
Classical descriptive set theory as a refinement of

effective descriptive set theory

Yiannis N. Moschovakis

Department of Mathematics, University of California, Los Angeles, Ca, USA

Department of Mathematics, University of Athens, Athens, Greece

Abstract

The (effective) Suslin-Kleene Theorem is obtained as a corollary of a standard
proof of the classical Suslin Theorem, by noticing that it is mostly constructive
and applying to it a naive realizability interpretation.

Effective Descriptive Set Theory is advertized as a refinement of the classical
theory of definability (on Polish spaces) developed in the first half of the 20th
century, for example in the introduction to Moschovakis (2009a). Consider the
following paradigmatic case, where

X = X1 × · · · ×Xn (1)

is a product of copies of the natural numbers N = {0, 1, . . .} and N = (N → N),
the classical Baire space of all infinite sequences from N:

Suslin’s Theorem (Suslin (1917)). If A ⊆ X and X \A are both analytic, then
A is Borel measurable.

Suslin-Kleene Theorem. There is a recursive function u : N ×N → N , such
that if α is a code of an analytic set A ⊆ X and β is a code of its complement
X \A, then u(α, β) is a Borel code of A.

Even without precise definitions of the notions and the codings used in these
results (which will be given in the sequel), their statements suggest that the
second theorem refines the first, as it provides a uniformity, an effective method
to transform an “analytic-coanalytic” definition of a set A ⊆ X into a “Borel
construction” of A. In fact, it is a much stronger result with wider applicability:
Suslin’s Theorem is vacuous when X = N, since every set of natural numbers
is (trivially) Borel measurable, while the Suslin-Kleene Theorem yields in this
case (very easily) one of the most celebrated results of Kleene:

The basic idea for this article was presented in Moschovakis (1971). The full paper was
never written up, but I thought that it would fit well in a volume honoring Prof. N. A. Shanin.

Preprint submitted to Elsevier October 14, 2010

Kleene’s Theorem (Kleene (1955a,b)). Every ∆1
1 set A ⊆ N is hyperarith-

metical.

This simple analysis, however, does not do justice to the classical theory,
because it fails to take into account the “constructive bent” of the analysts
who developed it: the standard proof of Suslin’s Theorem in Kuratowski (1966)
or Moschovakis (2009a) is, in fact, constructive, and if we apply to it the sort
of realizability analysis pioneered by Kleene, which is well-understood today, it
yields the Suslin-Kleene Theorem. From this point of view, the classical work is
a refinement of the modern theory, since it yields the uniformities which refine
the statements of the classical results, and it also provides constructive proofs
that they do.

This is the main point that I want to make in this article, and it basically
amounts to an observation about the work of Stephen Cole Kleene: his deepest
result in what we now call effective descriptive set theory is a direct corollary
of classical work and his independently developed (and to the innocent eye
unrelated) work in the foundations of intuitionism. Kleene’s main technical
tool is his Second Recursion Theorem, which he applies in both legs of his work:
one might say that the observation we will make here simply reduces these
crucial applications of the Recursion Theorem from two to one.1

I have included in the last section a discussion of the generality of the method
in the article and whether it justifies the title.

Since there are very few researchers who are familiar with both descriptive
set theory and intuitionism and I would like to make these ideas accessible more
broadly, I am including below precise definitions of all the notions I need, as
well as (condensed) outlines of the required arguments.

1. Recursion in Baire space

We summarize here the basic facts about recursive partial functions2 with
variables ranging over N or N = (N → N) and values in N or N . To simplify
notation, we reserve the Latin letters e,m, s, t, u, v, w (perhaps with subscripts)
for variables over N; the Greek letters α, β, γ, δ for variables over N ; and x, y, z
for variables over points, i.e., members of product spaces as in (1). By definition
(X1 × · · · × Xn) × (Y1 × · · · × Ym) = X1 × · · · × Xn × Y1 × · · · × Ym, and if
x = (x1, . . . , xn), y = (y1, . . . , ym), then

(x, y) = x ⋆ y = (x1, . . . , xn, y1, . . . , ym).

Subsets of these product spaces are called pointsets.

1Cf. the companion articles Moschovakis (2009b, 2010).
2A partial function f : X ⇀ Y is a (total) function f : Df → Y defined on some subset

Df ⊆ X , its domain of convergence, and for x ∈ X , we write f(x) ↓ ⇐⇒ x ∈ Df . Partial
functions compose strictly, so that f(g1(x), . . . , gm(x))↓ =⇒ g1(x)↓ , . . . , gm(x)↓ .

2

We assume all the elementary facts and standard notations from elementary
recursion (computability) theory on N.3

To allow some of the arguments of relations and partial functions to vary
over N , we set

α(t) = 〈α(0), . . . , α(t− 1)〉, s(t) = s,

and for x = (x1, . . . , xn), we put x(t) = (x1(t), . . . , xn(t)) ∈ N
n.

Definition. Fix some δ0 ∈ N . A relation P ⊆ X = X1 × · · · ×Xn is semire-
cursive in δ0, if there is a recursive relation R ⊆ N

n+1 such that

P (x) ⇐⇒ (∃t)R(δ0(t), x(t)) (x ∈ X);

a partial function f : X ⇀ N is recursive in δ0 if its graph

Graphf (x,w) ⇐⇒ f(x) = w

is semirecursive in δ0; a partial function f : X ⇀ N is recursive in δ0, if

f(x) = λtf∗(x, t),

with some f∗ : X × N ⇀ N which is recursive in δ0, so that, in particular,

f(x)↓ ⇐⇒ (∀t)f∗(x, t)↓ ;

and f : X ⇀ N or f : X ⇀ N is continuous if it is recursive in some δ0.
4

We naturally skip the relativizing “in δ0” clause if δ0 is recursive.

The basic properties of these relations and partial functions on product
spaces are quite easily deduced from the properties of the corresponding number-
theoretic notions. We list some of them, skipping the relativized versions for
simplicity:

(1) The class of semirecursive relations is closed under (total) recursive sub-
stitutions and the operations & ,∨, (∀t < s), (∃t), (∃α).

(2) The class of recursive partial functions with values in N is closed under
substitution of recursive partial functions with values in N and substitution
of recursive total functions with values in N .5

3In particular, 〈x〉 is the code of the sequence x = (x0, . . . , xn−1) ∈ Nn , so that the empty
sequence has code 1 and for suitable recursive relations and functions,

〈x〉 = fn(x0, . . . , xn−1), Seq(w) ⇐⇒ w is a sequence code, lh(〈x〉) = n, (〈x〉)i = xi,

〈x〉 ∗ 〈y0, . . . , ym−1〉 = 〈(x, y)〉, 〈x〉�j = 〈x0, . . . , xj−1〉 (j ≤ n).

4 It is easy to check that f : X ⇀ N is continuous (by this definition) if its domain of
convergence Df is an open set and f is continuous (in the topological sense) on Df ; and
f : X ⇀ N is continuous if Df is a Gδ-set (a countable intersection of open sets) and f is
continuous on Df .

5This class is not closed under substitution of recursive partial functions with values in N :
for example, if

g(α) = 1, h(e) = λtµyT1(e, t, y), and f(e) = g(h(e)),

then the relation f(e)↓ ⇐⇒ (∀t)(∃y)T1(e, t, y) is not semirecursive, and so f : N ⇀ N is not
recursive.

3

(3) The class of recursive partial functions with values in N is closed under
substitutions of recursive partial functions of both kinds.

(4) If f : X ⇀ N is recursive and f(x) = β, then β is recursive in x.6

Following (mostly) standard notation, we set

α 7→ α∗ = λtα(t+ 1),

(α0, . . . , αn−1) 7→ 〈α0, . . . , αn−1〉 = λt〈α0(t), . . . , αn−1(t)〉,

(α, i) 7→ (α)i = λt(α(t))i, so that for i < n, (〈α0, . . . , αn−1〉)i = αi;

the shift α∗ and these coding and decoding functions for tuples in N are clearly
recursive.

Next comes the basic representation result for these partial functions which
follows quite easily from the corresponding fact about recursion on N:

Theorem 1 (Normal Form and Parametrization). There is a recursive function
U : N → N and for each product space X = X1 × · · · ×Xn, a recursive relation
TX ⊆ N

n+2, so that the following hold, with

ϕX ,0(ε, x)={ε}0(x) = U(µsTX (ε(0), ε∗(s), x(s))),

ϕX (ε, x)={ε}(x) = λtϕX×N,0(x, t).

(1) A partial function f : X ⇀ N is recursive in δ0 if and only if there exists
some ε, recursive in δ0 and such that

f(x) = {ε}0(x) (x ∈ X);

and f : X ⇀ N is recursive in δ0 if and only if there exists some ε, recursive in
δ0 and such that

f(x) = {ε}(x) (x ∈ X).

(2) For every product space Y = Y1 × · · · × Ym, there is a recursive, total
function S = SY

X : N × Y → N such that for all x ∈ X , y ∈ Y,

{S(ε, y)}(x) = {ε}(y, x).

We have favored the partial functions into N by skipping the superscript in
the notation because these are the main objects that we will be using, as in the
next, crucial result:

Theorem 2 (Kleene’s Second Recursion Theorem). For each recursive partial
f : N ×X ⇀ N , there is a recursive ε ∈ N such that

{ε}(x) = f(ε, x).

Proof. The composition f(S(α, α), x) is recursive, and so there is a recursive ε0
such that

{ε0}(α, x) = f(S(α, α), x);

so with ε = S(ε0, ε0), we have

{ε}(x) = {S(ε0, ε0)}(x) = {ε0}(ε0, x) = f(S(ε0, ε0), x) = f(ε, x).

6We say that β is recursive in x = (n1, . . . , nk, α1, . . . , αm), if β is recursive in α1, . . . , αm.

4

2. The category of (inhabited) Baire-coded sets

A Baire-coded (or just coded) set is a pair (A, cA) of a set A and a surjection
(the coding map) cA : |A|→→A of a set of codes |A| ⊆ N onto A, such that
|A| has at least one recursive member. We think of any α ∈ |A| such that
cA(α) = a ∈ A as a name of a, and we will generally refer to a “coded set A”
and write

α = cA(α) (α ∈ |A|), (2)

when the coding map cA is clear from the context or has already been specified.
Consider the following examples of coded sets and “coded versions” of some

familiar operations of set theory on them:

(CS1) We view N and N as coded sets, taking

|N| = |N | = N ; cN(α) = α(0), cN (α) = α.

(CS2) Products. The product A× B of two coded sets is coded by

|A × B| = {α | (α)0 ∈ |A|, (α)1 ∈ |B|}, cA×B(α) = (cA((α)0), cB((α)1)),

and similarly for n-fold products; so every product space X is coded.

(CS3) Subsets. Every non-empty subset B ⊆ A of a coded set A is naturally
coded by

|B| = {α ∈ |A| | cA(α) ∈ B}; cB = cA ↾|B|.

(CS4) Continuous and recursive operations on coded sets. A map f : A → B
on one coded set to another is continuous, if there is a continuous, partial
f∗ : N ⇀ N which computes f , i.e., such that the following diagram commutes:

|B|

A B-

|A|

6 6
cA cB

f

-f∗

stating pedantically the convergence conditions, this means that for all α ∈ N ,

α ∈ |A| =⇒ [f∗(α)↓ & f∗(α) ∈ |B| & cB(f∗(α)) = f(cA(α))]. (3)

If (3) holds with a recursive f∗, we say that f : A → B is recursive; and if
f∗ = {ε} : N ⇀ N , we call ε a code of f , so that the sets (A →c B), (A →r B)
of all continuous and recursive maps on A to B are also naturally coded.7 We
write

f : A →c B ⇐⇒ f ∈ (A →c B), f : A →r B ⇐⇒ f ∈ (A →r B).

7It is natural to think of the class of all Baire-coded sets as a category, with either the con-
tinuous or the recursive maps as morphisms. This certainly motivates some of the subsequent
definitions, but we will not use it here in any significant way. (See also Footnote 10.)

5

An interesting special case is (N →c B), which comprises all sequences from B.

(CS5) Strings, continuous (clopen) subsets and trees. The set A<ω of all
finite sequences from a coded set A is coded by

|A<ω| = {α | (∀i < α(0))[(α∗)i ∈ |A|]}, c∗A(α) = ((α∗)0, . . . , (α∗)α(0)−1)

where β = cA(β). The length function lh : A<ω →r N, the imbedding a 7→ (a)
of A into A<ω, and the restriction (u, j) 7→ u↾j and concatenation (u, v) 7→ u⋆v
maps are all recursive operations. For the initial segment relation, we write

u ⊑ v ⇐⇒ (∃j < lh(v))[u = v↾j].

A subset X ⊆ A is continuous (clopen) or recursive if its characteristic
function is continuous or recursive, and the continuous and recursive powersets
Pc(A),Pr(A) are coded as subsets of the corresponding coded function spaces
(A →c N) and (A →r N):

t ∈ X ⇐⇒ X(t) = 1, (X : A →c N).

Note that all subsets of N, N
k and N

<ω are continuous.

A tree on A is any set T ⊆ A<ω of finite sequences from A closed under
initial segments, i.e., such that u ⊑ v ∈ T =⇒ u ∈ T . For any u ∈ A<ω, we let

Tu = {v ∈ T | u ⊑ v},

so that Tu is also a tree (albeit the empty tree if u /∈ T) and T∅ = T .
The body of a tree T on A is the set of all infinite paths in T ,

[T] = {f : N →c A | (∀n ∈ N)[f ↾n ∈ T]} ⊆ (N → A),

where f ↾n = (f(0), . . . , f(n− 1)). The projection of a tree T on A×A is

p[T] = {f : N →c A | (∃g)(f ⋆ g) ∈ [T]} ⊆ (N → A),

where (f ⋆ g)(i) = (f(i), g(i)). The set Tc(A) of all continuous trees is naturally
coded as a subset of Pc(A). We will be especially interested in trees on N (or
N

k for some k), and they are all continuous.

Next we introduce the natural coded versions of the most basic pointclasses
of Descriptive Set Theory.8

(CS6) Open and semirecursive sets. By Footnote 4, a set G ⊆ X is topolog-
ically open if it is the domain of a continuous, partial f : X ⇀ N, so that for
some ε,

x ∈ G ⇐⇒ {ε}0(x)↓ ; (4)

8A pointclass is an operation Γ which assigns to each product space X a family Γ �X of
subsets of X ; and so a coded pointclass assigns to each X a coded set Γ�X of subsets of X .

6

and so the family Σe 0
1 ↾X of open (or Σe 0

1) subsets of X is coded, with code set
N and coding map

ε 7→ {x ∈ X | {ε}0(x)↓}.

The class Σ0
1 ↾X of semirecursive subsets of X is the (coded) subset of Σe 0

1 ↾X
of open sets with recursive codes.

Lemma 3. The (coded) pointclass Σe 0
1 of open pointsets is recursively closed

under the operations & ,∨, (∀t < s), (∃t), (∃α).

Proof. The precise meaning of this for the case (for example) of (∃t) is that for
each X , there is a recursive map

∃N : Σe 0
1 ↾(X × N) → Σe 0

1 ↾X

such that
∃N(P)(x) ⇐⇒ (∃t ∈ N)P (x, t) (P ∈ Σe 0

1, x ∈ X).

To prove this, we choose a recursive ε0 such that

{ε0}(α, x)↓ ⇐⇒ (∃t)[{α}(x, t)↓]

and check that the function f∗ = {S(ε0, α)} : N → N computes ∃N. The same
sort of familiar argument proves all the claims in the lemma.

If (4) holds, we can think of ε as also coding the complement of G and so
get codings for the classes Πe 0

1 ↾X ,Π0
1 ↾X of closed and co-semirecursive subsets

of X ; and then, inductively, we can code the classical finite Borel and projective
pointclasses for the product spaces we have been considering, as well as their
effective subclasses. We do this explicitly only for the analytic and coanalytic
sets with which we are especially concerned.

(CS7) Analytic and coanalytic sets. A set A ⊆ X is analytic if it is the
projection of a closed set F ⊆ X ×N , i.e.,

x ∈ A ⇐⇒ (∃α)F (x, α).

By the coding of closed sets above, this means that there is an ε ∈ N such that

x ∈ A ⇐⇒ (∃α)[{ε}0(x, α) ↑]; (5)

and so we can code the family Σe 1
1 ↾X of analytic subsets of X taking N as the

set of codes and
ε 7→ AX

ε = {x | (∃α)[{ε}0(x, α) ↑]}

as the coding map. The class Πe 1
1 ↾X of coanalytic (complements of analytic)

subsets of X is naturally coded with code set N again and coding map

ε 7→ PX
ε = {x | (∀α)[{ε}0(x, α)↓]};

and the class ∆e 1
1 ↾X of subsets of X which are both analytic and coanalytic is

coded by ε 7→ PX
(ε)0

on the code set {ε ∈ N | PX
(ε)0

= X \ PX
(ε)1

}.

7

The effective classes Σ1
1 ↾X ,Π1

1 ↾X ,∆1
1 ↾X comprise the analytic, coanalytic

and ∆e 1
1 subsets of X which have recursive codes.

Finally, we give the coding for the Borel sets, which is the most complex one
that we need.

(CS8) Borel sets. The class B ↾ X of Borel (measurable) subsets of X is
the smallest class of subsets of X which contains all the open sets and is closed
under complementation and countable unions.

To code B ↾ X , we first define by recursion on the countable ordinals the
following subsets of N :9

BC0={α | α(0) = 0},

BCξ=BC0 ∪ {α | α(0) = 1 & (∀t ∈ N)[{α∗}(t)↓ & {α∗}(t) ∈
⋃

η<ξ BCη]}.

Next we define, by recursion again, for each ξ, a mapping cXξ : BCξ → B↾X :

cX0 (α) = {x ∈ X | {α∗}0(x)↓} (α ∈ BC0),

cXξ (α) =
⋃

t

(

X \ cXη(t)({α
∗}(t))

)

,

where η(t) = least η such that {α∗}(t) ∈ BCη, (α ∈ BCξ \ BC0),

and we let

A ∈ Σe 0
ξ ⇐⇒ (∃α ∈ BCξ)[A = cXξ (α)] (A ⊆ X). (6)

It is easy to show (by induction on ξ) that

η ≤ ξ =⇒ [BCη ⊆ BCξ & cXη ⊆ cXξ],

so that cX =
⋃

ξ c
X
ξ defines a function on BC =

⋃

ξ BCξ; and then, similarly,

that each cX (α) is a Borel subset of X and every Borel set is cX (α) for some
α ∈ BC, so that cX is a coding of B↾X .

Lemma 4. The operations of complementation A 7→ Ac = (X \ A), countable
union {Ai | i ∈ N} 7→

⋃

iAi and countable intersection {Ai | i ∈ N} 7→
⋂

iAi

are recursive on B.

Proof. For complementation, choose a recursive ε0 such that {ε0}(α, t) = α,
and let u(α) = (1) ∗ S(ε0, α), defined so that

u(α)(0) = 1 and for all t, {u(α)∗}(t) = α.

This is a recursive function and it computes the complementation operation on
B, since for α ∈ BC,

cX (u(α)) =
⋃

t(X \ cX (α)) = X \ cX (α).

The rest follows by applying the De Morgan rules and the idempotence of the
complementation operation, (Ac)c = A.

9I am using here almost exactly the coding in Section 7B of Moschovakis (2009a).

8

3. Effective truth and realizability on S

Suppose (A, cA), (B, cB) are fixed coded sets and P ⊆ A × B. The ∀-∃
proposition10

ϕ ≡ (∀x ∈ A)(∃y ∈ B)P (x, y) (7)

is effectively (or uniformly) true (for the given codings) if there is a recursive
partial function u : N ⇀ N such that for all α,

α ∈ |A| =⇒ [u(α)↓ & u(α) ∈ |B| & P (cA(α), cB(u(α)))].

Our aim in the section is to show that constructive ∀-∃ consequences of effec-
tively true ∀-∃ propositions are also effectively true—in fact something a little
stronger than this; and then the Suslin-Kleene Theorem will follow directly from
a constructive proof of this kind of the Suslin Theorem, which is expressed by
the ∀-∃ proposition

(∀A ∈ ∆e 1
1)(∃B ∈ B)[A = B] (A,B ⊆ X).

The proof is given by formalizing constructive reasoning about coded sets
and then applying a very simple realizability interpretation on this intuitionistic
theory. It uses very well understood ideas and techniques—so we will be brief
and we will skip the formal details. We will, however, be quite precise in the
formulation of definitions and results.

The language L. We fix a family S of coded sets which includes all the coded
sets we care about, and a set M which includes all the members of every A ∈ S.
The idea is to view each A as a type (or sort) of member of M and to introduce
a rich, typed first order language L on this set of types.

The terms of type A comprise a sequence v0, v1, . . . of variables of type A,
and a constant c for each recursive member c of A, i.e., each c = cA(α) with a
recursive α ∈ |A|. (So formally, we should write v

A
i and c

A.)
The formulas of L are defined by the following recursion, where P is any

n-ary relation over M, viewed as a constant naming itself and (A, cA) is any
N -coded set with A ⊆ M:

ϕ :≡ s = t | s ∈ t | P (s1, . . . , sn)

| ¬(ϕ1) | (ϕ1) & (ϕ2) | (ϕ1) ∨ (ϕ2) | (ϕ1) → (ϕ2)

| (∃v
A
i)ϕ1 | (∀v

A
i)ϕ1

It is important here that the relation symbols are not typed, e.g., s = t is well
formed even when s and t are of different type.

10 It is natural (and useful) to think of the class of all coded sets as a category, with an

arrow A
u
−→ B signifying that the proposition (∀x ∈ A)(∃y ∈ B)[x = y] is effectively true

via u.

9

The symbols for identity and membership are superfluous since we have
allowed names for all relations on M, but their explicit mention here suggests
how we intend to use the language. We will also use heavily the continuous
application relations ApA,B ⊆ M

3,

ApA,B(f, x, y) ⇐⇒ f : A →c B and f(x) = y. (8)

We will “abbreviate and misspell” these formal expressions, as usual, skipping
(or adding) parentheses, writing (∃x ∈ A)ϕ, (∀x ∈ A)ϕ for the last two clauses,
and identifying a recursive element c ∈ A with its formal name c

A, letting the
context determine A. We also set

x ∈ A :≡ (∃x′ ∈ A)[x = x′], f(x) = y :≡ ApA,B(f, x, y),

letting again the context determine the specific A,B in the second of these.

Classical semantics. The satisfaction relation π |= χ between an assignment
to the variables and a formula is defined by the usual recursive clauses and
disregards the codings, for example:11

π |= s = t ⇐⇒ π(s) = π(t), π |= s ∈ t ⇐⇒ π(s) ∈ π(t)

|= (∃x ∈ A)ϕ ⇐⇒ there is some a ∈ A such that π{x := a} |= ϕ

Realizability. The C-realization relation ε, πcr χ between ε ∈ N , an assign-
ment π and a formula χ is defined by the following recursive clauses:

ε, πcr χ⇐⇒ π |= χ, if χ is s = t or s ∈ t or P (s1, . . . , sn)

ε, πcr ¬ϕ⇐⇒ for every α ∈ N , α, π 6 cr ϕ

ε, πcr ϕ & ψ ⇐⇒ (ε)0, πcr ϕ and (ε)1, πcr ψ

ε, πcr ϕ ∨ ψ ⇐⇒ [ε(0) = 0 and ε∗, πcr ϕ] or [ε(0) = 1 and ε∗, πcr ψ]

ε, πcr ϕ→ ψ ⇐⇒ for every α,

if α, πcr ϕ, then [{ε}(α)↓ and {ε}(α), πcr ψ]

ε, πcr(∃x ∈ A)ϕ⇐⇒ (ε)0 ∈ |A| and (ε)1, π{x := (cA((ε)0))}cr ϕ

ε, πcr(∀x ∈ A)ϕ⇐⇒ (for every α ∈ |A|)

[{ε}(α)↓ and {ε}(α), π{x := (cA(α))}cr ϕ.

We skip the π in the notation when χ is a sentence and (as usual) π is irrelevant.

A sentence is C-realizable if some ε C-realizes it,

cr χ ⇐⇒ for some ε ∈ N , εcr χ, (9)

and recursively C-realizable if it is C-realized by a recursive ε,

rcr χ ⇐⇒ for some recursive ε ∈ N , εcr χ. (10)

11Assignments respect types and are assumed extended to give the correct values to the
constants. The update π{v := a} changes π only at v, to which it assigns a.

10

A formula χ is C-realizable if its universal closure is C-realizable, and simi-
larly for recursive C-realizability.

Note. We have allowed (almost) arbitrary codings for the sets in S, as well
as names in L for all (typed) recursive points and all relations on M, and we
have identified realizability with satisfaction on the prime formulas. These non-
constructive features—and the fact that we argue classically about it—make
C-realizability a useful tool for dealing effectively (if not always constructively)
with complex families of sets, but they also make it quite unusual as a realiz-
ability notion.12 Still, the general form of the definition is sufficiently close to
Kleene’s original “number realizability” to make the next result routine, once
we fix a formulation of intuitionistic logic which is appropriate for L:13

Theorem 5 (Kleene). If a formula χ is a formal consequence in intuitionistic
predicate calculus of recursively C-realizable sentences χ1, . . . , χn, then χ is also
recursively C-realizable.

Realizability, truth and effective truth. Directly from the definition, a ∀-∃
sentence is recursively C-realizable exactly when it is effectively true. On the
other hand, not all realizable sentences are true: for example

(∀α ∈ N)[(∃t)[α(t) = 0] ∨ (∀t)[α(t) 6= 0]]

is true but not realizable, and hence its (false) negation is realizable. This is
a well-understood feature of all realizability interpretations which gets in the
way of using realizability methods to derive classical results. We can bypass
it, up to a point, by utilizing the richness of L to express classically interesting
propositions by “essentially” ∀-∃ sentences, using the next proposition.

A formula ϕ(x1, . . . , xn) with (no more than) the indicated free variables
ranging over A1, . . . ,An is robust if the following two conditions hold:

(R1) If ε, πcr ϕ(x1, . . . , xn), then π |= ϕ(x1, . . . , xn).

(R2) If π |= ϕ(x1, . . . , xn) and for each i, αi ∈ |Ai| and αi = π(xi), then there
is some ε recursive in α1, . . . , αn such that ε, πcr ϕ(x1, . . . , xn).

12I thank Peter Aczel for pointing me to the “Kleene realizability” in Definition 8.4 of Rath-
jen (2005) which shares many important features with the present notion, including having
code sets (types) for each set on which the realizers operate and (basically) the exact, same
inductive clauses for the propositional and the bounded quantification constructs. The main
differences are that Rathjen’s types are defined “internally”, within his constructive set theory,
and so he can refer to and operate on them—which we cannot do in L; and (more signifi-
cantly) that for membership x ∈ y and identity x = y, Rathjen’s realization relationship is
defined inductively, as in a classical forcing model, so that we cannot simply “import classical
facts” about sets, as we can do in L, in which realizability coincides with (classical) truth on
prime formulas. It is very difficult to compare the two notions, but it would (obviously) be
very interesting if Rathjen can derive the Suslin-Kleene Theorem using his more constructive
notion.

13The technical assumption that each code set |A| has a recursive member is needed here
to make (∃x ∈ A)[x = x] recursively realizable.

11

Proposition 6. (1) Every prime formula is robust.
(2) The class of robust formulas is closed under the propositional operations.
(3) Suppose ϕ(~z, y) is robust, f : A →r B, and let

ϕ(~z, f(x)) :≡ (∃y ∈ B)[Ap(f, x, y) & ϕ(~z, y)] (11)

where f is a constant naming itself; then ϕ(~z, f(x)) is also robust.
In particular, if f, g are recursive operations, then the formula f(x) = g(y)

is robust.

Proof (classical). (1) is trivial and (2) follows by an easy induction on formulas.
To prove (R2) for (3), assume for simplicity that y is the only free variable

in ϕ(y) and suppose that π |= (∃y ∈ B)[Ap(f, x, y) & ϕ(y)], so that for some
b ∈ B,

π{y := b} |= Ap(f, x, y) & ϕ(y).

If a = π(x), this means that f(a) = b; and if f∗ : N ⇀ N is recursive and
computes f and a = α for any α ∈ |A|, then β = f∗(α) is a code of b which is
recursive in α. By the robustness of ϕ(y), there is some ε recursive in β (and
hence recursive in α) such that ε, π{y := b}cr ϕ(y); and then, directly from
the definitions, for any γ,

〈β, 〈γ, ε〉〉cr(∃y ∈ B)[Ap(f, x, y) & ϕ(y)],

so we get a recursive realizer by plugging any recursive γ in the expression on
the left.

The last claim follows by applying (3) twice to the prime formula u = v.

To see how we will use this Proposition in the next section, consider the
following:

Corollary 7. If A,B are coded families of subsets of a space X and they are
both recursively closed under countable unions, then the proposition

“If (i 7→ Ai) is a countable sequence of sets in A and each Ai ∈ B,

then ∪i Ai ∈ B” (12)

is recursively C-realizable.

Proof. The displayed proposition is formalized in L by

χ :≡ (∀f : N →c A)
[

(∀i ∈ N)(∃B ∈ B)[f(i) = B] → (∃C ∈ B)[∪A(f) = C
]

,

where ∪A : (N → A) → A is the assumed, recursive countable union operation
on A. To compute a realizer for it, suppose we are given a code of some sequence
f : N →c A and a realizer of (∀i ∈ N)(∃B ∈ B)[f(i) = B]; we can compute from
these a code of some g : N → B such that for each i, g(i) = f(i); and then ∪B(g)
is a code of the set C ∈ B which is needed to realize the conclusion of χ, with
∪B : (N →c B) → B the given, recursive countable union operation on B.

12

Notice that the argument would not work for χ′ obtained from χ by the
replacement

∪A(f) = C :≡ (∀x ∈ X)[x ∈ C ↔ (∃i ∈ N)[x ∈ f(i)]]

which is not (in general) realizable, even when true for the given values of C
and f .

Next we consider some sentences which express natural and useful proposi-
tions and determine whether they are (recursively) C-realizable.

The Continuous Axiom of Choice is the scheme

(∀x ∈ A)(∃y ∈ B)ϕ(x, y) → (∃f : A →c B)(∀x ∈ A)ϕ(x, f(x)) (ACc)

and it is not in general C-realizable, even with prime formulas ϕ. For example,
the sentence

“every Σe 1
1 subset of N is the projection of a tree on N

2”

is effectively true since from a Σe 1
1-code of A we can easily compute a code of a

tree T on N
2 which projects onto A; so

rcr(∀A ∈ Σe 1
1)(∃T ∈ T (N2))[A = p[T]] (A ⊆ N). (13)

On the other hand, there is no f : Σe 1
1 ↾N →c T (N2) such that for every A ∈ Σe 1

1,
A = p[f(A)]]; because this implies

Aα = Aβ ⇐⇒ Tf∗(α) = Tf∗(β) (α, β ∈ N)

with a continuous f∗ in the notation of (CS7), which is impossible, since the
relation on the left is complete Πe 1

2 while that on the right is Π0
1. This is not the

simplest counterexample to the Continuous Axiom of Choice, but it is interesting
here because (13) is relevant to our project.14

A coded set A is extensional if there is a recursive g : A →r N such that for
every a ∈ A, cA(g(a)) = a. The class of extensional coded sets contains N and
N and it is closed under products and the operations A 7→ A<ω, Tc(A).

Theorem 8 (The Extensional Continuous Axiom of Choice).15 If A is exten-
sional, then for every B and every formula ϕ(x, y),16

rcr(∀x ∈ A)(∃y ∈ B)ϕ(x, y) → (∃f : A →c B)(∀x ∈ A)ϕ(x, f(y)]. (14)

14If we code the set R of real numbers in any natural way, then the Archimedean Principle

(∀x ∈ R)(∃n ∈ N)[x < ι(n)]

(with ι : N → R the natural imbedding) is effectively true; but every function f : R →c N
which is continuous in the present sense is also continuous relative to the usual topology of
R, and hence constant, so that (∃f : R →c N)(∀x ∈ R)[x < ι(f(x))] is not C-realizable.

15The converse of this result is also true: if

εcr(∀x ∈ A)(∃α ∈ N)[cA(α) = x] → (∃f : A → N)(∀x ∈ A)[cA(f(x)) = x]

and {ĝ}(α) = 〈α, α〉, then (easily) g∗(α) = {({ε}(ĝ))0}(α) has the required property.
16With A = N , this is the Countable Axiom of Choice, and with A = N , it expresses various

choice-versions of the so-called Continuity Principle.

13

Proof. Suppose (for simplicity) that ϕ(x, y) has no free variables other than
x, y, and let g∗ : N ⇀ N compute some g : A →r N which witnesses the
extensionality of A, so that

α ∈ |A| =⇒ g∗(α)↓ & cA(α) = cA(g∗(α)).

If β C-realizes the hypothesis of (ACc), then for each α ∈ |A|, if a = cA(α) and
b = cB(({β}(α))0), then ({β}(α))1 cr ϕ(a, b); and so also,

({β}(g∗(α)))1 cr ϕ(cA(g∗(α)), cB(({β}(g∗(α)))0),

but by the given property of g∗ now,

cA(α) = cA(α′) =⇒ g∗(α) = g∗(α′)

=⇒ cB({β}(g∗(α))0) = cB({β}(g∗(α′))0).

This means that the map α 7→ ({β}(g∗(α))0 computes a function f : A → B
with the required property, and that any ε which satisfies

{{ε}(β)}(α) = 〈({β}(g∗(α))0), ({β}(g
∗(α)))1〉,

C-realizes (ACc). It is easy to get a recursive such ε using (2) of Theorem 1.

The Extensional Continuous Axiom of Choice is not generally true, and so
it is worth putting down the axioms of Countable and Dependent Choices which
are; the first of these is a corollary of Theorem 8, and the second is easy.

Theorem 9 (ACN, DC). For every coded set A and every ϕ(n, x),

rcr(∀n ∈ N)(∃x ∈ A)ϕ(n, x) → (∃f : N →c A)(∀n ∈ N)ϕ(n, f(n))

rcr(∀x ∈ A)(∃y ∈ A)ϕ(x, y) → (∃f : N →c A)(∀n ∈ N)ϕ(f(n), f(n+ 1))

The next result is also easy and we will skip the proof, but it is important:

Theorem 10 (Markov’s Principle). For every formula ϕ(n),

rcr
{

(∀n ∈ N)[ϕ(n) ∨ ¬ϕ(n)] & ¬(∀n ∈ N)ϕ(n)
}

=⇒ (∃n ∈ N)¬ϕ(n).

Finally we verify the recursive C-realizability of a very general principle of
proof by induction on a wellfounded relation, which is the main tool that we
will use in the next section:

Theorem 11 (Proof by wellfounded induction). For each wellfounded relation
≺ ⊆ A×A and each formula ϕ(x),

rcr(∀x ∈ A)
[

(∀y ∈ A)[y ≺ x→ ϕ(y)] → ϕ(x)
]

→ (∀x ∈ A)ϕ(x). (15)

14

Proof. Assume again that (∀x ∈ A)ϕ(x) is a sentence. Using the convention (2)
to simplify notation, we need to define a recursive ε ∈ N such that for every γ,

(∀α ∈ |A|)
[

{γ}(α) cr(∀y ∈ A)[y ≺ α→ ϕ(y)] → ϕ(α)
]

=⇒ (∀α ∈ |A|)
[

{{ε}(γ)}(α) cr ϕ(α)
]

. (16)

Fix some γ which satisfies the hypothesis of (16). We will prove its conclusion
by induction on α, for an ε that we will define at the end of the argument (by
appealing to the Second Recursion Theorem 2) when we will need it to justify
the last step of the argument.

By the induction hypothesis, if β ≺ α, then, for any δ,

f0(ε, γ, β, δ) = {{ε}(γ)}(β) cr ϕ(β);

and so if f̂0 is any (recursive) code of f0 and

f1(ε, γ, β) = S(f̂0, ε, γ, β),

then {f1(ε, γ, β)}(δ) cr ϕ(β) for every β ≺ α, so that

f1(ε, γ, β) cr β ≺ α→ ϕ(β).

It follows that if f̂1 is a recursive code of f1 then

f2(ε, γ) = S(f̂1, ε, γ) cr(∀y ∈ A)[y ≺ α→ ϕ(y)],

and so by the hypothesis on γ,

f3(ε, γ, α) = {{γ}(α)}(f2(ε, γ)) cr ϕ(α).

So far we have not used any properties of ε, except for the induction hypothesis.
Now fix a (recursive) code f̂3 of f3 and choose ε by the Second Recursion
Theorem so that it is recursive and

{ε}(γ) = S(f̂3, ε, γ);

so {{ε}(γ)}(α) = f3(ε, γ, α) cr ϕ(α), which is what we needed to show.

The proof did not depend on any assumptions on the relation ≺ other
than that it is wellfounded, and so its constructiveness (and consequently the
constructive truth of (15)) may be in dispute.17 In any case, what we need
is an “internal” version of this result which justifies proof by backward (bar)
induction on a tree with no infinite paths, as follows:

17It seems to me that the proof of Theorem 11 is constructive, provided that by “≺ is
wellfounded” we understand precisely that propositions can be proved by induction along ≺ .

15

Theorem 12 (Proof by bar induction). For each formula ϕ(u),

rcr
{

T ∈ Tc(A) & ¬(∃f : N → A)(∀n)[f ↾n ∈ T]

& (∀u ∈ T)
[

(∀s)[u ⋆ (s) ∈ T → ϕ(u ⋆ (s))] → ϕ(u)
]}

→ (∀u ∈ T)ϕ(u),

where n varies over N and (∀u ∈ T)ψ :≡ (∀u ∈)<ωA[u ∈ T → ψ].

Proof. The idea is that if the hypothesis of the implication to be proved is C-
realizable for a given (value of the variable) T , then there are no infinite paths
through T and so the relation

u ≺ v ⇐⇒ u ∈ T & (∃s ∈ A)[u = v ⋆ (s)]

is wellfounded—which then allows us to construct a γ′ that C-realizes the con-
clusion by a notational variant of the proof of Theorem 11.18

4. The Separation Theorem for Σe 1

1
and Suslin’s Theorem

Let T
r be the intuitionistic theory with all true, recursively C-realizable

sentences as axioms. A proof of a sentence χ in T
r guarantees that χ is true,

but also recursively C-realizable by the basic Theorem 5. It is often much
easier to construct than a direct, messy definition of some ε which C-realizes
χ—especially as we can often give informal constructive proofs skipping the
(well understood) process of their formalization.

Proofs in T
r are a bit hard to explain, because they include “subroutines”

where we need to show, perhaps classically, that certain key propositions are
recursively realizable. We will try to mark clearly the points when we switch
between these two, different kinds of argument. In any case, we can appeal to
all the numbered theorems in the preceding section except for 8, the Extensional
Axiom of Continuous Choice, as well as to Proposition 6, which is an important
tool.

Let us first prove in T
r the “easy part” of Suslin’s Theorem.

Theorem (in T
r) 13. Every Borel subset of a product space X is ∆e 1

1.

Proof. With the notation of (CS8), let for A,B ∈ B↾X :

A ≺ B ⇐⇒ (∃ξ)[A ∈ Σe 0
ξ & B /∈ Σe 0

ξ] (A,B ⊆ X)

18The inference from ¬(∃f : N → A)(∀n)[f � n ∈ T] to “we can prove propositions by

induction along ≺ ” is not obviously valid constructively. Some intuitionists accept it if T is
a tree on N and we replace ¬(∃f)(∀n)[f �n ∈ T] by (∀f : N → A)(∃n)[f �n /∈ T], which is how
we will apply this result. The question is moot in the presence of Markov’s Principle which
implies the equivalence of these two properties of T when T ∈ T (N), and which we can use,
since it is recursively C-realizable. In any case, we only claim a classical proof of Theorem 12.

16

and verify (outside T
r) that this is a wellfounded relation on the Borel subsets

of X . So Theorem 11 applies, and it is enough to prove (in T
r) that

(∀A ∈ B]
[

(∀B ∈ B)[B ≺ A→ B ∈ ∆e 1
1] → [A ∈ ∆e 1

1]
]

. (17)

The key observation is that

rcr “for each A ∈ B, either A is open,

or A =
⋃

i(N \Ai) for a sequence of Borel sets such that Ai ≺ A”; (18)

this is true because if α is a Borel code of A, then A is open if α(0) = 0 (and
α∗ gives us an open code for it), or A is a union of Borel sets of “lower order”
if α(0) = 1, and then α∗ gives us a code of a sequence i 7→ Ai with the required
property. Using this, we can verify (17) (in T

r) by taking cases on A and using
the closure properties of ∆e 1

1 of Lemma 4 as in Corollary 7.

For the converse, more difficult direction of Suslin’s Theorem, it is convenient
to deal only with subsets of N , from which the general result can be easily
derived by standard methods. We show first the following, stronger result:19

Theorem (in T
r) 14 (Separation Theorem). If A,B are disjoint, Σe 1

1 subsets
of N , then there exists a Borel set C ⊆ N which separates A from B, i.e.,

(∀α ∈ N)[α ∈ A =⇒ α ∈ C] and ¬(∃α ∈ N)[α ∈ C & α ∈ B]. (19)

Proof.20 It is perhaps simplest to treat the separation relation as a primitive,

Sep(A,B,C) ⇐⇒ C separates A from B,

so we do not need to go into its definition in the constructive part of the proof,
but notice that

rcr Sep(A,B,C) ↔ (∀α ∈ N)[α ∈ A→ α ∈ C] & ¬(∃α ∈ N)[α ∈ C & α ∈ B].

With this understanding, the key is the following simple

Lemma. If for all i, j ∈ N, Ai, Bj are Σe 1
1 subsets of N and Ci,j is a Borel

set which separates Ai from Bj, then
⋃

i

⋂

j Ci,j separates
⋃

iAi from
⋃

j Bj .

It is quite easy and we will skip its proof.21

19Aczel (2009) proves a version of the Separation Theorem in constructive set theory by
analyzing the same proof of Lusin with which I am working here. The result is both interesting
and obviously relevant, but a precise comparison is difficult.

20This argument is somewhat different from the proof of Theorem 2E.1 in Moschovakis
(2009a), which uses definition by bar recursion rather than proof by bar induction. (That
argument can also be formalized in Tr , but it takes some extra work to formulate the principle
of definition by bar recursion and show that it is recursively C-realizable.)

21The Lemma holds for arbitrary Ai, Bj , of course. The restriction to Σe 1

1
subsets of N is

put in only so that we can formulate it in L, using the recursive operations of countable union
and countable intersection in Σe 1 and ∆e 1

1
, as in Corollary 7.

17

Now given two disjoint Σe 1
1 sets A,B ⊆ N , choose by (13) trees T, S on N

2

such that
A = p[T], B = p[S],

and let

J = {((t0, ξ0, η0), . . . , (tn−1, ξn−1, ηn−1))

| ((t0, ξ0), . . . , (tn−1, ξn−1)) ∈ T & ((t0, η0), . . . , (tn−1, ηn−1)) ∈ S}.

There is no infinite branch through J : because if (f ⋆ g ⋆ h) ∈ [J] with

(f ⋆ g ⋆ h)(i) = (f(i), g(i), h(i)),

then (f ⋆ g) ∈ [T] and (f ⋆ h) ∈ [S], so that f ∈ A ∩ B, contradicting the
hypothesis. So we can prove propositions by bar induction on J .

For each u = ((t0, ξ0, η0), . . . , (tn−1, ξn−1, ηn−1)) ∈ N
n, let

σ(u) = ((t0, ξ0), . . . , (tn−1, ξn−1)), τ (u) = ((t0, η0), . . . , (tn−1, ηn−1)),

so that
u ∈ J ⇐⇒ τ (u) ∈ T & σ(u) ∈ S,

and, in the notation of (CS5), set

Au = p[Tτ(u)], Bu = p[Sσ(u)],

and check (easily) that

Au =
⋃

t,ξ p[Tτ(u)⋆(t,ξ)], Bu =
⋃

s,η p[Sσ(u)⋆(s,η)].

The proposition that we will prove by bar induction is

(∀u ∈ J)[there exists a Borel set Cu which separates Au from Bu].

In view of the Lemma, it is then enough to show that if u ∈ J , then

for each tuple (t, ξ, s, η), there is a Borel set D which separates
p[Tτ(u)⋆(t,ξ)] from p[Sσ(u)⋆(s,η)];

if we can do this, then the Countable Axiom of Choice will give us a function

(t, ξ, s, η) 7→ Dt,ξ,s,η

such that Dt,ξ,s,η separates p[Tτ(u)⋆(t,ξ)] from p[Sσ(u)⋆(s,η)], and then the set

Cu =
⋃

t,ξ

⋂

s,η Dt,ξ,s,η

will separate Au from Bu as required.

To show the claim in italics, given (t, ξ, s, η):
(1) If t 6= s, take D = {α | α(n) = t}, where n = lh(u).

(2) If t = s and τ (u) ⋆ (t, ξ) /∈ T , take D = ∅.

(3) If s = t and σ(u) ⋆ (s, η) /∈ S, take D = N .

(4) If s = t and τ (u)⋆(t, ξ) ∈ T and σ(v)⋆(s, η) ∈ S, then u⋆(t, ξ, η) ∈ J , and
the induction hypothesis guarantees the existence of some D with the required
property.

18

Corollary (in T
r) 15 (Suslin’s Theorem). Every ∆e 1

1 subset of N is Borel.

Proof. The sentence

(∀A ∈ ∆e 1
1)[A ∈ Σe 1

1 & (N \A) ∈ Σe 1
1]

is recursively C-realizable, because of the coding of ∆e 1
1 ↾N . By the Separation

Theorem, there is a Borel set C such that A ⊆ C and C ∩ (N \ A) = ∅, and so
the proof will be complete if we can show

rcr
[

(∀α ∈ N)(α ∈ A→ α ∈ C) & ¬(∃α ∈ N)(α ∈ C & α ∈ (N\A))
]

→ A = C.

The (classical) proof of this is direct.

5. Comments and questions

Briefly, what we have done is to

(1) introduce a formal language L in which many of the propositions of
classical Descriptive Set Theory can be naturally expressed;

(2) define a realizability interpretation for L which is respected by intuition-
istic deductive reasoning; and

(3) derive the (effective) Suslin-Kleene Theorem by verifying that the (clas-
sical) Suslin Theorem can be proved intuitionistically from true, recursively
C-realizable hypotheses.

It has been argued, moreover, that the same method can be used to prove the
effective (uniform) versions of many classical results of descriptive set theory.

Is this a useful technical tool? The answer is clearly negative for those
who are not already familiar with intuitionistic logic—there is just too much
overhead. For those who know enough of it, however, so that they can recognize
whether an informal argument can be formalized in intuitionistic logic, it can,
indeed, be a powerful tool. At least for discovering results—which can then
be proved by effective transfinite induction, as Kleene called it, meaning that
the relevant applications of Theorem 11 are checked one-by-one, by separate
applications of the Second Recursion Theorem. This is the method used for
many, basic results in Chapter 7 of Moschovakis (2009a) and in much of Kleene’s
(and many others’) work on constructive ordinals and hyperarithmetical sets,
cf. Moschovakis (2010).

Is T
r a refinement of effective descriptive set theory? This was the claim

in the introduction, that the classical theory, properly understood, “yields the
uniformities which refine the statements of the classical results, and it also
provides constructive proofs that they do”. Well, a proof in T

r is exactly as
constructive as the proofs of the recursive C-realizability of the axioms it uses,
and these axioms fall (roughly) in three categories.

First, there are statements like (18) which are blatantly non-constructive
on their face, but whose recursive C-realizability is a direct (and evidently con-
structive) consequence of our choice of codings. I think that these are innocuous;

19

and the choice of codings which make these basic propositions obvious is at the
heart of the applicability of the method.

At the other extreme are statements like those in Lemmas 3, 4 and Proposi-
tion 6, where the proofs of C-realizability are blatantly classical. For example,
the claim that (Ac)c = A in the proof of Lemma 4 is (ultimately) justified
because

rcr(∀x ∈ A)(∀y ∈ B)[x ∈ y ↔ ¬¬(x ∈ y)]. (20)

This is a (classically) trivial consequence of our identifying C-realizability with
satisfiability for prime formulas, and there is no getting around it without chang-
ing the method radically.

Somewhere between these two extremes are statements like Theorem 11, the
basic Principle of Proof by Wellfounded Induction, where reasonable people may
reasonably differ on whether the proof of its C-realizability is constructive. (And
they are likely to fall in several camps, according to the specific wellfounded
relation ≺ .)

Taken with all its axioms no matter how they are established, T
r is obviously

not a constructive theory. It has, however, the “constructive feature” that it
can only prove effectively true ∀-∃ sentences—but I don’t have a good name for
this property of a theory.

What were they thinking? Borel and Lebesgue and Lusin and the others.
They thought of themselves as constructivists—and in some cases they say that,
explicitly; they rejected (also explicitly) some blatant applications of the Axiom
of Choice—like the existence of a function which assigns to each countable
ordinal ξ a wellordering in N with order type ξ; but they accepted the Countable
Axiom of Choice, the De Morgan rules for countable unions, and (I believe,
though I do not have a reference) the stability of membership (20). Moreover,
from reading them, one gets the feeling that their conception of sets and what
one does with them was robust, not the object of introspection or doubt. (Lusin,
for example, had apparently expressed the belief that co-analytic sets cannot be
“constructively” uniformized, but he accepted Novikoff’s proof of it even though
it is by no means elementary. The Novikoff-Kondo proof of Πe 1

1 uniformization
can be given in T

r, of course, and so it yields its effective version about Π1
1.)

I find the problem of understanding better the universe of classical descrip-
tive set theory and the logic of its practitioners fascinating, both historically
and (especially) mathematically, and it is my hope that the considerations of
this article may be relevant to it.

Acknowledgents. I thank Peter Aczel, Jeremy Avigad, Thierry Coquand, Ul-
rich Kohlenbach, Andre Scedrov, Jaap van Oosten, Michael Rathjen and Wim
Veldman, for useful comments on an early draft of this article, and I am espe-
cially grateful to my wife Joan Rand Moschovakis for listening patiently and
responding usefully to many questions (some of them not very coherent) on a
subject that she knows well and I do not. However, none of these kind peo-
ple vetted the final version, and it should not be assumed that any of them is

20

sympathetic to any “foundational views” that are expressed in it, explicitly or
implicitly.

References

Aczel, P., 2009. A constructive version of the Lusin Separation Theorem. In:
Logicism, Intuitionism and Formalism – What has become of them? Vol. 341
of Synthese Library. Springer, pp. 129–151.

Kleene, S. C., 1955a. Arithmetical predicates and function quantifiers. Transac-
tions of the American Mathematical Society 79, 312–340.

Kleene, S. C., 1955b. Hierarchies of number theoretic predicates. Bulletin of the
American Mathematical Society 61, 193–213.

Kuratowski, K., 1966. Topology. Vol. 1. Academic Press, New York and London,
translated from the French Topologie, vol. 1, PWN, Warsaw, 1958.

Moschovakis, Y. N., 1971. Classical descriptive set theory as a refinement of
modern hierarchy theory, abstract #690-e10. Notices of the American Math-
ematical Society, 1088.

Moschovakis, Y. N., 2009a. Descriptive set theory, Second edition. Vol. 155 of
Mathematical Surveys and Monographs. American Mathematical Society.

Moschovakis, Y. N., 2009b. Kleene’s amazing second recursion theorem (ex-
tended abstract). In: Grädel, E., Kahle, R. (Eds.), CSL 2009. No. 5771 in
Lecture Notes in Computer Science. Springer-Verlag, Berlin - Heidelberg, pp.
24–39.

Moschovakis, Y. N., 2010. Kleene’s amazing second recursion theorem. The
Bulletin of Symbolic Logic 16, 189 – 239.

Rathjen, M., 2005. Constructive Set Theory and Brouwerian Principles. Journal
of Universal Computer Science 11, 2008–2033.

Suslin, M., 1917. Sur une definition des ensembles measurables B sans nombres
transfinis. Comptes Rendus Acad. Sci. Paris 164, 88–91.

21

