Skip to main content
Log in

Parsing/Theorem-Proving for Logical Grammar CatLog3

  • Published:
Journal of Logic, Language and Information Aims and scope Submit manuscript

Abstract

\({ CatLog3}\) is a 7000 line Prolog parser/theorem-prover for logical categorial grammar. In such logical categorial grammar syntax is universal and grammar is reduced to logic: an expression is grammatical if and only if an associated logical statement is a theorem of a fixed calculus. Since the syntactic component is invariant, being the logic of the calculus, logical categorial grammar is purely lexicalist and a particular language model is defined by just a lexical dictionary. The foundational logic of continuity was established by Lambek (Am Math Mon 65:154–170, 1958) (the Lambek calculus) while a corresponding extension including also logic of discontinuity was established by Morrill and Valentín (Linguist Anal 36(1–4):167–192, 2010) (the displacement calculus). \({ CatLog3}\) implements a logic including as primitive connectives the continuous (concatenation) and discontinuous (intercalation) connectives of the displacement calculus, additives, 1st order quantifiers, normal modalities, bracket modalities, and universal and existential subexponentials. In this paper we review the rules of inference for these primitive connectives and their linguistic applications, and we survey the principles of Andreoli’s focusing, and of a generalisation of van Benthem’s count-invariance, on the basis of which \({ CatLog3}\) is implemented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

Notes

  1. Once Cut-elimination/admissibility has been established, the only challenge to decidability here comes from non-linearity: the infinitary left rule of the existential subexponential (Buszkowski 2007; Buszkowski and Palka 2008); and the contraction rule of the universal subexponential. In this connection, linguistically the existential subexponential left rule is not required. But the contraction rule of the universal subexponential is required, for parasitic gaps. The Lambek calculus \(\mathbf Lb! _\mathbf{b }\) with bracket modalities and the universal subexponential bracket conditioned contraction rule of Morrill (2017) is undecidable (Kanovich et al. 2017). However \({ CatLog3}\) uses a different bracket-conditioned contraction rule for the universal subexponential, essentially that of Morrill (2011b).

  2. For example, the semantically inactive additive conjunction \(A{\sqcap }B{:\,}\phi \) abbreviates \( A{ \& }B{:\,}(\phi , \phi )\).

  3. For example, the nondeterministic continuous division \(B{\div }A{:\,}\phi \) abbreviates \((A{\backslash }B){\sqcap }(B/A){:\,}\phi \), which is to say \( (A{\backslash }B){ \& }(B/A){:\,}(\phi , \phi )\).

  4. To anticipate linguistic analysis a little, a hypothetical gap subtype emitted by a relative pronoun corresponding to a long-distance dependency will enter a stoup, percolate in stoups, may contract to create (parasitic) gaps, and finally permutes into a (host) extraction site.

  5. Note the advantages of such polymorphism over assuming empty operators: if say empty determiners were allowed they could a priori occur any number of times in any positions; and they would also overgenerate, for example, the ungrammatical *most or dogs on the pattern of the grammatical most or all dogs.

  6. I thank Max Kanovich for drawing my attention to this design possibility.

  7. The synthetic connectives are: left and right projection and injection {\({\triangleleft ^{-1}}\), \({\triangleright ^{-1}}\), \({\triangleleft }\), \({\triangleright }\)}, (Morrill et al. 2009); split and bridge {\({\check{_{_{}}}}\), \({\hat{_{_{}}}}\)}, (Morrill and Merenciano 1996); and continuous and discontinuous nondeterministic multiplicatives {\({\div }\), \({\times }\), \({\Uparrow }\), \({\Downarrow }\), \({\circledcirc }\)}, (Morrill et al. 2011).

  8. Undefined values in infinitary arithmetic are indicated by \(*\); we could have opted to fail to reject any counts which are undefined, but in fact such cases do not ever occur (Kuznetsov et al. 2017).

References

  • Ajdukiewicz, K. (1935). Die syntaktische Konnexität. Studia Philosophica, 1, 1–27. Translated in Storrs McCall (Eds.) (1967). Polish logic: 1920–1939 (pp. 207–231). Oxford: Oxford University Press.

  • Andreoli, J.-M. (1992). Logic programming with focusing in linear logic. Journal of Logic and Computation, 2(3), 297–347.

    Google Scholar 

  • Bar-Hillel, Y. (1953). A quasi-arithmetical notation for syntactic description. Language, 29, 47–58.

    Google Scholar 

  • Buszkowski, W. (2007). On action logic: Equational theories of action algebras. Journal of Logic and Computation, 17(1), 199–217.

    Google Scholar 

  • Buszkowski, W., & Palka, E. (2008). Infinitary action logic: Complexity, models and grammars. Studia Logica, 89(1), 1–18.

    Google Scholar 

  • Carpenter, B. (1997). Type-logical semantics. Cambridge, MA: MIT Press.

    Google Scholar 

  • Chaudhuri, K., Miller, D., & Saurin, A. (2008). Canonical sequent proofs via multi-focusing. In G. Ausiello, J. Karhumäki, G. Mauri, & L. Ong (Eds.), Fifth Ifip international conference on theoretical computer science—Tcs 2008, Boston, MA (pp. 383–396). New York: Springer US.

    Google Scholar 

  • Chomsky, N. (1957). Syntactic structures. The Hague: Mouton.

    Google Scholar 

  • Dowty, D. R., Wall, R. E., & Peters, S. (1981). Introduction to Montague semantics, volume 11 of Synthese Language Library. Dordrecht: D. Reidel.

    Google Scholar 

  • Fadda, M. (2010). Geometry of grammar: Exercises in Lambek style. Ph.D. thesis, Universitat Politècnica de Catalunya, Barcelona.

  • Gentzen, G. (1934). Untersuchungen über das logische Schliessen. Mathematische Zeitschrift, 39, 176–210 and 405–431. Translated in M. E. Szabo (Eds.) (1969). The collected papers of Gerhard Gentzen (pp. 68–131). Amsterdam: North-Holland.

  • Girard, J.-Y. (1987). Linear logic. Theoretical Computer Science, 50, 1–102.

    Google Scholar 

  • Girard, J.-Y. (2011). The blind spot. Zürich: European Mathematical Society.

    Google Scholar 

  • Hendriks, H. (1993). Studied flexibility. Categories and types in syntax and semantics. Ph.D. thesis, Universiteit van Amsterdam, ILLC, Amsterdam.

  • Hepple, M. (1990a). Normal form theorem proving for the Lambek calculus. In: H. Karlgren (Ed.), Proceedings of COLING, Stockholm.

  • Hepple, M. (1990b). The grammar and processing of order and dependency. Ph.D. thesis, University of Edinburgh.

  • Jäger, G. (2005). Anaphora and type logical grammar, volume 24 of trends in logic—Studia Logica Library. Dordrecht: Springer.

    Google Scholar 

  • Kanazawa, M. (1992). The Lambek calculus enriched with additional connectives. Journal of Logic, Language and Information, 1, 141–171.

    Google Scholar 

  • Kanovich, M., Kuznetsov, S., & Scedrov, A. (2017). Undecidability of the Lambek calculus with subexponential and bracket modalities. In Proceedings of FCT, volume 10472 of LNCS, pp. 326–340.

  • König, E. (1989). Parsing as natural deduction. In: Proceedings of the annual meeting of the Association for Computational Linguistics, Vancouver.

  • Kuznetsov, S., Morrill, G., & Valentín, O. (2017). Count-invariance including exponentials. In M. Kanazawa (Ed.), Mathematics of language (pp. 128–139). London.

  • Lafont, Y. (2004). Soft linear logic and polynomial time. Theoretical Computer Science, 318(12), 163–180.

    Google Scholar 

  • Lambek, J. (1958). The mathematics of sentence structure. American Mathematical Monthly, 65, 154–170.

    Google Scholar 

  • Lambek, J. (1961). On the calculus of syntactic types. In R. Jakobson (Ed.), Structure of language and its mathematical aspects. Proceedings of the symposia in applied mathematics XII (pp. 166–178). Providence, RI: American Mathematical Society.

    Google Scholar 

  • Lambek, J. (1988). Categorial and categorical grammars. In R. T. Oehrle, E. Bach, & D. Wheeler (Eds.), Categorial grammars and natural language structures, volume 32 of studies in linguistics and philosophy (pp. 297–317). Dordrecht: D. Reidel.

    Google Scholar 

  • Miller, D., Nadathur, G., Pfenning, F., & Scedrov, A. (1991). Uniform proofs as a foundation for logic programming. Annals of Pure and Applied Logic, 51(1–2), 125–157.

    Google Scholar 

  • Montague, R. (1973). The proper treatment of quantification in ordinary English. In J. Hintikka, J. Moravcsik, & P. Suppes (Eds.), Approaches to natural language: Proceedings of the 1970 Stanford workshop on grammar and semantics (pp. 189–224). Dordrecht: D. Reidel. Reprinted in R.H. Thomason (Eds.) (1974). Formal philosophy: Selected papers of Richard Montague (pp. 247–270). New Haven: Yale University Press.

  • Moortgat, M. (1988). Categorial investigations: Logical and linguistic aspects of the Lambek calculus. Dordrecht: Foris. Ph.D. thesis, Universiteit van Amsterdam.

  • Moortgat, M. (1996). Multimodal linguistic inference. Journal of Logic, Language and Information, 5(3, 4), 349–385. Also in Bulletin of the IGPL, 3(2, 3), 371–401, 1995.

  • Moortgat, M. (1997). Categorial type logics. In J. van Benthem & A. ter Meulen (Eds.), Handbook of logic and language (pp. 93–177). Amsterdam and Cambridge, MA: Elsevier Science B.V. and the MIT Press.

  • Moortgat, M., & Moot, R. (2013). Proof nets for the Lambek–Grishin calculus. In E. Grefenstette, C. Heunen, & M. Sadrzadeh (Eds.), Compositional methods in physics and linguistics. Oxford: Oxford University Press.

    Google Scholar 

  • Moot, R. (2014). Extended Lambek calculi and first-order linear logic. In M. M. Claudia Casadio, B. Coeke, & P. Scott (Eds.), Categories and types in logic, language and physics: Essays dedicated to Jim Lambek on the occasion of his 90th birthday, volume 8222 of LNCS, FoLLI Publications in logic, language and information (pp. 297–330). Berlin: Springer.

    Google Scholar 

  • Moot, R. (2016). Proof nets for the displacement calculus. In A. Foret, G. Morrill, R. Muskens, R. Osswald, & S. Pogodalla (Eds.), Formal grammar: 20th and 21st international conferences, volume 9804 of LNCS, FoLLI Publications in logic, language and information (pp. 273–289). Berlin: Springer.

    Google Scholar 

  • Moot, R., & Retoré, C. (2012). The logic of categorial grammars: A deductive account of natural language syntax and semantics. Heidelberg: Springer.

    Google Scholar 

  • Morrill, G. (1990). Intensionality and boundedness. Linguistics and Philosophy, 13(6), 699–726.

    Google Scholar 

  • Morrill, G. (1992). Categorial formalisation of relativisation: Pied piping, islands, and extraction sites. Technical Report LSI-92-23-R, Departament de Llenguatges i Sistemes Informàtics, Universitat Politècnica de Catalunya.

  • Morrill, G. (2011). Logic programming of the displacement calculus. In S. Pogodalla & J.-P. Prost (Eds.), Proceedings of logical aspects of computational linguistics 2011, LACL’11, Montpellier, number LNAI 6736 in Springer lecture notes in AI (pp. 175–189). Berlin: Springer.

    Google Scholar 

  • Morrill, G. (2012). CatLog: A categorial parser/theorem-prover. In LACL 2012 system demonstrations, logical aspects of computational linguistics 2012, Nantes, pp. 13–16.

  • Morrill, G. (2017). Grammar logicised: Relativisation. Linguistics and Philosophy, 40(2), 119–163.

    Google Scholar 

  • Morrill, G. V. (1994). Type logical grammar: Categorial logic of signs. Dordrecht: Kluwer Academic Publishers.

    Google Scholar 

  • Morrill, G. V. (2011). Categorial grammar: Logical syntax, semantics, and processing. New York, Oxford: Oxford University Press.

    Google Scholar 

  • Morrill, G., & Fadda, M. (2008). Proof nets for basic discontinuous Lambek calculus. Logic and Computation, 18(2), 239–256.

    Google Scholar 

  • Morrill, G., & Merenciano, J.-M. (1996). Generalising discontinuity. Traitement automatique des langues, 37(2), 119–143.

    Google Scholar 

  • Morrill, G., Kuznetsov, S., Kanovich, M., & Scedrov, A. (2018). Bracket induction for Lambek calculus with bracket modalities. In A. Foret, G. Kobele, & S. Pogodalla (Eds.), Proceedings of formal grammar 2018, Sofia (pp. 84–101). Berlin: Springer.

    Google Scholar 

  • Morrill, G., & Valentín, O. (2010). Displacement calculus. Linguistic Analysis, 36(1–4), 167–192. Special issue Festschrift for Joachim Lambek.

  • Morrill, G., & Valentín, O. (2014). Semantically inactive multiplicatives and words as types. In N. Asher & S. Soloviev (Eds.), Proceedings of logical aspects of computational linguistics, LACL’14, Toulouse, number 8535 in LNCS, FoLLI Publications on logic, language and information (pp. 149–162). Berlin: Springer.

    Google Scholar 

  • Morrill, G., & Valentín, O. (2016). Computational coverage of type logical grammar: The Montague test. In C. Piñón (Ed.), Empirical issues in syntax and semantics (Vol. 11, pp. 141–170). Paris: Colloque de Syntaxe et Sémantique à Paris (CSSP).

    Google Scholar 

  • Morrill, G., & Valentín, O. (2018). Spurious ambiguity and focalization. Computational Linguistics, 44(2), 285–327.

    Google Scholar 

  • Morrill, G., Valentín, O., & Fadda, M. (2009). Dutch grammar and processing: A case study in TLG. In P. Bosch, D. Gabelaia, & J. Lang (Eds.), Logic, language, and computation: 7th international Tbilisi symposium, revised selected papers, number 5422 in lecture notes in artificial intelligence (pp. 272–286). Berlin: Springer.

    Google Scholar 

  • Morrill, G., Valentín, O., & Fadda, M. (2011). The displacement calculus. Journal of Logic, Language and Information, 20(1), 1–48.

    Google Scholar 

  • Valentín, O. (2012). Theory of discontinuous Lambek calculus. Ph.D. thesis, Universitat Autònoma de Barcelona, Barcelona.

  • Valentín, O., Serret, D., & Morrill, G. (2013). A count invariant for Lambek calculus with additives and bracket modalities. In G. Morrill & M.-J. Nederhof (Eds.), Proceedings of formal grammar 2012 and 2013, volume 8036 of Springer LNCS, FoLLI Publications in logic, language and information (pp. 263–276). Berlin: Springer.

    Google Scholar 

  • van Benthem, J. (1991). Language in action: Categories, lambdas, and dynamic logic. Number 130 in studies in logic and the foundations of mathematics. Amsterdam: North-Holland. Revised student edition printed in 1995 by the MIT Press.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Glyn Morrill.

Additional information

The present article is a revised version of Morrill (2017) ‘Parsing Logical Grammar: CatLog3’, in Loukanova and Liefke (eds.) Proceedings of the Workshop on Logic and Algorithms in Computational Linguistics 2017, LACompLing2017, DiVA, Stockholm University. The research was partially supported by MINECO Project TIN2017-89244-R. I thank three anonymous JLLI reviewers for their thoughtful comments, and Oriol Valentín for many related discussions.

Appendix: Relativisation examples

Appendix: Relativisation examples

In this appendix we illustrate further by presenting the \({ CatLog3}\) LaTeX output for relativisation extraction and parasitic extraction examples. This comprises output which is unedited, except for the resizing of derivations into sideways figures; the details can be zoomed online.

(eac(rel(9))) \(\mathbf{man }{+}[[\mathbf{that }{+}[\mathbf{ mary }]{+}\mathbf{likes }{+}\mathbf{today }]]: { CN}{} { s(m)}\)

$$\begin{aligned}&{\square }{} { CN}{} { s(m)}: { man}, [[{\blacksquare }{\forall }n({[]^{-1}}{[]^{-1}}({ CN}{ n}\backslash { CN}{ n})/{\blacksquare }(({\langle \rangle }Nt(n){\sqcap }!{\blacksquare }Nt(n))\backslash Sf)): \\&\lambda A\lambda B\lambda C[({ B}\ { C})\wedge ({ A}\ { C})], [{\blacksquare }Nt(s(f)): { m}], {\square }(({\langle \rangle }{\exists }gNt(s(g))\backslash Sf)/{\exists }aNa): \\&{\hat{\ }}\lambda D\lambda E({ Pres}\ (({\check{\ }}{} { like}\ { D})\ { E})), {\square }{\forall }a{\forall }f(({\langle \rangle }Na\backslash Sf)\backslash ({\langle \rangle }Na\backslash Sf)): {\hat{\ }}\lambda F\lambda G({\check{\ }}{} { today}\ ({ F}\ { G}))]]\ \\&\Rightarrow \ { CN}{} { s(m)} \end{aligned}$$
Fig. 22
figure 22

Derivation of man that Mary likes today

See Fig. 22.

\(\lambda C[({\check{\ }}{} { man}\ { C})\wedge ({\check{\ }}{ today}\ ({ Pres}\ (({\check{\ }}{} { like}\ { C})\ { m})))]\)

(eac(rel(10))) \(\mathbf{man }{+}\mathbf{that }{+}[\mathbf{ the }{+}\mathbf{friends }{+}\mathbf{of }]{+}\mathbf{walk }: { CN}{} { s(m)}\)

$$ \begin{aligned}&{\square }{} { CN}{} { s(m)}: { man}, {\blacksquare }{\forall }n({[]^{-1}}{[]^{-1}}({ CN}{ n}\backslash { CN}{ n})/{\blacksquare }(({\langle \rangle }Nt(n){\sqcap }!{\blacksquare }Nt(n))\backslash Sf)): \\&\lambda A\lambda B\lambda C[({ B}\ { C})\wedge ({ A}\ { C})], [{\blacksquare }{\forall }n(Nt(n)/{ CN}{} { n}): \iota , \\&{\square }({ CN}{} { p}/{ PP}{} { of}): { friends}, {\square }(({\forall }n({ CN}{} { n}\backslash { CN}{} { n})/{\blacksquare }{\exists }bNb){ \& }({ PP}{ of}/{\exists }aNa)):\\&{\hat{\ }}({\check{\ }}{} { of}, \lambda D{ D})], {\square }({\langle \rangle }({\exists }aNa{-}{\exists }gNt(s(g)))\backslash Sf): {\hat{\ }}\lambda E({ Pres}\ ({\check{\ }}{} { walk}\ { E}))\ \Rightarrow \ { CN}{} { s(m)} \end{aligned}$$
$$ \begin{aligned}&{\square }{} { CN}{} { s(m)}: { man}, {\blacksquare }{\forall }n({[]^{-1}}{[]^{-1}}({ CN}{ n}\backslash { CN}{ n})/{\blacksquare }(({\langle \rangle }Nt(n){\sqcap }!{\blacksquare }Nt(n))\backslash Sf)):\\&\lambda A\lambda B\lambda C[({ B}\ { C})\wedge ({ A}\ { C})], [{\blacksquare }{\forall }n(Nt(n)/{ CN}{} { n}): \iota ,\\&{\square }({ CN}{} { p}/{ PP}{} { of}): { friends}, {\square }(({\forall }n({ CN}{} { n}\backslash { CN}{} { n})/{\blacksquare }{\exists }bNb){ \& }({ PP}{ of}/{\exists }aNa)): \\&{\hat{\ }}({\check{\ }}{} { of}, \lambda D{ D})], {\square }({\langle \rangle }{\exists }aNa\backslash Sb): {\hat{\ }}\lambda E({\check{\ }}{} { walk}\ { E})\ \Rightarrow \ { CN}{} { s(m)} \end{aligned}$$

(eac(rel(11))) \(\mathbf{man }{+}[[\mathbf{that }{+}[[\mathbf{ the }{+}\mathbf{friends }{+}\mathbf{of }]]{+}\mathbf{admire }]]: { CN}{ s(m)}\)

$$ \begin{aligned}&{\square }{} { CN}{} { s(m)}: { man}, [[{\blacksquare }{\forall }n({[]^{-1}}{[]^{-1}}({ CN}{ n}\backslash { CN}{ n})/{\blacksquare }(({\langle \rangle }Nt(n){\sqcap }!{\blacksquare }Nt(n))\backslash Sf)): \\&\lambda A\lambda B\lambda C[({ B}\ { C})\wedge ({ A}\ { C})], [[{\blacksquare }{\forall }n(Nt(n)/{ CN}{} { n}): \iota , \\&{\square }({ CN}{} { p}/{ PP}{} { of}): { friends}, {\square }(({\forall }n({ CN}{} { n}\backslash { CN}{ n})/{\blacksquare }{\exists }bNb){ \& }({ PP}{} { of}/{\exists }aNa)): {\hat{\ }}({\check{\ }}{} { of}, \lambda D{ D})]], \\&{\square }(({\langle \rangle }({\exists }aNa{-}{\exists }gNt(s(g)))\backslash Sf)/{\exists }aNa): {\hat{\ }}\lambda E\lambda F({ Pres}\ (({\check{\ }}{} { admire}\ { E})\ { F}))]]\ \Rightarrow \ { CN}{} { s(m)} \end{aligned}$$
Fig. 23
figure 23

Derivation of man that the friends of admire

See Fig. 23.

\(\lambda C[({\check{\ }}{} { man}\ { C})\wedge ({ Pres}\ (({\check{\ }}{} { admire}\ { C})\ (\iota \ ({\check{\ }}{ friends}\ { C}))))]\)

Fig. 24
figure 24

Derivation of paper that John filed without reading

Fig. 25
figure 25

Derivation of paper that the editor of filed without reading

(eac(rel(12))) \(\mathbf{paper }{+}[[\mathbf{that }{+}[\mathbf{ john }]{+}\mathbf{filed }{+}[[\mathbf{without }{+}\mathbf{reading }]]]]: { CN}{} { s(n)}\)

$$\begin{aligned}&{\square }{} { CN}{} { s(n)}: { paper}, [[{\blacksquare }{\forall }n({[]^{-1}}{[]^{-1}}({ CN}{ n}\backslash { CN}{ n})/{\blacksquare }(({\langle \rangle }Nt(n){\sqcap }!{\blacksquare }Nt(n))\backslash Sf)): \\&\lambda A\lambda B\lambda C[({ B}\ { C})\wedge ({ A}\ { C})], [{\blacksquare }Nt(s(m)): { j}], {\square }(({\langle \rangle }{\exists }gNt(s(g))\backslash Sf)/{\exists }aNa): \\&{\hat{\ }}\lambda D\lambda E({ Past}\ (({\check{\ }}{} { file}\ { D})\ { E})), [[{\blacksquare }{\forall }a{\forall }f({[]^{-1}}(({\langle \rangle }Na\backslash Sf)\backslash ({\langle \rangle }Na\backslash Sf))/({\langle \rangle }Na\backslash Spsp)):\\&\lambda F\lambda G\lambda H[({ G}\ { H})\wedge \lnot ({ F}\ { H})], {\square }(({\langle \rangle }{\exists }aNa\backslash Spsp)/{\exists }aNa): {\hat{\ }}\lambda I\lambda J(({\check{\ }}{ read}\ { I})\ { J})]]]]\ \\&\Rightarrow \ { CN}{} { s(n)} \end{aligned}$$

See Fig. 24.

\(\lambda C[({\check{\ }}{} { paper}\ { C})\wedge [({ Past}\ (({\check{\ }}{} { file}\ { C})\ { j}))\wedge \lnot (({\check{\ }}{} { read}\ { C})\ { j})]]\)

(eac(rel(13))) \(\mathbf{paper }{+}[[\mathbf{that }{+}[[\mathbf{ the }{+}\mathbf{editor }{+}\mathbf{of }]]{+}\mathbf{filed }{+}[[\mathbf{without }{+}\mathbf{ reading }]]]]: { CN}{} { s(n)}\)

$$ \begin{aligned}&{\square }{} { CN}{} { s(n)}: { paper}, [[{\blacksquare }{\forall }n({[]^{-1}}{[]^{-1}}({ CN}{ n}\backslash { CN}{ n})/{\blacksquare }(({\langle \rangle }Nt(n){\sqcap }!{\blacksquare }Nt(n))\backslash Sf)):\\&\lambda A\lambda B\lambda C[({ B}\ { C})\wedge ({ A}\ { C})], [[{\blacksquare }{\forall }n(Nt(n)/{ CN}{} { n}): \iota , {\square }({\forall }g{ CN}{} { s(g)}/{ PP}{} { of}): { editor}, \\&{\square }(({\forall }n({ CN}{} { n}\backslash { CN}{} { n})/{\blacksquare }{\exists }bNb){ \& }({ PP}{ of}/{\exists }aNa)): {\hat{\ }}({\check{\ }}{} { of}, \lambda D{ D})]], \\&{\square }(({\langle \rangle }{\exists }gNt(s(g))\backslash Sf)/{\exists }aNa): {\hat{\ }}\lambda E\lambda F({ Past}\ (({\check{\ }}{} { file}\ { E})\ { F})),\\&{} [[{\blacksquare }{\forall }a{\forall }f({[]^{-1}}(({\langle \rangle }Na\backslash Sf)\backslash ({\langle \rangle }Na\backslash Sf))/({\langle \rangle }Na\backslash Spsp)): \lambda G\lambda H\lambda I[({ H}\ { I})\wedge \lnot ({ G}\ { I})],\\&{\square }(({\langle \rangle }{\exists }aNa\backslash Spsp)/{\exists }aNa): {\hat{\ }}\lambda J\lambda K(({\check{\ }}{ read}\ { J})\ { K})]]]]\ \Rightarrow \ { CN}{} { s(n)} \end{aligned}$$

See Fig. 25.

\(\lambda C[({\check{\ }}{} { paper}\ { C})\wedge [({ Past}\ (({\check{\ }}{} { file}\ { C})\ (\iota \ ({\check{\ }}{ editor}\ { C}))))\wedge \lnot (({\check{\ }}{} { read}\ { C})\ (\iota \ ({\check{\ }}{} { editor}\ { C})))]]\)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Morrill, G. Parsing/Theorem-Proving for Logical Grammar CatLog3. J of Log Lang and Inf 28, 183–216 (2019). https://doi.org/10.1007/s10849-018-09277-w

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10849-018-09277-w

Keywords

Navigation