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1 Introduction

Formal models of epistemic compromise have various fundamental appli-
cations. For instance, agents may construct a compromise of their opinions
to guide their collective action. Recent literature on disagreement has also
focused on questions about epistemic compromise: when you find your-
self disagreeing with an epistemic peer, under what circumstances, and to
what degree, should you change your credence in the disputed proposi-
tion? Elga 2006 and Christensen 2007 say you should compromise often
and deeply; Kelly 2007 disagrees. But these authors leave open another
question: what constitutes a perfect compromise of opinion?

In the disagreement literature, it is sometimes assumed that if we as-
sign different credences ca and cb to a proposition p, we reach a perfect
compromise by splitting the difference in our credences. In other words: to
adopt a perfect compromise of our opinions is to assign credence .5(ca + cb)
to p. For instance, Kelly 2007 says that when peers assign .5 and .7 to a
proposition, to adopt a compromise is to “split the difference with one’s
peer and believe the hypothesis to degree .6” (19).1

But why does .6 constitute a perfect compromise? Of course, .6 is the
arithmetic mean of .5 and .7. But why must a compromise of agents’ opin-
ions always be the arithmetic mean of their prior credences? In other cases

1. See Christensen 2007, Joyce 2007, and Weatherson 2007 for further recent references
to compromising by splitting the difference.



of compromise, we do not simply take it for granted that the outcome that
constitutes a perfect compromise is determined by the arithmetic mean
of quantities that reflect what individual agents most prefer. Suppose we
are running partners, and I want to run one mile, while you want to run
seven. Running four miles may not be a perfect compromise, especially
if I strongly prefer running one mile over running four, while you only
slightly prefer running farther.

The moral of this paper is that the same sort of situation may arise in
purely epistemic cases of compromise, cases in which each agent prefers
having certain credences over others and this preference is grounded in
purely epistemic concerns. Suppose I strongly prefer assigning .1 credence
to a disputed proposition, while you weakly prefer credences around .7.
In this kind of case, we may reach a perfect compromise by converging on
some shared credence lower than .4. More generally, the moral is: splitting
the difference may not constitute a perfect compromise when agents who
have different credences also have different epistemic values.

To make this moral precise, we need a precise understanding of how an
agent may value certain credences over others, in a purely epistemic sense.
I take an agent’s scoring rule to measure how much she epistemically val-
ues various alternative credences she might assign a given proposition.
It is natural to suppose that agents should assess just this kind of value
when they construct a compromise of their opinions, as they evaluate al-
ternative credences in order to judge how much they would prefer certain
consensus opinions over others. So using scoring rules, we can develop a
natural alternative to the strategy of compromising by splitting the differ-
ence: agents may compromise by coordinating on the credences that they
collectively most prefer, given their epistemic values.

I have two main aims in this paper: to develop this alternative strategy,
and to argue that this strategy governs how agents should compromise. In
§2, I fill in formal background, defining the notion of a scoring rule and
introducing relevant properties of these epistemic value functions. In §3,
I use scoring rules to develop the alternative strategy for compromising
that I defend. In §4, I compare my alternative strategy with the traditional
strategy of splitting the difference. I characterize the situations in which
the two strategies coincide, and those in which they differ. In §5, I argue
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that where the strategies do yield different recommendations, compromis-
ing by maximizing epistemic value is a reasonable strategy. Finally, in §6,
I discuss a range of applications of the strategy I defend.

2 Scoring rules

In assigning a particular credence to a proposition, you are estimating
its truth value. In a purely epistemic sense, closer estimates are better.
Having .8 credence in a truth is better than having .7 credence, and having
.9 credence is better still.2

How much better? Different agents may value closer estimates differ-
ently. For instance, suppose you care a lot about your credences as they
approach certainty. In this case, you may value having .9 credence in a
truth much more than having .8 credence, without valuing .6 much more
than .5. Or suppose you do not particularly care about having credences
that approach certainty, as long as your beliefs are on the right track. In
that case, you may equally value .9 and .8 credence in a truth, and equally
value .2 and .3 credence in a falsehood.

Facts like these are traditionally modelled by an agent’s scoring rule, a
record of how much she values various estimates of truth values.3 For-
mally, a scoring rule f is a pair of functions f1, f0 from [0, 1] to R. In-
tuitively, the first function, f1(x), measures how much you value having
credence x in a proposition that turns out to be true. For instance, if you
value having .9 credence in a true proposition much more than having .8
credence, without valuing .6 much more than .5, then the first function f1

of your scoring rule will reflect this preference:

[ f1(.9)− f1(.8)] > [ f1(.6)− f1(.5)].

2. For further discussion of the notion of credences as estimates, see Jeffrey 1986 and
Joyce 1998. For further discussion of the notion of purely epistemic value, compare the
value of having accurate credences with the more familiar value of having true beliefs,
as discussed in Alston 2005 and Lynch forthcoming.

3. Scoring rules were independently developed by Brier 1950 and Good 1952 to measure
the accuracy of probabilistic weather forecasts. Savage 1971 uses scoring rules to assess
forecasts of random variables, and treats assignments of credence to particular events
as a special case of such forecasts. For more recent literature using scoring rules to
assess credences, see Gibbard 2006, Joyce 1998, and Percival 2002.
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Meanwhile, the function f0(x) measures the value of having credence x
in a proposition that turns out to be false. For instance, if it makes no
difference whether you have .2 or .3 credence in a falsehood, then the
second function f0 of your scoring rule will have equal values on these
credences: f0(.2) = f0(.3).

Now we can formally model the statement we started with, namely
that closer estimates of truth value are better, i.e. more valuable to you.
Formally speaking, closer estimates of the truth value of propositions that
turn out to be true are more valuable to you when your scoring rule f1(x)
is strictly increasing, and closer estimates of the truth value of falsehoods
are more valuable when f0(x) is strictly decreasing.

Taken together, your scoring rule and your actual credence in a prop-
osition p determine the expected epistemic value of your having a particular
credence in p. Suppose you actually have credence α in p. Then your
expected epistemic value of having some other credence x in p is just a
weighted sum of the value you assign to having credence x in p if p is
true, and to having credence x in p if p is false:

ev(x, α, f1, f0) =df α f1(x) + (1− α) f0(x)

The function of a scoring rule is to record how much value you assign to
various credences, including those other than your own. Note that even
if you and another agent have the same scoring rule, you may well assign
your own credence in p a greater expected epistemic value than you assign
her credence, given your own assessment of how likely it is that p is true.

Moreover, you may even assign your own credence in p a greater ex-
pected value than you assign any alternative credence. If this is always the
case, then your scoring rule is credence-eliciting. In other words, your scor-
ing rule is credence-eliciting when no matter what credence you assign to
a proposition p, assigning that credence maximizes the expected value of
your credence in p. In other words, you always do the best you can by
your own lights by assigning p the credence that you do.

So far I have talked only about the value of having a particular cre-
dence in a single proposition. Using your scoring rule and your current
credence in a proposition, I have said how we can calculate the expected
value of your having various alternative credences in that proposition. Be-

4



fore applying scoring rules to cases of compromise, I should define one
more useful measure: the expected value of your having a particular cre-
dence distribution over an algebra of many propositions. It is relatively
simple to come up with a natural measure of expected value for credence
distributions. Roughly, we can compute the expected value of your hav-
ing several credences in separate propositions by simply summing up the
expected value of your having each of those individual credences.

Formally, let Γ be your actual credence distribution over some algebra
P, and let Q be the set of the atomic propositions of P, i.e. the strongest
propositions in P that together form a partition of the space of all pos-
sible worlds. Let D be any prospective credence distribution over the P
propositions. It is natural to define the expected value of having credence
distribution D over P as the sum of the expected values of having the
credences assigned by D to the atomic propositions of P:

ev(D, Γ, f1, f0) =df ∑
qi∈Q

ev(D(qi), Γ(qi), f1, f0)

In other words, the expected value of a credence distribution is the sum of
the expected values of the credences it assigns to atomic propositions.

To take a simple example, suppose you only have opinions about a
single proposition p. Then your credence distribution is defined over an
algebra with atomic propositions p and ¬p. The expected value of your
having any alternative credence distribution D over this algebra is simply
the sum of the expected value of your having credence D(p) in p and
credence D(¬p) in ¬p.

3 Compromise beyond splitting the difference

I said above that as long as your scoring rule is credence-eliciting, you
prefer your credence in p to any other. That is, as long as your rule is
credence-eliciting, your scoring rule will never dictate that you should
change your credence in a proposition to another credence with greater
expected epistemic value. It is widely accepted that this means that if you
are rational, you must have a credence-eliciting scoring rule.4 Otherwise,

4. See Oddie 1997, Joyce 1998 and Gibbard 2006 for further discussion.
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your scoring rule could motivate you to raise or lower your credences ex
nihilo, in the absence of any new evidence whatsoever.

For this reason, how rational agents value alternative credences in a
proposition is rarely of practical relevance. Of course, your scoring rule
affects how well you think other agents are doing, by affecting the expected
value you assign to their credences. But if you are rational, you never value
another credence more than your own. So your valuing of non-actual
credences will never influence your behavior. In ordinary circumstances, it
will even be hard to tell exactly which credence-eliciting scoring rule you
have.

However, cases of compromise provide a practical application for the
notion of a scoring rule. Scoring rules are practically relevant when agents
have to assess the epistemic value of alternative credences in a proposition.
Cases of compromise call for exactly this. Compromising agents must
pick a credence to coordinate on. In doing so, they have to assess the
epistemic value of alternative credences, if they are to determine which
shared credence they most prefer.

This points the way to an alternative strategy for constructing a com-
promise of agents’ opinions: maximizing expected epistemic value. Suppose
we assign different credences to some proposition p, but we must construct
a credence that constitutes the compromise of our opinions. The follow-
ing seems like a natural strategy: choose our consensus credence in p to
maximize the average of the expected values that we each assign to alter-
native credence distributions over the algebra with atomic propositions p
and ¬p.5

For instance, suppose you have credence distribution A and I have
credence distribution B, and suppose that you score credences with f1 and
f0, and I score them with g1 and g0. Then we should compromise by
choosing the credence distribution D that maximizes:

aev(D, A, f1, f0, B, g1, g0) =df
1
2
[ev(D, A, f1, f0) + ev(D, B, g1, g0)]

5. In order to implement this strategy, we need only assess the epistemic value of cre-
dence distributions over simple four-element algebras; the equivalence results I give
are restricted to compromises within this relevant class of credence distributions.
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This is our alternative compromise strategy: rather than just splitting the
difference between their credences, we may compromise by maximizing
the average of the expected values we give to our consensus credence dis-
tribution.6

I intend to remain neutral on questions central to the current literature
on disagreement. In other words, I remain neutral on whether epistemic
peers should each trade in their prior credences for a perfect compromise
of their opinions. I am arguing that regardless of how we wish to settle this
question, splitting the difference should not necessarily constitute a perfect
compromise. For those engaged in the disagreement literature, deciding
what constitutes a perfect compromise is just the beginning. For instance,
those who think peers’ opinions should converge on some consensus must
also decide: once peers choose a consensus credence, how exactly should
they revise their prior credence distributions to adopt that credence in the
disputed proposition? In particular, how might their credences in non-
disputed propositions change? I will set this question aside, though see
Fitelson & Jehle 2007 for further discussion.

In the next section, I demonstrate that agents who compromise by
maximizing epistemic value rarely end up simply splitting the difference
in their credences. Suppose you meet agents with exactly the same cre-
dences, but with different scoring rules. If you were to compromise with
each agent individually, you may end up constructing different consensus
opinions with each of them, even if your scoring rule is credence-eliciting.
This means that if an agent compromises with others by maximizing ex-
pected epistemic value, her behavior will carry a lot of information about
her scoring rule. In other words, we have discovered that a way in which
rational agents value alternative credences can be a matter of practical rel-
evance. Hence cases of compromise give us valuable motivation for study-
ing scoring rules: as I will argue, they are cases in which previously inert

6. There are several properties we might wish for in a procedure for aggregating cre-
dences; it is notoriously difficult to find a procedure that is satisfactory in all respects.
See French 1985 for a discussion of impossibility results, and Genest & Zidek 1986 for
a canonical overview and bibliography of the consensus literature. Shogenji (2007) and
Fitelson & Jehle (2007) draw on this literature to present challenges for the strategy of
splitting the difference. I will set aside traditional debates about judgment aggregation
in order to focus on the relevance of scoring rules to norms governing compromise.
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differences in scoring rules make for real differences in what compromis-
ing agents should do.

4 Comparing compromise strategies

In some cases, our alternative strategy yields a traditional recommenda-
tion. In particular, when agents share a credence-eliciting scoring rule, they
maximize the average expected value of their consensus credence distribu-
tion by simply splitting the difference between their credences. For exam-
ple, suppose we value prospective credences using the Brier score:7

f0(x) = 1− x2

f1(x) = 1− (1− x)2

Suppose you have .7 credence in p and I have .1 credence. The Brier score
is a credence-eliciting scoring rule. Hence to maximize the average of our
expected values for prospective shared credence distributions, we should
compromise by giving .4 credence to p.

Sometimes agents pursue a perfect compromise, one that is as fair and
even as possible. But agents may also pursue an imperfect compromise,
one that favors some agents more than others. For example, when an ex-
pert and an amateur disagree, they may elect to compromise in a way that
favors the expert’s original opinion. One traditional strategy for gener-
ating an imperfect compromise is to take a weighted arithmetic mean of
agents’ original opinions.8 For example, an amateur may give the prior
opinion of an expert four times as much weight as his own. Then if the
expert initially has .1 credence in p and the amateur has .7 credence, they
may compromise at .8(.1) + .2(.7) = .22.

Our alternative compromise strategy can also be extended to cases of
imperfect compromise. In a case of imperfect compromise, agents may
maximize a weighted arithmetic mean of the expected values they give to

7. Strictly speaking, traditional scoring rules measure the inaccuracy of a credence, and
hence the disvalue of having that credence. For instance, Brier 1950 scores credences
using the rule f0(x) = x2, f1(x) = (1− x)2. For simplicity, I follow Gibbard 2006 in
using versions of scoring rules that measure positive epistemic value.

8. For instance, see the discussion of epistemic deference in Joyce 2007.
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their consensus credence distribution. Furthermore, the above equivalence
result extends to cases of imperfect compromise. In the general case: when
agents share a credence-eliciting rule, they maximize the weighted average
of the expected values they give to their consensus credence distribution
when the consensus is the same weighted average of their prior credences.9

It follows that when agents share a credence-eliciting scoring rule, they
maximize the exact average of their expected epistemic values by exactly
splitting the difference between their prior credences.

Hence in some cases, including cases of imperfect compromise, split-
ting the difference and maximizing expected value coincide. But it is not
hard to see that in principle, these strategies could yield different results.
Sometimes agents who disagree about what is practically valuable do not
maximize their expected utility by splitting the difference between their
most preferred outcomes, as in the case where I want to run one mile and
you want to run seven. Similarly, agents who disagree about what is epis-
temically valuable do not always maximize expected epistemic value by
splitting the difference in their credences.

For instance, agents with different scoring rules may not maximize
expected epistemic value by splitting the difference. Suppose you value
prospective credences using the Brier score, and I value them using the
following credence-eliciting rule:

g0(x) = x + log(1− x)

g1(x) = x

Suppose you have .7 credence in p and I have .1 credence. Even though
our scoring rules are each credence-eliciting, our perfect compromise is
asymmetric: in constructing a compromise, we maximize our expected
epistemic value by choosing a consensus credence of approximately .393,
not by splitting the difference.10

Even when agents share a scoring rule, they may not maximize ex-
pected epistemic value by splitting the difference in their credences. For
example, suppose we both value prospective credences using the following

9. See Corollary of appendix for proof.

10. See Example 1 of appendix for details.
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“Brier cubed” score:

h0(x) = 1− x3

h1(x) = 1− (1− x)3

Suppose you have .7 credence in p and I have .1 credence. Then our per-
fect compromise is again asymmetric: in constructing a compromise, we
maximize our expected epistemic value by choosing a consensus credence
of approximately .449.11

This value has an interesting property: it is exactly what an agent using
the Brier cubed score would assign to p to maximize the expected value
of her new credence distribution, if she started with precisely .4 credence
in p.12 This is no coincidence: whenever agents share a scoring rule, they
maximize the average of their expected values for prospective credence dis-
tributions by picking the distribution that has maximal expected value for
an agent with their same scoring rule and the average of their credences.
Furthermore, this claim extends again to a result about weighted averages
of agents’ expected epistemic values. That is, agents who share a scor-
ing rule can maximize a given weighted arithmetic mean of their expected
values for consensus credence distributions by following a straightforward
rule; namely, they should choose the credence distribution that a hypothet-
ical agent would most prefer, if she shared their scoring rule, and if her
credence in p were just that same weighted arithmetic mean of their actual
credences.13

This final result incorporates many results given so far. Compromising
agents maximize the weighted average of their expected values by choos-
ing the credence distribution preferred by an agent with the same weighted
average of their credences. In the special case where compromising agents
share a credence-eliciting rule, the hypothetical agent with that rule would
most prefer her own credence. So agents sharing a credence-eliciting rule
should compromise at the weighted average of their actual credence dis-
tributions. If the compromising agents pursue a perfect compromise, they

11. See Example 2 of appendix for details.

12. See Example 3 of appendix for details.

13. See Theorem of appendix for proof.
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maximize their expected epistemic value by splitting the difference in their
credences. On the other hand, we have seen that there are a number of
cases in which our alternative compromise strategy comes apart from split-
ting the difference. Now all we need is a principled defense of the former
strategy.

5 Norms governing compromise

In order to understand how compromising agents should be influenced
by their epistemic value functions, we must first understand how a single
agent should be influenced by her own epistemic values. In the literature
on scoring rules, several theorists have addressed the latter question. Our
aim is to generalize their suggestions to norms governing multiple agents
at once.

It is generally accepted that on pain of irrationality, a single agent must
aim to maximize the expected epistemic value of her credences.14 For
example, Percival 2002 compares epistemic value with practical utility:

Cognitive decision theory is a cognitive analog of practical decision
theory... Bayesian decision theory holds that a rational agent...maximise[s]
expected utility. Similarly, Bayesian cognitive decision theory holds
that a rational cogniser...maximise[s] expected cognitive utility. (126)

In the same vein, Oddie 1997 says that scoring rules measure “a (pure)
cognitive value which it is the aim of a rational agent, qua pure inquirer,
to maximize” (535).

How can we extend this condition to a norm that applies to compro-
mising agents? It is useful to first consider the following single agent case:
suppose an evil scientist tells you he is going to perform an operation to
change your credence in a certain proposition p, which you currently be-
lieve to degree .7. The scientist gives you a choice: after the operation, you
may have either .6 or .8 credence in p. On pain of irrationality, you should
choose whichever credence has the greater expected epistemic value. In
general, if you are forced to adjust your credence in p, so that your new

14. Or at least she must maximize expected epistemic value, given that her epistemic values
are themselves rationally permissible, e.g. credence-eliciting. See Percival 2002 for
further discussion.

11



credence satisfies certain constraints, you should choose the alternative
credence with the greatest expected epistemic value for you.

Cases of compromise are relevantly similar. In order to adopt a com-
promise of their prior opinions, agents are forced to adjust their credences
in p so that they satisfy certain constraints. Only in cases of compromise,
these constraints are defined extrinsically rather than intrinsically; namely,
their adjusted credences must be equal to each other. In this situation,
agents should choose the alternative credences with the greatest possible
expected epistemic value for them.

In saying precisely how agents should construct a compromise of their
opinions, it is useful to see that we face an analogous question when we
extend norms governing expected practical utility to cases of practical com-
promise. Suppose we are deciding where to go for dinner. Based on my
credences and practical utilities, I slightly prefer Chinese. Based on your
credences and practical utilities, you strongly prefer Indian. Our natural
response to the situation is that your stronger preference matters more: we
should maximize the average of our expected utilities by choosing Indian.
Roughly the same principle governs many reasonable voting systems. Ev-
ery voter—however informed or uninformed—decides which outcome he
thinks is most likely to make him the most satisfied. His vote reflects his
expected utilities, and the election outcome reflects the average of many
agents’ expected utilities.

I do not mean to suggest that maximizing average expected utility is
an ideal decision procedure. But in many situations, maximizing average
expected utility is an intuitively reasonable method of deciding what to
do when we have different practical utility functions and want to choose a
maximally fair action. Epistemic value is the cognitive analog of practical
utility. So we need good reason not to use the same method when deciding
what to believe, when we have different epistemic utility functions and
want to choose a maximally fair credence. In other words, we need good
reason to avoid aggregating epistemic preferences in the way we generally
aggregate practical preferences. It is not as if we must weigh practical and
epistemic utilities in deciding what credence to assign: in epistemology
contexts, epistemic values—encoded in scoring rules—are the only values
at issue.
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One additional reason to prefer the alternative strategy is that agents
who compromise by maximizing the average of their expected epistemic
values will never both prefer an alternative shared credence. Other com-
promise strategies—including most strategies that make no reference to
epistemic value—could in principle lead agents to compromise on one
credence when there is an alternative that both agents would indepen-
dently prefer. And that kind of prescription would sit uncomfortably with
the norm that every agent should independently aim to maximize her ex-
pected epistemic value. If epistemic values should influence an individual
in isolation, they should continue to influence her when she compromises
with others. The compromise strategy I have developed is an intuitive way
of extending accepted norms governing single agents to norms governing
compromise.

6 Further applications

In many situations, it is useful to determine not only what we each indi-
vidually believe, but what we collectively believe. I have defended a way
of understanding the latter. On this understanding, what we collectively
believe is what we most value, in a purely epistemic sense. But I have re-
mained neutral on the question of how disagreeing peers should update.
Suppose that we are disagreeing peers. Let us grant that we should come
to have the same beliefs. It is still a further question whether what you
should come to believe—and what I should come to believe—is what we
collectively believe, in the sense I have defined.

If disagreeing peers must adopt a single credence, then adopting what
they collectively believe seems like a reasonable choice. But even for those
who are skeptical about this potential application of the alternative com-
promise strategy, cases of compromise are not limited to cases in which
disagreeing agents trade in their prior credences for matching ones. Sev-
eral other epistemic situations call for compromising strategies, including
some situations involving many agents, and some involving just one.

Even when disagreeing agents retain their individual credences in a
proposition, they may still need to act based on a collective opinion. Dis-
agreeing gamblers may need to decide how much of their shared income
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to bet on a certain horse. Disagreeing weather forecasters may need to
report a single opinion to their employers at the radio station.

In another kind of case, disagreeing agents might not willingly trade
in their credences, but might still be forced to compromise. For instance,
suppose an evil scientist tells us he is going to perform an operation to
force us to have the same credence in a certain proposition, and that we
can choose only what our new credence will be. I argued earlier that an
individual should ask the scientist for whatever alternative credence has
the greatest expected epistemic value. Similarly, we should ask for what-
ever alternative credence maximizes the average of our expected epistemic
values. Recall that if we compromise by splitting the difference in our cre-
dences, we might end up compromising at one credence when we would
both prefer another. It is hard to see how such a compromise strategy
could be rationally obligatory.

Strategies for compromise are also relevant to single agents in compli-
cated epistemic situations. For instance, an agent may use a compromise
strategy when updating his credence distribution in light of probabilistic
evidence, in the sense of Jeffrey 1968. Intuitively, we can get conflicting
probabilistic evidence. Suppose a certain screeching bird looks .8 likely to
be a bald eagle, but sounds only .6 likely to be a bald eagle. If you had only
seen the bird, it would have been clear how to respond: give .8 credence
to the proposition that it is a bald eagle. If you had only heard the bird,
it would have been rational to give exactly .6 credence to this proposition.
But what credence should you assign in the face of conflicting evidence?

In cases where your visual and aural evidence conflict, your scoring
rule may determine how you should combine them. Here is a procedure:
suppose there are two agents with exactly your credences, except that one
agent updates only on your visual evidence, and the other only on your
aural evidence. Determine how those agents would perfectly compromise
their opinions. Update by accepting their consensus opinion as your own.
To take another example, suppose one weather forecaster says it is .6 likely
to rain, and an equally trustworthy forecaster says it is .8 likely. In this case,
you may update by maximizing the average of the various expected values
you would assign to prospective credence distributions, after updating on
information from only one of the forecasters.
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Finally, some concerns raised in Elga 2007 demonstrate that strategies
for compromise may also be relevant to agents with imprecise credences.
Elga has a negative conclusion in mind: he aims to demonstrate that if an
agent is rational, her credences must be perfectly precise. I am sympathetic
with Elga’s conclusion, but the arguments needed to establish this claim
are more complicated than Elga suggests.

For simplicity, let us suppose that we can represent the belief state of
an agent with imprecise credences by a set of probability measures.15 Elga
assumes that an agent with imprecise credences may rationally refuse a
bet which is acceptable from the point of view of some but not all prob-
ability measures in the set of measures representing her belief state.16 In
other words, if we think of an agent with imprecise credences as if she had
a mental committee of agents with precise credences, she may refuse any
bet which is unacceptable to any member of her mental committee. But
because an agent with imprecise credences may rationally refuse such a
large variety of bets, she may rationally refuse a sequence of bets that pro-
vides her with an opportunity to win sure money. Foregoing sure money
is irrational behavior. So a rational agent must have precise credences.

One response to Elga’s argument is that an agent’s refusing certain bets
constrains what other bets she may rationally refuse.17 Here is another
response: we should take seriously the suggestion to think of an agent
with imprecise credences as if she had a mental committee of agents with
precise credences. Such an agent should act in whatever ways a committee
should. Elga says that if your mental committee is not unanimously in
favor of refusing a bet, “the natural thing to say is that rationality counts
the bet as optional for you” (7). But it does not really seem so natural
to think that a committee may refuse any bet, as long as just one of its
members should prefer to do so. It is more natural to think that in choosing
whether to refuse bets, a group should use some compromise strategy to
construct a common credence distribution, and then act on the basis of this

15. See for instance Tintner 1941, Smith 1961, Levi 1980, Jeffrey 1983, Joyce 2005, van

Fraassen 2006.

16. Several advocates of imprecise credences endorse this “conservative” betting strategy.
See Williams 1976, Kaplan 1996, Walley 1991, and an extensive catalog of ongoing
research at http://www.sipta.org.

17. Elga 2007 addresses this response. I will set it aside here.
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constructed opinion. So I challenge Elga’s premise: a rational agent with
imprecise credences may not rationally refuse any bet which is acceptable
from the point of view of only some members of her mental committee.
By acting on a compromise of her mental committee’s opinions, a rational
agent could be rationally compelled to accept sequences of bets that let her
win money, come what may.

Elga briefly considers the possibility that agents with imprecise cre-
dences may still be rationally obliged to accept or refuse any particular
bet. He suggests that on such a proposal, “the interval-valued probabil-
ities do little, since they “collapse down” to ordinary point-valued prob-
abilities when it comes to imposing constraints on rational action” (8).
I think this response is too quick. For instance, suppose that an agent
with imprecise credences updates by “point-wise” conditionalization. In
other words, suppose that on receiving some evidence, she updates the
set of probability measures representing her belief state by conditionaliz-
ing each measure on the evidence received. Furthermore, suppose she has
a single credence-eliciting scoring rule, and so acts according to a com-
promise of the opinions of her mental committee members, all of whom
share a credence-eliciting scoring rule. Then she will act according to an
arithmetic mean of her committee members’ credence distributions.18 But
taking an arithmetic mean of several distributions does not commute with
conditionalizing those distributions on a given proposition. So this kind
of agent with imprecise credences will act at each stage as if she has a pre-
cise credence distribution, but will not act over time as if she has a precise
credence distribution that she updates by conditionalization.

This result contradicts Elga’s suggestion that if an agent with imprecise
credences faces stringent obligations to accept or reject particular bets, her
credences may as well be precise “when it comes to imposing constraints
on rational action.” But the result is friendly towards Elga’s overall con-

18. Here I take an agent’s belief state to be represented by a finite set of measures. In this
case, the above result follows from the Corollary proved in the appendix. Representing
an agent’s belief state by an infinite set of measures highlights an additional problem:
how to parameterize the space of her committee’s distributions when calculating their
arithmetic mean. This problem resembles Bertrand’s paradox, and some theorists treat
credences as imprecise chiefly in order to avoid paradoxes of this kind. Such theorists
have an additional reason to reject the betting strategy currently under consideration.
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clusion. I have argued that as long as an agent has a single scoring rule
and updates by “point-wise” conditionalization, she will not act as if she is
updating a single precise credence distribution by conditionalization. For
instance, she will be subject to diachronic Dutch Books.19 If that means
she is irrational, then we already have a limited version of the conclusion
Elga is after, and the beginnings of a general result about the irrationality
of imprecise credences.20

19. See Teller 1973, Lewis 1999.

20. Thanks to Vann McGee, Bob Stalnaker, Roger White, and the 2008 MITing of the Minds
Conference for helpful feedback on earlier versions of this paper.
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7 Appendix

Example 1. Running the following Mathematica notebook verifies that
agents with different credence-eliciting scoring rules may not maximize
the average of their expected epistemic values in an alternative credence
distribution by splitting the difference in their credences.

b1[x_] := 1 - (1 - x)^2; b0[x_] := 1 - x^2
l1[x_] := x; l0[x_] := x + Log[1 - x]
ev[x_, m_, f1_, f0_] := (m*f1[x]) + (1 - m)*f0[x]
CDev[x_, m_, f1_, f0_]

:= ev[x, m, f1, f0] + ev[(1 - x), (1 - m), f1, f0]
avgCDev[x_, m_, m1_, m0_, n_, n1_, n0_]

:= .5 (CDev[x, m, m1, m0] + CDev[x, n, n1, n0])
Maximize[{avgCDev[x, .7, b1, b0, .1, l1, l0], 0 <= x <= 1}, x]

For an agent with the Brier score and credence .7 in p, and an agent with
scoring rule l1, l0 and credence .1 in p, having approximately credence
.392965 in p maximizes expected epistemic value:

{0.924402, {x -> 0.392965}}.

Example 2. Running the previous notebook with the following additions
verifies that agents with non-credence-eliciting scoring rules may not max-
imize the average of their expected epistemic values in an alternative cre-
dence distribution by splitting the difference in their credences.

c1[x_] := 1 - (1 - x)^3; c0[x_] := 1 - x^3
Maximize[{avgCDev[x, .7, c1, c0, .1, c1, c0], 0 <= x <= 1}, x]

For agents who share the Brier cubed score and have credences .7 and
.1 in p, having approximately credence .44949 in p maximizes expected
epistemic value:

{1.75755, {x -> 0.44949}}.

Example 3. Running the previous notebook with the following addition
verifies that the credence distribution preferred by agents sharing a scoring
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rule in Example 2 is the credence distribution a hypothetical agent would
prefer, if she shared that same scoring rule and had the arithmetic mean
of their credences:

Maximize[{CDev[x, .4, c1, c0], 0 <= x <= 1}, x]

For an agent with the Brier cubed score and credence .4 in p, having ap-
proximately credence .44949 in p maximizes expected epistemic value:

{1.75755, {x -> 0.44949}}.

Theorem. If a finite number of agents each use a scoring rule that dif-
fers by no more than a constant from a single “shared” scoring rule, then
they maximize the weighted average of the expected values they give to a
consensus credence distribution by choosing the distribution that a hypo-
thetical agent with their shared scoring rule would prefer, if she were to
have that same weighted average of their credences.21

Proof. Let us say there are n agents, and that for all i ∈ [1, n], the ith agent
uses scoring rule gi

1, gi
0 and has credence distribution δi over the algebra

with atomic propositions p and ¬p.
There exist coefficients ci such that 1 = ∑n

i=1 ci and such that the fol-
lowing is the weighted average of the expected epistemic values that the
compromising agents give to a consensus credence distribution D over the
algebra with atomic propositions p and ¬p:

waev(D, δ1, g1
1, g1

0, . . . , δn, gn
1 , gn

0 )

=
n

∑
i=1

ciev(D, δi, gi
1, gi

0)

=
n

∑
i=1

[ciev(D(p), δi(p), gi
1, gi

0) + ciev(D(¬p), δi(¬p), gi
1, gi

0)]

=
n

∑
i=1

ciev(D(p), δi(p), gi
1, gi

0) +
n

∑
i=1

ciev(D(¬p), δi(¬p), gi
1, gi

0)

21. This result is restricted to credence distributions over four-element algebras, since de-
termining how agents should compromise on such simple credence distributions is
sufficient to determine how agents should compromise when they assign different cre-
dences to a single proposition. See footnote 5.
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By supposition, there is a scoring rule f1, f0 such that for any i ∈ [1, n],
there are constants ki, li ∈ R such that gi

1 = f1 + ki and gi
0 = f0 + li. So we

can reduce the first summand as follows:

n

∑
i=1

ciev(D(p), δi(p), gi
1, gi

0)

=
n

∑
i=1

ci[δi(p)( f1(D(p)) + ki) + (1− δi(p))( f0(D(p)) + li)]

=
n

∑
i=1

ciδi(p) f1(D(p)) +
n

∑
i=1

ci(1− δi(p)) f0(D(p)) +
n

∑
i=1

ci[δi(p)ki + (1− δi(p))li]

=
n

∑
i=1

ciδi(p) f1(D(p)) + (1−
n

∑
i=1

ciδi(p)) f0(D(p)) +
n

∑
i=1

ci[δi(p)ki + (1− δi(p))li]

This function is simply the sum of the constant ∑n
i=1 ci[δi(p)ki +(1− δi(p))li]

and the expected value that an agent with the scoring rule f1, f0 gives to
credence D(p) in p, when she has credence ∑n

i=1 ciδi(p) in p.
Similarly, the second summand, ∑n

i=1 ciev(D(¬p), δi(¬p), gi
1, gi

0), is the
sum of the constant ∑n

i=1 ci[δi(¬p)ki + (1 − δi(¬p))li] and the expected
value that an agent with the scoring rule f1, f0 gives to having credence
D(¬p) in ¬p, when she has credence ∑n

i=1 ciδi(¬p) in ¬p.
The hypothetical agent has credence ∑n

i=1 ciδi(¬p) in ¬p just in case
her credence C(p) in p is as follows:

C(p) = 1− C(¬p)

= 1−
n

∑
i=1

ciδi(¬p)

=
n

∑
i=1

ci −
n

∑
i=1

ci(1− δi(p))

=
n

∑
i=1

ciδi(p).

So the second summand is the sum of a constant term and the expected
value that an agent with the scoring rule f1, f0 gives to having credence
D(¬p) in ¬p, when she has credence ∑n

i=1 ciδi(p) in p.
Hence the initial value waev(D, δ1, g1

1, g1
0, . . . , δn, gn

1 , gn
0 ) is the sum of
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a constant term and two expected values: the expected value that an agent
with the scoring rule f1, f0 gives to credence D(p) in p and the expected
value that she gives to credence D(¬p) in ¬p, when she has credence
∑n

i=1 ciδi(p) in p. In other words, waev(D, δ1, g1
1, g1

0, . . . , δn, gn
1 , gn

0 ) is the
sum of a constant term, and the expected value that an agent with the scor-
ing rule f1, f0 gives to the credence distribution D, when she has credence
∑n

i=1 ciδi(p) in p.
Since waev(D, δ1, g1

1, g1
0, . . . , δn, gn

1 , gn
0 ) and the expected value of an

agent with credence ∑n
i=1 ciδi(p) in p differ only by the addition of a con-

stant term, these functions are maximized at the same values. So agents
maximize the weighted average of the expected values they give to a
consensus credence distribution, i.e. waev(D, δ1, g1

1, g1
0, . . . , δn, gn

1 , gn
0 ), by

choosing the distribution that a hypothetical agent with their shared scor-
ing rule would prefer, if she were to have that same weighted average of
the compromising agents’ credences, i.e. ∑n

i=1 ciδi(p). �

Corollary. If a finite number of agents share a credence-eliciting scoring
rule, then they maximize the weighted average of the expected values they
give to their consensus credence distribution by choosing the credence dis-
tribution that assigns p that same weighted average of their credences.

Proof. If agents share a scoring rule, then they each use a scoring rule
that differs by no more than a constant (namely, 0) from a single “shared”
scoring rule. So by the above Theorem, the agents maximize the weighted
average of the expected values they give to a consensus credence distri-
bution by choosing the distribution that a hypothetical agent with their
shared scoring rule would prefer, if she were to have that same weighted
average of the compromising agents’ credences.

If the shared scoring rule is credence-eliciting, then the hypothetical
agent will prefer her own credences in p and ¬p over any other credences
in those propositions. So she will prefer her own credence distribution
over any other. Hence agents with a shared credence-eliciting rule maxi-
mize the weighted average of the expected values they give to their con-
sensus credence distribution by choosing the credence distribution that
assigns p that same weighted average of their credences. �
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