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One of the most popular methods of estimating the complexity of networks is to measure the entropy of network invariants, such
as adjacency matrices or degree sequences. Unfortunately, entropy and all entropy-based information-theoretic measures have
several vulnerabilities. These measures neither are independent of a particular representation of the network nor can capture the
properties of the generative process, which produces the network. Instead, we advocate the use of the algorithmic entropy as the
basis for complexity definition for networks. Algorithmic entropy (also known as Kolmogorov complexity or K-complexity for
short) evaluates the complexity of the description required for a lossless recreation of the network. This measure is not affected by
a particular choice of network features and it does not depend on the method of network representation. We perform experiments
on Shannon entropy and K-complexity for gradually evolving networks. The results of these experiments point to K-complexity
as the more robust and reliable measure of network complexity. The original contribution of the paper includes the introduction
of several new entropy-deceiving networks and the empirical comparison of entropy and K-complexity as fundamental quantities

for constructing complexity measures for networks.

1. Introduction

Networks are becoming increasingly more important in con-
temporary information science due to the fact that they pro-
vide a holistic model for representing many real-world phe-
nomena. The abundance of data on interactions within com-
plex systems allows network science to describe, model, sim-
ulate, and predict behaviors and states of such complex sys-
tems. It is thus important to characterize networks in terms
of their complexity, in order to adjust analytical methods to
particular networks. The measure of network complexity is
essential for numerous applications. For instance, the level
of network complexity can determine the course of various
processes happening within the network, such as information
diffusion, failure propagation, actions related to control, or
resilience preservation. Network complexity has been suc-
cessfully used to investigate the structure of software libraries
[1], to compute the properties of chemical structures [2],

to assess the quality of business processes [3-5], and to
provide general characterizations of networks [6, 7].
Complex networks are ubiquitous in many areas of
science, such as mathematics, biology, chemistry, systems
engineering, physics, sociology, and computer science, to
name a few. Yet the very notion of network complexity
lacks a strict and agreed-upon definition. In general, a
network is considered “complex” if it exhibits many fea-
tures such as small diameter, high clustering coefficient,
anticorrelation of node degrees, presence of network motifs,
and modularity structures [8]. These features are common
in real-world networks, but they rarely appear in artificial
random networks. Finding a good metric with which one
can estimate the complexity of a network is not a trivial
task. A good complexity measure should not depend solely
on the number of vertices and edges, but it must take into
consideration topological characteristics of the network. In
addition, complexity is not synonymous with randomness
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or unexpectedness. As has been pointed out [8], within
the spectrum of possible networks, from the most ordered
(cliques, paths, and stars) to the most disordered (random
networks), complex networks occupy the very center of
this spectrum. Finally, a good complexity measure should
not depend on a particular network representation and
should yield consistent results for various representations
of the same network (adjacency matrix, Laplacian matrix,
and degree sequence). Unfortunately, as current research
suggests, finding a good complexity measure applicable to a
wide variety of networks is very challenging [9-11].

Among many possible measures which can be used to
define the complexity of networks, the entropy of various
network invariants has been by far the most popular choice.
Network invariants considered for defining entropy-based
complexity measures include number of vertices, number of
neighbors, number of neighbors at a given distance [12], dis-
tance between vertices [13], energy of network matrices such
as Randi¢ matrix [14] or Laplacian matrix [15], and degree
sequences. There are multiple definitions of entropies, usu-
ally broadly categorized into three families: thermodynamic
entropies, statistical entropies, and information-theoretic
entropies. In the field of computer science, information-
theoretic measures are the most prevalent, and they include
Shannon entropy [16], Kolmogorov-Sinai entropy [17], and
Rényi entropy [18]. These entropies are based on the concept
of the information content of a system and they mea-
sure the amount of information required to transmit the
description of an object. The underlying assumption of
using information-theoretic definitions of entropy is that
uncertainty (as measured by entropy) is a nondecreasing
function of the amount of available information. In other
words, systems in which little information is available are
characterized by low entropy and therefore are considered
to be “simple.” The first idea to use entropy to quantify the
complexity of networks comes from Mowshowitz [19].

Despite the ubiquitousness of general-purpose entropy
definitions, many researchers have developed specialized
entropy definitions aimed at describing the structure of
networks [10]. Notable examples of such definitions include
the proposal by Ji et al. to measure the unexpectedness of a
particular network by comparing it to the number of possible
network configurations available for a given set of parameters
[20]. This concept is clearly inspired by algorithmic entropy,
which defines the complexity of a system not in terms of its
information content, but in terms of its generative process.
A different approach to measure the entropy of networks has
been introduced by Dehmer under the form of information
functional [21]. Information functional can be also used to
quantify network entropy in terms of k-neighborhoods of
vertices [12, 13] or independent sets of vertices [22]. Yet
another approach to network entropy has been proposed by
Kérner, who advocates the use of stable sets of vertices as the
basis to compute network entropy [23]. Several comprehen-
sive surveys of network entropy applications are also available
(9, 11].

Within the realm of information science, the complexity
of a system is most often associated with the number of
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possible interactions between elements of the system. Com-
plex systems evolve over time, they are sensitive to even
minor perturbations at the initial steps of development and
often involve nontrivial relationships between constituent
elements. Systems exhibiting high degree of interconnect-
edness in their structure and/or behavior are commonly
thought to be difficult to describe and predict, and, as a
consequence, such systems are considered to be “complex.”
Another possible interpretation of the term “complex” relates
to the size of the system. In the case of networks, one might
consider to use the number of vertices and edges to estimate
the complexity of a network. However, the size of the network
is not a good indicator of its complexity, because networks
which have well-defined structures and behaviors are, in
general, computationally simple.

In this work, we do not introduce a new complex-
ity measure or propose new informational functional and
network invariants, on which an entropy-based complexity
measure could be defined. Rather, we follow the observations
formulated in [24] and we present the criticism of the entropy
as the guiding principle of complexity measure construc-
tion. Thus, we do not use any specific formal definition
of complexity, but we provide additional arguments why
entropy may be easily deceived when trying to evaluate
the complexity of a network. Our main hypothesis is that
algorithmic entropy, also known as Kolmogorov complexity,
is superior to traditional Shannon entropy due to the fact
that algorithmic entropy is more robust, less dependent on
the network representation, and better aligned with intuitive
human understanding of complexity.

The organization of the paper is the following. In Sec-
tion 2, we introduce basic definitions related to entropy and
we formulate arguments against the use of entropy as the
complexity measure of networks. Section 2.3 presents several
examples of entropy-deceiving networks, which provide both
motivation and anecdotal evidence for our hypothesis. In
Section 3, we introduce Kolmogorov complexity and we show
how this measure can be applied to networks, despite its
high computational cost. The results of the experimental
comparison of entropy and Kolmogorov complexity are
presented in Section 4. The paper concludes in Section 5 with
a brief summary and future work agenda.

2. Entropy as the Measure of
Network Complexity

2.1. Basic Definitions. Let us introduce basic definitions and
notation used throughout the remainder of this paper. A
network is an ordered pair G = (V, E), where V = {v,,..., vy}
is the set of vertices and E = {(vi,vj) € V x V}is the set
of edges. The degree d(v;) of the vertex v; is the number of
vertices adjacent to it, d(v;) = I{vj : (vi,vj) € E}|. A given
network can be represented in many ways, for instance, using
an adjacency matrix defined as

1 if (vi,v) €E
Anxn [ 7] = ] 1)
0 otherwise.
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An alternative to the adjacency matrix is the Laplacian
matrix of the network defined as

d(v;) ifi=j
Ly [ijl=4-1  ifi#j, (vyv,)€E (2
0 otherwise.

Other popular representations of networks include the
degree list defined as D = (d(v,),d(v,),...,d(v,)) and the
degree distribution defined as

p(a) - pld()-a) - L <Vedl) =l

Although there are numerous different definitions of
entropy, in this work we are focusing on the definition
most commonly used in information sciences, the Shan-
non entropy [16]. This measure represents the amount of
information required to provide the statistical description of
the network. Given any discrete random variable X with n
possible outcomes, the Shannon entropy H(X) of the variable
X is defined as the function of the probability p of all
outcomes of X:

H(X) = —Z p(x;)log, p(x;). (4)
izl

Depending on the selected base of the logarithm, the
entropy is expressed in bits (b = 2), nats (b = e), or dits (b =
10) (bits are also known as Shannon, and dits are also known
as Hartley). The above definition applies to discrete random
variables; for random variables with continuous probability
distributions differential entropy is used, usually along with
the limiting density of discrete points. Given a variable X with
n possible discrete outcomes such that in the limit n — oo
the density of X approaches the invariant measure m(x), the
continuous entropy is given by

lim H (X) = — J p(x) M dx. (5)
n—00 m ( X)

In this work, we are interested in measuring the entropy of
various network invariants. These invariants can be regarded
as discrete random variables with the number of possible
outcomes bound by the size of the available alphabet, either
binary (in the case of adjacency matrices) or decimal (in
the case of other invariants). Consider the 3-regular graph
presented in Figure 1. This graph can be described using the
following adjacency matrix:

00101000107
0000100110
1001010000
0010011000
1100000001

A0a0= 100 11000100 (6)
0001000101
0100011000
1100000001

000010101 0]

10

2

FIGURE 1: Three-regular graph with 10 vertices.

This matrix, in turn, can be flattened to a vector (either
row-wise or column-wise), and this vector can be treated
as a random variable with two possible outcomes, 0 and 1.
Counting the number of occurrences of these outcomes, we
arrive at the random variable X = {x, = 0.7,x; = 0.3} and
its entropy H(X) = 0.88. Alternatively, this graph can be
described using the degree list D = (3,3,3,3,3,3,3,3,3,3)
which can be treated as the random variable with the entropy
H(D) = 0. Yet another possible random variable that can be
derived from this graph is the degree distribution PD = {d,, =
0,d, = 0,d, = 0,d; = 1} with the entropy H(PD) = 0.
In summary, any network invariant can be used to extract a
random variable and compute its entropy.

Thus, in the remainder of the paper, whenever mention-
ing entropy, we will refer to the entropy of a discrete random
variable. In general, the higher the randomness, the greater
the entropy. The value of entropy is maximal for a random
variable with the uniform distribution and the minimum
value of entropy is attained by a constant random variable.
This kind of entropy will be further explored in this paper in
order to reveal its weaknesses.

As an alternative to Shannon entropy, we advocate the use
of Kolmogorov complexity. We postpone the discussion of
Kolmogorov complexity to Section 3, where we provide both
its definition and the method to approximate this incom-
putable measure. For the sake of brevity, in the remainder of
this paper, we will use the term “entropy” to refer to Shannon
entropy and the term “K-complexity” to refer to Kolmogorov
complexity.

2.2. Why Is Entropy a Bad Measure of Network Complexity.
Zenil et al. [24] argue that entropy is not appropriate to
measure the true complexity of a network and they present
several examples of networks which should not qualify as
complex (using the colloquial understanding of the term),
yet which attain maximum entropy of various network
invariants. We follow the line of argumentation of Zenil
et al,, and we present more examples of entropy-deceiving
networks. Our main aim is to show that it is relatively easy



FIGURE 2: Block network composed of eight of the same 3-node
blocks.

to construct a network which achieves high values of entropy
of various network invariants. Examples presented in this
section outline the main problem with using entropy as
the basis for complexity measure construction: namely, that
entropy is not aligned with intuitive human understanding of
complexity. Statistical randomness, as measured by entropy,
does not imply complexity in a useful, operational way.

The main reason why entropy and other entropy-related
information-theoretic measures fail to correctly describe the
complexity of a network is the fact that these measures are
notindependent of the network representation. As a matter of
fact, this remark applies equally to all computable measures of
network complexity. It is quite easy to present examples of two
equivalent lossless descriptions of the same network having
very different entropy values, as we will show in Section 2.3. In
this paper, we experiment with four different representations
of networks: adjacency matrices, Laplacian matrices, degree
lists, and degree distributions. We show empirically that the
choice of a particular representation of the network strongly
influences the resulting entropy estimation.

Another property which makes entropy a questionable
measure of network complexity is the fact that entropy cannot
be applied to several network features at the same time, but it
operates on a single feature, for example, degree and between-
ness. In theory, one could devise a function which would
be a composition of individual features, but high complexity
of the composition does not imply high complexity of all
its components and vice versa. This requirement to select a
particular feature and compute its probability distribution
disqualifies entropy as a universal and independent measure
of complexity.

In addition, an often forgotten aspect of entropy is the
fact that measuring entropy requires making an arbitrary
choice regarding the aggregation level of the variable, for
which entropy is computed. Consider the network presented
in Figure 2. At the first glance, this network seems to be fairly
random. The density of the network is 0.35 and its entropy
computed over adjacency matrix is 0.92 bits. However, this
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network has been generated using a very simple procedure.
We begin with the initial matrix:

Ms, 5 = (7)

S = O
S O =
—_— = O

Next, we create 64 copies of this matrix, and each of
these copies is randomly transposed. Finally, we bind all
these matrices together to form a square matrix M,,,,, and
we use it as the adjacency matrix to create the network.
So, if we were to coalesce the adjacency matrix into 3 x 3
blocks, the entropy of the adjacency matrix would be 0,
since all constituent blocks are the same. It would mean that
the network is actually deterministic and its complexity is
minimal. On the other hand, it should be noted that this
shortcoming of entropy can be circumvented by using the
entropy rate (n-gram entropy) instead, because entropy rate
calculates the entropy for all possible levels of granularity of
a variable. Given a random variable X = (x,x,,...,%,),
let p(x;,x;,1>...>%;,;) denote the joint probability over I
consecutive values of X. Entropy rate H;(X) of a sequence of
I consecutive values of X is defined as

H; (X)

:—Z Zp(xl,...

x,€X x€X

(8)

»x;)log, p (x5, %))

Entropy rate of the variable X is simply the limit of the
above estimation for I — oo.

2.3. Entropy-Deceiving Networks. In this section, we present
four different examples of entropy-deceiving networks, sim-
ilar to the idea coined in [24]. Each of these networks has
a simple generative procedure and should not (intuitively)
be treated as complex. However, if the entropy was used to
construct a complexity measure, these networks would have
been qualified as complex. The examples given in this section
disregard any specific definition of complexity; their aim is
to outline main shortcomings of entropy as the basis for any
complexity measure construction.

2.3.1. Degree Sequence Network. Degree sequence network
is an example of a network which has an interesting prop-
erty: there are exactly two vertices for each degree value
1,2,...,N/2; N = |V|.

The procedure to generate degree sequence network is
very simple. First, we create a linked list of all N vertices, for
which d(v,) = d(vy) = land Vi # 1,i # N, d(v;) = 2. Itis
a circle without one edge (v;, vy). Next, starting with vertex
v3, we follow a simple rule:

fori=3 to N/2 do
for j=1 to (i-2) do
add_edge(v;, vy 2+)
end for

end for
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Degree
1 4 7 10 13 16 19
2 5 8 11 14 17
3 6 9 12 15 18

FIGURE 3: Degree sequence network.

The resulting network is presented in Figure 3. It is
very regular, with a uniform distribution of vertex degrees,
due to its straightforward generation procedure. However,
if one would examine the entropy of the degree sequence,
this entropy would be maximal for a given number N of
vertices, suggesting far greater randomness of such network.
This example shows that entropy of the degree sequence (and
the entropy of the degree distribution) can be very misleading
when trying to evaluate the true complexity of a network.

2.3.2. Copeland-Erdés Network. The Copeland-Erdos net-
work is a network which seems to be completely random,
despite the fact that the procedure of its generation is
deterministic. The Copeland-Erdds constant is a constant
which is produced by concatenating “0” with the sequence
of consecutive prime numbers [25]. When prime numbers
are expressed in base 10, the Copeland-Erdds constant is
a normal number; that is, its infinite sequence of digits is
uniformly distributed (the normality of the Copeland-Erdos
constant in bases other than 10 is not proven). This fact allows
us to devise the following simple generative procedure for a
network. Given the number of vertices N, take the first N*
digits of the Copeland-Erdos constant and represent them as
the matrix of the size N x N. Next, binarize each value in the
matrix using the function f(x) = xdiv5 (integer division)
and use it as the adjacency matrix to create a network.
Since each digit in the matrix is approximately equally likely,
the resulting binary matrix will have approximately the
same number of 0’s and 1s. An example of the Copeland-
Erdds network is presented in Figure 4. The entropy of
the adjacency matrix is maximal for a given number of N
vertices; furthermore, the network may seem to be random
and complex, but its generative procedure, as we can see, is
very simple.

® 10 ® 13 ® 16
e 11 @ 14 e 17
e 12 ® 15 ® 18

FIGURE 4: Copeland-Erdés network.

oKD

QA
QA

N

FIGURE 5: 2-Clique network.

2.3.3. 2-Clique Network. 2-Clique network is an artificial
example of a network in which the entropy of the adjacency
matrix is maximal. The procedure to generate this network
is as follows. We begin with two connected vertices labeled
red and blue. We add red and blue vertices alternatingly,
each time connecting the newly added vertex with all other
vertices of the same color. As a result, two cliques appear (see
Figure 5). Since there are as many red vertices as there are blue
vertices, the adjacency matrix contains the same number of
0’s and I’s (not considering the 1 representing the bridge edge
between cliques). So, entropy of the adjacency matrix is close
to maximal, although the structure of the network is trivial.

2.3.4. Ouroboros Network. Ouroboros (Ouroboros is an
ancient symbol of a serpent eating its own tail, appearing
first in Egyptian iconography and then gaining notoriety in
later magical traditions) network is another example of an
entropy-deceiving network. The procedure to generate this



network is very simple: for a given number N of vertices, we
create two closed rings, each consisting of N/2 vertices, and
we connect corresponding vertices of the two rings. Finally,
we break a single edge in one ring and we put a single vertex
at the end of the broken edge. The result of this procedure
can be seen in Figure 6. Interestingly, even though almost all
vertices in this network have equal degree of 3, each vertex has
different betweenness. Thus, the entropy of the betweenness
sequence is maximal, suggesting a very complex pattern of
communication pathways though the network. Obviously,
this network is very simple from the communication point
of view and should not be considered complex.

3. K-Complexity as the Measure of
Network Complexity

We strongly believe that Kolmogorov complexity (K-
complexity) is a much more reliable and robust basis for
constructing the complexity measure for compound objects,
such as networks. Although inherently incomputable,
K-complexity can be easily approximated to a degree
which allows for the practical use of K-complexity in
real-world applications, for instance, in machine learning
[26, 27], computer network management [28], and general
computation theory (proving lower bounds of various Turing
machines, combinatorics, formal languages, and inductive
inference) [29].

Let us now introduce the formal framework for K-
complexity and its approximation. Note that entropy is
defined for any random variable, whereas K-complexity is
defined for strings of characters only. K-complexity K (s) of
a string s is formally defined as

Kp(s) = min{|P|, T (P) = s}, )

where P is a program which produces the string s when run
on a universal Turing machine T and |P| is the length of the
program P, that is, the number of bits required to represent P.
Unfortunately, K-complexity is incomputable [30], or more
precisely, it is upper semicomputable (only the upper bound
of the value of K-complexity can be computed for a given
string s). One way for approximating the true value of K (s)
is to use the notion of algorithmic probability introduced
by Solomonoff and Levin [31, 32]. Algorithmic probability
p?(s) of a string s is defined as the expected probability that a
random program P running on a universal Turing machine T
with the binary alphabet produces the string s upon halting:

a 1
JACERDIE (10)

P:T(P)=s

Of course there are 2! possible programs of the length
|P|, and the summation is performed over all possible pro-
grams without limiting their length, which makes algorithmic
probability p”(s) a semimeasure which itself is incomputable.
Nevertheless, algorithmic probability can be used to calculate
K-complexity using the Coding Theorem [31] which states
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that algorithmic probability approximates K-complexity up
to a constant c:

|-log, p* (s) = Ky (s)| < c. 1)

The consequence of the Coding Theorem is that it
associates the frequency of occurrence of the string s with
its complexity. In other words, if a particular string s can
be generated by many different programs, it is considered
“simple.” On the other hand, if a very specific program is
required to produce the given string s, this string can be
regarded as “complex.” The Coding Theorem also implies
that K-complexity of a string s can be approximated from its
frequency using the formula:

Ky (s) = —log, p* (s). (12)

This formula has inspired the Algorithmic Nature Lab
group (https://www.algorithmicnaturelab.org) to develop the
CTM (Coding Theorem Method), a method to approximate
K-complexity by counting output frequencies of small Turing
machines. Clearly, algorithmic probability of the string s
cannot be computed exactly, because the formula for algo-
rithmic probability requires finding all possible programs
that produce the string s. Nonetheless, for a limited subset
of Turing machines it is possible to count the number of
machines that produce the given string s, and this is the trick
behind the CTM. In broad terms, the CTM for a string s
consists in computing the following function:

CTM (s) = D (n,m, s)

_ HTeT (nm):T(P)=s} (13)
" {T €T (nm): T (P): halts}|’

where J (n,m) is the space of all universal Turing machines
with # states and m symbols. Function D(n,m, s) computes
the ratio of all halting machines with # states and m symbols
which produce the string s and its value is determined with
the help of known values of the famous Busy Beaver function
[33]. The Algorithmic Nature Lab group has gathered statis-
tics on almost 5 million short strings (maximum length is
12 characters) produced by Turing machines with alphabets
ranging from 2 to 9 symbols, and based on these statistics
the CTM can approximate the algorithmic probability of a
given string. Detailed description of the CTM can be found
in [34]. Since the function D(n,m, s) is an approximation of
the true algorithmic probability p®(s), it can also be used to
approximate K-complexity of the string s.

The CTM can be applied only to short strings consisting
of 12 characters or less. For larger strings and matrices, the
BDM (Block Decomposition Method) should be used. The
BDM requires the decomposition of the string s into (possibly
overlapping) blocks {b;,b,, ..., b}. Given a long string s, the
BDM computes its algorithmic probability as

k
BDM (s) = )" CTM (b)) + log, |b|, (14)
i=1
where CTM(b;) is the algorithmic complexity of the block b,

and |b,| denotes the number of times the block b, appears in s.
Detailed description of the BDM can be found in [35].
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Betweenness

® 0 . 19.9958513708514 . 22.1443362193362 . 22.5430375180375 . 24.2144660894661 . 25.4655483405483 . 29.9284992784993

@ 7.49888167388167 (@) 214806998556

. 22.19498556!

856 . 23.9443001443001 . 24.6006132756133 . 25.5573232323232 . 44.3902597402597

‘15.9049062049062 . 21.5144660894661 . 22.4691919191919 . 24.0419191919192 . 25.4229076479077 . 27.8713564213564 . 46.8164502164502

FIGURE 6: Ouroboros network.

Obviously, any representation of a nontrivial network
requires far more than 12 characters. Consider once again the
3-regular graph presented in Figure 1. The Laplacian matrix
representation of this graph is the following:

L10><10

r3 0 -1 0 -1 0 0 0 -1 0]
03 0 0-10 0-1-120
-1 0 3-10-1020 0 0
0 0-13 0-1-10 0 0
-1-10 0 3 0 0 0 0 -1 (15)
“lo o110 3 0-10 0
00 0-10 0 3 -10 -1
0 -1 0 0 0 -1-13 0 0
“1-10 0 0 0 0 0 3 -1
Lo 0 0 0 -1 0-10 -1 3|

If we treat each row of the Laplacian matrix as a separate
block, the string representation of the Laplacian matrix
becomes s = {b; = 3010100010, b, = 0300100110,...,b,, =
0000101013} (for the sake of simplicity, we have replaced
the symbol “~1” with the symbol “1”). This input can be
fed into the BDM, producing the final estimation of the
algorithmic probability (and, consequently, the estimation
of the K-complexity) of the string representation of the
Laplacian matrix. In our experiments, whenever reporting
the values of K-complexity of the string s, we actually report
the value of BDM(s) as the approximation of the true K-
complexity.

4. Experiments

4.1. Gradual Change of Networks. As we have stated before,
the aim of this research is not to propose a new complexity
measure for networks, but to compare the usefulness and
robustness of entropy versus K-complexity as the underlying
foundations for complexity measures. Let us recall what
properties are expected from a good and reliable complex-
ity measure for networks. Firstly, the measure should not



depend on the particular network representation but should
yield more or less consistent results for all possible lossless
representations of a network. Secondly, the measure should
not equate complexity with randomness. Thirdly, the measure
should take into consideration topological properties of a net-
work and not be limited to simple counting of the number of
vertices and edges. Of course, statistical properties of a given
network will vary significantly between different network
invariants, but at the base level of network representation
the quantity used to define the complexity measure should
tulfill the above requirements. The main question that we are
aiming to answer in this study is whether there are qualitative
differences between entropy and K-complexity with regard to
the above-mentioned requirements when measuring various
types of networks.

In order to answer this question we have to measure
how a change in the underlying network structure affects the
observed values of entropy and K-complexity. To this end, we
have devised two scenarios. In the first scenario, the network
gradually transforms from the perfectly ordered state to a
completely random state. The second transformation brings
the network from the perfectly ordered state to a state which
can be understood as semiordered, albeit in a different way.
The following sections present both scenarios in detail.

4.1.1. From Watts-Strogatz Small-World Model to Erdés-Rényi
Random Network Model. A small-world network model
introduced by Watts and Strogatz [36] is based on the process,
which transforms a fully ordered network with no random
edge rewiring into a random network. According to the
small-world model, vertices of the network are placed on a
regular k-dimensional grid and each vertex is connected to
exactly m of its nearest neighbors, producing a regular lattice
of vertices with equal degrees. Then, with a small probability
p» each edge is randomly rewired. If p = 0, no rewiring
occurs and the network is fully ordered. All vertices have the
same degree, the same betweenness, and the entropy of the
adjacency matrix depends only on the density of edges. When
p = 0, edge rewiring is applied to edges and this process
distorts the degree distribution of vertices.

On the other end of the network spectrum is the
Erdds-Rényi random network model [37], in which there is
no inherent pattern of connectivity between vertices. The
random network emerges by selecting all possible pairs
of vertices and creating, for each pair, an edge with the
probability p. Alternatively, one can generate all possible
networks consisting of n vertices and m edges and then
randomly pick one of these networks. The construction of the
random network implies the highest degree of randomness,
and there is no other way of describing a particular instance of
such network other than by explicitly providing its adjacency
matrix or the Laplacian matrix.

In our first experiment, we observe the behavior of
entropy and K-complexity being applied to gradually chang-
ing networks. We begin with a regular small-world network
generated for p = 0. Next, we iteratively increase the value
of p by 0.01 in each step, until p = 1. We retain the
network between iterations, so conceptually it is one network
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undergoing the transition. Also, we only consider rewiring
of edges which have not been rewired during preceding
iterations, so every edge is rewired at most once. For p =
0, the network forms a regular lattice of vertices, and for
p = 1 the network is fully random with all edges rewired.
While randomly rewiring edges, we do not impose any
preference on the selection of the target vertex of the edge
being currently rewired; that is, each vertex has a uniform
probability of being selected as the target vertex of rewiring.

4.1.2. From Watts-Strogatz Small-World Model to Barabdsi-
Albert Preferential Attachment Model. Another popular
model of artificial network generation has been introduced
by Barabasi and Albert [38]. This network model is based
on the phenomenon of preferential attachment, according to
which vertices appear consecutively in the network and tend
to join existing vertices with a strong preference for high
degree vertices. The probability of selecting vertex v; as the
target of a newly created edge is proportional to v;’s degree
d(v;). Scale-free networks have many interesting properties
[39, 40], but from our point of view the most interesting
aspect of scale-free networks is the fact that they represent
a particular type of semiorder. The behavior of low-degree
vertices is chaotic and random, and individual vertices are
difficult to distinguish, but the structure of high-degree
vertices (so-called hubs) imposes a well-defined topology
on the network. High-degree vertices serve as bridges
which facilitate communication between remote parts of the
network, and their degrees are highly predictable. In other
words, although a vast majority of vertices behave randomly,
the order appears as soon as high-degree vertices emerge in
the network.

In our second experiment, we start from a small-world
network and we increment the edge rewiring probability
p in each step. This time, however, we do not select the
new target vertex randomly, but we use the preferential
attachment principle. In the early steps, this process is still
random as the differences in vertex degrees are relatively
small, but at a certain point the scale-free structure emerges
and as more rewiring occurs (for p — 1), the network starts
organizing around a subset of high-degree hubs. The intuition
is that a good measure of network complexity should be able
to distinguish between the initial phase of increasing the
randomness of the network and the second phase where the
semiorder appears.

4.2. Results and Discussion. We experiment only on arti-
ficially generated networks, using three popular network
models: Erdds-Rényi random network model, Watts-Strogatz
small-world network model, and Barabdsi-Albert scale-free
network model. We have purposefully left out empirical
networks from consideration, due to a possible bias which
might have been introduced. Unfortunately, for empirical
networks, we do not have a good method of approximating
the algorithmic probability of a network. All we could do
is to compare empirical distributions of network properties
(such as degree, betweenness, and local clustering coefficient)
with distributions from known generative models. In our
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previous work [41], we have shown that this approach can lead
to severe approximation errors as distributions of network
properties strongly depend on values of model parameters
(such as edge rewiring probability in the small-world model,
or power-law coefficient in the scale-free model). Without a
universal method of estimating the algorithmic probability
of empirical networks, it is pointless to compare entropy
and K-complexity of such networks since no baseline can
be established and the results would not yield themselves to
interpretation.

In our experiments we have used the acss R package [42]
which implements the Coding Theorem Method [34, 43] and
the Block Decomposition Method [35].

Let us now present the results of the first experiment.
In this experiment, the edge rewiring probability p changes
from 0 to 1 by 0.01 in each iteration. In each iteration, we
generate 50 instances of the network consisting of N =
100 vertices, and for each generated network instance, we
compute the following measures:

(i) Entropy and K-complexity of the adjacency matrix
(ii) Entropy and K-complexity of the Laplacian matrix
(iii) Entropy and K-complexity of the degree list
(iv) Entropy and K-complexity of the degree distribution

We repeat the experiments described in Section 4.1 for
each of the 50 networks, performing the gradual change
of each of these networks, and for each value of the edge
rewiring probability p we average the results over all 50
networks. Since entropy and K-complexity are expressed in
different units, we normalize both measures to allow for side-
by-side comparison. The normalization procedure works as
follows. For a given string of characters s with the length
I = |s|, we generate two strings. The first string s, . consists
of I repeated 0’s and it represents the least complex string of
the length I. The second string s, .. is a concatenation of [
uniformly selected digits and it represents the most complex
string of the length . Each value of entropy and K-complexity
is normalized with respect to minimum and maximum value
of entropy and K-complexity possible for a string of equal
length. This allows us not only to compare entropy and K-
complexity between different representations of networks,
but also to compare entropy to K-complexity directly. The
results of our experiments are presented in Figure 7.

We observe that traditional entropy of the adjacency
matrix remains constant. This is obvious, the rewiring of
edges does not change the density of the network (the
number of edges in the original small-world network and
the final random network or scale-free network is exactly
the same), so entropy of the adjacency matrix is the same
for each value of the edge rewiring probability p. On the
other hand, K-complexity of the adjacency matrix slowly
increases. It should be noted that the change of K-complexity
is small when analyzed in absolute values. Nevertheless, K-
complexity consistently increases as networks diverge from
the order of the small-world model toward the chaos of
random network model. A very similar result can be observed
for networks represented using Laplacian matrices. Again,
entropy fails to signal any change in network’s complexity

because the density of networks remains constant throughout
the transition, and the very slight change of entropy for p €
(0,0.25) is caused by the change of the degree list which
forms the main diagonal of the Laplacian matrix. The result
for the degree list is more surprising. K-complexity of the
degree list slightly increases as networks lose their ordering
but remains close to 0.4. At the same time, entropy increases
quickly as the edge rewiring probability p approaches 1.
The pattern of entropy growth is very similar for both the
transition to random network and the transition to scale-free
network, with the latter characterized counterintuitively by
larger entropy. In addition, the absolute value of entropy for
the degree list is several times larger than for the remaining
network representations (the adjacency matrix and the Lapla-
cian matrix). Finally, both entropy and K-complexity behave
similarly for networks described using degree distributions.
We note that both measures correctly identify the decrease
of apparent complexity as networks approach the scale-
free model (when semiorder emerges) and signal increasing
complexity as networks become more and more random. It is
tempting to conclude from the results of the last experiment
that the degree distribution is the best representation when
network complexity is concerned. However, one should not
forget that the degree distribution and the degree list are
not lossless representations of networks, so the algorithmic
complexity of degree distribution only estimates how difficult
it is to recreate that distribution and not the entire network.

Given the requirements formulated at the beginning of
this section and the results of the experimental evaluation,
we conclude that K-complexity is a more feasible measure for
constructing intuitive complexity definitions. K-complexity
captures small topological changes in the evolving networks,
where entropy cannot detect these changes due to the fact
that network density remains constant. Also, K-complexity
produces less variance in absolute values across different
network representations, and entropy returns drastically
different estimates depending on the particular network
representation.

5. Conclusions

Entropy has been commonly used as the basis for modeling
the complexity of networks. In this paper, we show why
entropy may be a wrong choice for measuring network
complexity. Entropy equates complexity with randomness
and requires preselecting the network feature of interest. As
we have shown, it is relatively easy to construct a simple
network which maximizes entropy of the adjacency matrix,
the degree sequence, or the betweenness distribution. On
the other hand, K-complexity equates the complexity with
the length of the computational description of the network.
This measure is much harder to deceive and it provides a
more robust and reliable description of the network. When
networks gradually transform from the highly ordered to
highly disordered states, K-complexity captures this transi-
tion, at least with respect to adjacency matrices and Laplacian
matrices.
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FIGURE 7: Entropy and K-complexity of (a) adjacency matrix, (b) Laplacian matrix, (c) degree list, and (d) degree distribution under gradual

transition from Watts-Strogatz model to Erd6s-Rényi and Barabasi-Albert models.

without having to estimate K-complexity, but rather fol-
lowing the minimum description length principle. Also,

In this paper, we have used traditional methods to
describe a network: the adjacency matrix, the Laplacian
matrix, the degree list, and the degree distribution. We have
limited the scope of experiments to three most popular
generative network models: random networks, small-world
networks, and scale-free networks. However, it is possible to
describe networks more succinctly, using universal network
generators. In the near future, we plan to present a new

method of computing algorithmic complexity of networks

network energy and K-complexity.

extending the experiments to the realm of empirical networks
could prove to be informative and interesting. We also intend
to investigate network representations based on various
energies (Randi¢ energy, Laplacian energy, and adjacency
matrix energy) and to research the relationships between
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