then continue theconstruction of the automorphism f as two processes: construction of bumpson the intervals (n; r) and (r; n + 1). The resulting d{recursive element f ofAut hQ;�iwill therefore have the property that its support is the union of openintervals with rational endpoints which are ordered in type !. Moreover, the setS(f) = fhr0; r1i j 9r 2 Q (r0 < x < r1 ^ f(x) = x)g is not d{recursive, other-wise we would have n 2 A, hn; n+ 1i 2S, which is impossible, since A is notd{recursive. An immediate check proves that this property of non{recursivityof S(f) is preserved under conjugation within Aut d hQ;�i.We construct the other automorphism g as an element of Aut d hQ;�i sothat 8x(f(x) � x) and sp (f) = (0; 1) [ (1; 2)[ (2; 3)[ : : :Thus S(g) is recursive while S(f) is not, so f and g are not conjugate inAut d hQ;�i. On the other hand, f is conjugated to g in Aut hQ;�i by Holland'scriterion [5]. 2We abbreviate 9t(xt = y) by x � y, i.e., x � y means that x is a conjugateof y. We have already shown that some of the usual methods fail to work ifwe restrict the complexity of automorphisms. In spite of this, it is possible tode�ne some important kinds of automorphisms, such as bumps, for instance:Lemma 2.12 The property `x is a bump' (bounded or unbounded) is de�nablein Aut I hQ;�i by the formulabump (x) : Atom (x) ^ x 6= 1 ^8y (y � x! (Atom (xy)! xy � x)):Proof: Assume that x satis�es this formula but fails to be a bump. SinceAtom (x), there are no a; b 2 sp (x), a < b, and non-empty open interval (c; d) �(a; b) such that sp (x) \ (c; d) = ;. Moreover, recall that by de�nition theproperty Atom (x) implies Comp (x). Without loss of generality, we may assumethat x(r) � r, for all rationals r. >From this we deduce that the reals r� =9



inf sp (x) and r+ = sup sp (x) (if �nite) are I{recursive. To see this, �x somerational c0 2 sp (x). Now the I{recursivity of r� and r+ follows fromc < r� , c < c0 ^ x(c) = c;c > r+ , c > c0 ^ x(c) = c;for all c 2 Q (since as previously remarked, all rationals from (r�; r+) arein sp (x)). Using the enumeration of rationals by natural numbers, we canconstruct an I{computable sequence of rationals : : : < a�1 < b�1 < a0 < b0 <a1 < b1 < : : : ; indexed by Z, so that limn!1 a�n = r� and limn!1 an = r+;and bi = x(ai), for all i < !. By Lemma 2.3, there is h 2 Aut I hQ;�i such thath is identity on the complement of (r�; r+) and h(ai) = bi, h(bi) = ai+1, for alli < !.To check that g = h�1xh � x is a bump, it su�ces to show that �g(t) > t, forall t 2 R\ (r�; r+). First suppose �x(t) = t for some such t. Then there is ani < ! such that bi < t < ai+1. Hencet < ai+1 � �h�1�x�h(bi) < �h�1�x�h(t) � �h�1�x�h � �x(t) = �g(t):Now suppose �x(t) > t. Then �g(t) = �h�1�x�h�x(t) � �x(t) > t.In each case �g(t) > t. For the reals t outside the interval (r�; r+), �g(t) = tholds. Thus a conjugate of x multiplied by x is a bump and is conjugate to x.Therefore, x is itself a bump.It can be easily seen that any bump x 2 Aut I hQ;�i satis�es the formulabump (x) on Aut I hQ;�i, so this completes the proof. 2Lemma 2.13 Assume I is an ideal of Turing degrees. Then1. bounded bumps are distinguished in Aut I hQ;�i by the formulaBBump (x) : bump (x) ^ 9y (Comp (y) ^ Apart (x; xy) ^Apart (x; xy�1));2. the relation`b is a bounded bump such that b and xb�1 have disjoint supports'is �rst{order de�nable in Aut I hQ;�i by the formulaBumpIn (b; x) : BBump (b) ^ 9x09x1 (Apart (x0; x1) ^ Apart (x0; b)^ Apart (x1; b) ^ x = x0bx1);10



3. the relation `b is the leftmost or rightmost bump of x' is �rst{order de�n-able in Aut I hQ;�i by the formulaRLMostBump (b; x) : BumpIn (b; x) ^ Apart (b; xb�1);4. the relation `For all t 2 R �b(t) > t or for all t 2 R �b(t) < t' is �rst{orderde�nable in Aut I hQ;�i by the formulaFullBump (x) : bump (x) ^ :9y (y 6= 1 ^ Apart (y; x));5. the relation `x is a bump and it is neither a bounded bump nor a full bump'is �rst{order de�nable in Aut I hQ;�i by the formulaSBump (x) : bump (x) ^ :BBump (x) ^ :FullBump (x):Proof: These are all immediate from the characterizations of Comp , Apart ,and bump given above. 2.Now we are able to interpret the natural numbers N in our group. This isneeded to speak about de�nability on N.LetNorm 1(x; y; z) *) Comp (x) ^ Comp (y) ^RLMostBump(y; x) ^ FullBump (z) ^ xz = xy�1;and Norm (x; y; z)*) (9u)(9v)(Norm 1(x; y; z) ^ Norm 1(u; y; v) ^ z = v2):Lemma 2.14 Suppose that Aut I hQ;�i j= Norm 1(a; b; z). Then all bumps bznhave disjoint supports, these supports are ordered either like ! (in the case z > 1)or like !� (in the case z < 1), and a = Qn<! bzn . If Aut I hQ;�i j= Norm (a; b; z)then in addition for any two consecutive bumps bzn and bzn+1 of a there is anon-trivial interval between their supports.Proof: Without loss of generality assume z > 1. Then b is the leftmost bumpin a, and the next bump is bz, the bump after it is bz2 , the next bump is bz3 ,etc. It remains to show that a can be exhausted in this way. But since z hasa unique orbital, limn!1 �zn(t) = 1, for each t 2 R, and thus, for each q 2 Qthere is n 2 ! such that sp (bzn) > q which yields what is required.The statement concerning Norm follows since if z = v2 then the bumps ofQn<! bzn are the alternate bumps of Qn<! bvn . 211



If Aut I hQ;�i j= Norm (a; b; z) then we call a; b; z normal parameters. Theautomorphism a in this case is a product of bumps bzn for n 2 ! orderedeither in type ! or !�. We deal with the �rst case only, since the two casesare isomorphic to each other (under an automorphism induced by the mappingq 7! bq, bq(x) = q(�x)).Fix some normal parameters �p = a; b; z. Now we de�ne the ordering on thesebumps:x ��p y *) BumpIn (x; a) ^ BumpIn (y; a) ^ 9t (t � z ^ xt = y):Using this ordering we can de�ne the successor relation on bumps of a by:sc (x; y) *) x ��p y ^ :9u(x ��p u ��p y):The corresponding function will be referred to as s, i.e., sc (x; y), s(x) = y.We write 0�p for the minimal element b, which may also be characterized bythe formula 8t:(t ��p x). More generally we write n�p for the nth bump.Now we can de�ne operations of addition and multiplication on bumps of a(denoted by +�p and ��p respectively):x+�p y = w *) 9u (u0�pu�1 = x ^8t ��p y(BumpIn (utu�1; a) ^ u(s(t))u�1 = s(utu�1)) ^uyu�1 = w);x ��p y = w *) 9u (u0�pu�1 = 0�p ^8t ��p y(BumpIn (utu�1; a) ^ u(s(t))u�1 = utu�1 +�p x)^ uyu�1 = w):Lemma 2.15 The predicatesame (x; y) *) FullBump (y) ^(8t (y(t) > t ^ x(t) � t) _ 8t (y(t) < t ^ x(t) � t))is �rst{order de�nable in Aut I hQ;�i by the formulaFullBump (y) ^ 8y0 � y(y0x � y):Proof: If same (x; y) then this formula is obviously satis�ed.On the other hand, assume that FullBump (y) ^ 8y0 � y(y0x � y), 8t (y(t) >t), but nevertheless :(x � 1). In this case x(t) < t for some t 2 Q. Take a12



conjugate y0 of y so that x(t) < y0x(t) < t. Then :(y0x � 1) and y0x cannot beconjugate to y.The other case 8t (y(t) < t) and :(x � 1) is similar. 2Assume �p = a; b; z are normal parameters as above.Now we de�ne representations in Aut I hQ;�i of a class of functions ! ! !which will be enough to recover the ideal I.LetC(�p) *) �f �� same (f; z) ^ 8t [BumpIn (t; a)! BumpIn (ftf�1; a)]	 :Suppose that z > 1. Then C(�p) is the set of all nonnegative f 2 Aut I hQ;�ithat take bumps to bumps by conjugation.Now assume f 2 C(�p). De�ne the value of F (f;m; �p) to be n if and onlyif f takes the mth bump m�p of a to its nth bump n�p by conjugation, i.e.,fm�pf�1 = n�p.Lemma 2.16 The set of functions f�m:F (f;m; �p) j f 2 C(�p)g, where �p = a; b; zare normal parameters, consists of all monotonic I{recursive embeddings ! !!.Proof: We remark that to prove this lemmawe need to know that there is some`space' between consecutive bumps of the normal parameters, since we may haveto �t in many bumps of one automorphism in between consecutive bumps ofanother. This is why we modi�ed the de�nition of Norm 1 to give Norm .Following this idea, we have to verify the computability of various notions.For the sake of de�niteness, assume a; b � 1 and 8t (z(t) > t).If q 2 Q belongs to the support of m�p then we say that q is in the mth bumpof a. Note that if q is rational, then the following relations are I{recursive:1. q is in the mth bump of a;2. q lies between the mth and (m + 1)th bumps of a;3. q is less than all bumps of a;4. q0; q1 2 Q are in the same bump of a.Indeed, (1) is equivalent to zmbz�m(q) > q; (2) is equivalent to a(q) = q andzm(q0) < q < zm+1(q0), where q0 is an arbitrary �xed rational in the (unique)orbital of b (= the �rst orbital of a); (3) is equivalent to a(q) = q ^ q < q0,where q0 is as above; to prove that (4) is recursive, note that this statement is13



equivalent to a(q0) 6= q0 ^ a(q1) 6= q1 !:9m9n(m 6= n ^ q0 belongs to mth bump of a ^q1 belongs to nth bump of a)as well as to 9m (zmbz�m(q0) > q0 ^ zmbz�m(q1) > q1);i.e., it and its complement are I{r.e.Making use of these facts, one can for each monotonic I{recursive embedding!! ! construct bf 2 C(�p) so that f = �m:F ( bf ;m; �p).On the other hand, if f 2 C(�p) then clearly the function �m:F (f;m; �p) is amonotonic embedding ! ! ! andF (f;m; �p) = n , 9q09q1 2 Q(q0 is in the mth bump ^ q1 is inthe nth bump ^ f(q0) and q1 are in the same bump).This shows that the set fhm;ni j F (f;m; �p) = ng is I{r.e. and thus the functionf = �m:F (f;m; �p) is I{recursive. 2We say that f 2 C(�p) codes a set A � ! if8m (m 2 A, F (f;m; �p) + 1 < F (f;m+ 1; �p)):Lemma 2.17 A subset A of ! is coded by some f 2 C(�p) if and only if A isrecursive in I. Each f 2 C(�p) codes some I{recursive set.Proof: Immediate. 2Lemma 2.18 Let RI be the set of all I{recursive subsets of !. Then the many{sorted structure hAut I hQ;�i ; !;RI; +; �; F;2iis de�nable in Aut I hQ;�i from any normal parameters �p = a; b; z. The formu-lae that provide this interpretation do not depend either on I or on the choiceof normal parameters �p.Proof: We mean of course that ! is represented as the setf t j Aut I hQ;�i j= BumpIn (t; a)g = fn�p : n 2 !g:The operations + and � were de�ned above. The natural ordering < can alsobe de�ned from +. For f 2 C(�p) we let F (f;m; �p) = n, fm�pf�1 = n�p (recall14



that m�p and n�p are bumps). Elements of RI correspond to classes of functionsf 2 C(�p) that de�ne the same set, i.e., f0 and f1 in C(�p) denote the same setif and only if8m (F (f0;m; �p) + 1 < F (f0;m+ 1; �p), F (f1;m; �p) + 1 < F (f1;m+ 1; �p)):In view of the interpretations above, this statement can be expressed by aformula. It remains to express the relation `m belongs to the set represented byf ', for which we use the formula F (f;m; �p) + 1 < F (f;m + 1; �p).Theorem 2.19 Let A be an arithmetical class of sets. Then there is a �rstorder sentence ' of the language of group theory such that for all Turing degreesd Aut d hQ;�i j= ', d \A 6= ;:Proof: Let I = fb j b � dg. We need the fact that Turing reducibilityX �T Ycan be expressed in the language of arithmetic with additional unary predicatesfor X and Y (see [4]). By Lemma 2.18, there is a formula  (�p) that expresses9X 2 RI((8Y 2 RI Y �T X) ^ X 2 A) with respect to any triple of normalparameters. The required group-theoretical formula is then 9�p(Norm (�p) ^  (�p)).2Theorem 2.20 If ' is a �rst order sentence of the language of group theory,then the union of the class of Turing degrees d such that Aut d hQ;�i j= ' isan arithmetical family of sets.Proof: The proof is rather standard, see for instance [3]. The idea of theproof is that �rst we prove that the predicate `m is a number of an X{recursivefunction that de�nes an X{recursive automorphism of hQ;�i on �{numbers' isexpressible in arithmetic with an auxiliary unary predicate X; then we expressthe statement that m and n de�ne the same X{recursive automorphisms ofhQ;�i; next the statement that k is the number of an X-recursive compositionof X-recursive automorphisms with numbers m and n. Finally, we express thestatement that the group of all X{recursive permutations satis�es the sentence'. 2Corollary 2.21 Suppose that d contains an arithmetical set, or is a Turingdegree of the form 0(�), where � is a recursive ordinal. Then there is a �rstorder sentence ' such that for all ideals I of Turing degreesAut I hQ;�i j= ', I = fs j s � dg :This follows from fact that such degrees d are arithmetical classes of sets (see[4]). 15



Theorem 2.22 For all ideals of Turing degrees I and JAut I hQ;�i �= Aut J hQ;�i, I = J:Proof: This follows from the interpretation of RI in Aut I hQ;�i, since RI isthus uniquely de�ned by the isomorphism type of Aut I hQ;�i. 2Theorem 2.23 For all ideals of Turing degrees I and JAut I hQ;�i is embeddable in Aut J hQ;�i, I � J:holds.Proof: We give a sketch proof of ). The idea is to code degrees into wordproblems.We show that if an arbitrary set A � ! is r.e. in I then it is r.e. in J. Fromthis it follows that any set recursive in I is also recursive in J, which impliesI � J.First, consider c0; c1 2 Aut r hQ;�i such that c0 and c1 are the identityoutside (0; 1) and for all x 2 Aut I hQ;�i, [x; c0] = [x; c1] = 1 holds if and onlyif x is the identity on (0; 1). Such c0; c1 exist; for instance, if we let c�0(x) = x+1and c�1(x) = 2x, one can easily check that [y; c�0] = [y; c�1] = 1) y = 1. Take anarbitrary computable 1{1 order{preserving mapping Q! (0; 1). Now transferc�0 and c�1 to (0; 1) by means of this mapping, and then expand the resultingmappings in a trivial way to the whole Q to give the required c0 and c1.The next step is to construct b 2 Aut I hQ;�i that codes the set A. Weconstruct b so that all its nontrivial orbitals are subsets of intervals of the type(n; n+ 1) for n 2 !, and b has a nontrivial orbital on (n; n + 1) if and only ifn 2 A. The idea is to construct step by step identity mappings on each openinterval (n; n+ 1), n 2 !, and if, in the process of simultaneous enumeration ofA relative to I, n is enumerated into A, then construct a nontrivial bump onthe rest of (n; n+ 1).Let z(x) = x + 1. The elements zmc0z�m and zmc1z�m have the propertythat an element x commutes with both of them if and only if x is the identity on(m;m + 1). Thus, [zmc0z�m; b] = [zmc1z�m; b] = 1 holds if and only if m 62A.Considering the images c0; c1;b; z 2 Aut J hQ;�i of c0; c1; b; z, respectively,under an arbitrary embedding of Aut I hQ;�i into Aut J hQ;�i, we have thesame equivalence: [zmc0z�m;b][zmc1z�m;b] = 1, m 62A:It remains to observe that the left hand condition is co-r.e. in J, which followsfrom the recursion{theoretic fact that there are J{computable total functionsF0(m;x) and F1(m;x) such that��1[zmc0z�m;b](q) = F0(m; ��1(q))16



and ��1[zmc1z�m;b](q) = F1(m; ��1(q));for all q 2 Q.By the above we have that m 62A is equivalent to[zmc0z�m;b] = [zmc1z�m;b] = 1, (8xF0(m;x) = x) ^ (8xF1(m;x) = x);from which it is easy to see that this condition is co-r.e., and hence A is r.e.relative to J.The proof of ( is trivial. 2References[1] A.M.W. Glass. Ordered permutation groups. London Mathematical Society,Lecture Notes, 55, Cambridge University Press, 1981.[2] A.I. Malcev. Algorithms and Recursive Functions. Wolters{Noordor�,Groningen, Netherlands 1970.[3] A. S. Morozov, Permutations and implicit de�nability, Algebra and Logic,27 (1988) 12{24.[4] H. Rogers. Theory of Recursive Functions and E�ective Computability.McGraw{Hill Book Company, New York, St. Louis, San Francisco, Toronto,London, Sydney, 1967.[5] J. K. Truss. On recovering structures from quotients of their automorphismgroups. In Ordered Groups and In�nite Permutation Groups, pages 63{95.Kl�uwer, 1966.
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