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1. Contemporary attributions of some theses in QML 

In 1947 Carnap wrote: [p. 196][1] 

Any system of modal logic without quantification is of interest only as 

a basis for a wider system including quantification. If such a wider 

system were found to be impossible, logicians would probably 

abandon modal logic entirely. 

Surprisingly Carnap’s anticipation turned out to be right, but exactly in the 

opposite directiona! What captured the attention of modal logicians most, was 

propositional modal logic, and quantified modal logic (QML) has remained under-

developed. Of course there are many systems of, and many approaches to 

QML.[2] But apart from provability interpretation of it, other treatments of the subject 

have been of interest to mostly philosophical logicians, and QMLs have become a 

battle ground for heated controversies over philosophy problems such as 

essentialism, transworld identity, existence, possible worlds and the very notion of 

necessity. 

But among many versions of QML, the one I am interested in here is a system 

in which all the following formulas are derivable: 
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BF: " xðFx ® ð"xFx 

CBF: •"xFx ® "xðFx 

BUF: a"xFx ® "xa Fx 

BF and CBF stand for the Barcan formula and the Coverse Barcan formula. 

These names drive from Ruth C. Barcan (later Mrs. J. A. Marcus), who called 

attention to the formulas in her paper of 1946.[3] Also BUF stands for the Buridan 

formula, attributed to Jean Buridan, French philosopher of the 14th century, by Alvin 

Plantinga [p. 58].[4] BF and CBF have important semantical properties. To see how, 

I begin with the simplest model validating all the three formulas. 

As to the language of QML, it contains individual constants and variables, 

and n- place predicates (n ³ 0). Well formed formulas of QML are inductively 

constructed out of Ø ®, ", and •. Furthermore, a and $ are defined in the standard 

way. The simplest model of QML is the sequence M = < W, R, D, I >, where W is a 

non-empty set of possible worlds, R a binary equivalence relation over the members 

of W, D a non-empty set of individuals and I an interpretation function which 

assigns to every term (variable or constant) a member of D : I(t)eD, and to each n-

place predicate letter A a set of n-tuples of D :I(At1, … , Atn) is < 01, … , 0n > where 

0ieD. The truth-value of each wff at a world we W is given by the following rules: 

                I(A) :  I(At1 , … , Atn) is true in w iff < I(t1), … , I(tn) > e I(A) in w; 

                I(ØA) :  I(ØA) is true in w iff I(A) is false in w, 

I(A ® B): I(A ® B) is true in w iff if I(A) is true w; 

                 then I(B) is true in w; 
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I("xAx): I("xAx) is true in w iff for every I´ which is just like 

               I except possibly that I(x) ¹ I´ (x) I´ (Ax) is true in w; 

I(•A): I(•A) is true in w iff for every w´ such that wRw´, I(A) is true in w´. 

It is easy to verify that BF, CBF and BUF are all valid in M. Other logically 

and philosophically interesting aspects of this simple semantics are as follow: 

1.            BF imposes the condition that whenever wRw´, then D(w´) Í D(w) 

and CBF the condition that whenever wRw´, then D(w) Í D(w´). So if 

we have both BF and CBF, then wRw´, implies D(w) = D(w´). Therefore 

to have both formulas, the domains of all worlds should have the same 

objects. M has this property, so it is called a constant model of QML. 

2.            According to BF and CBF, to move from one world to another nothing 

comes into existence and nothing passes out of existence. 

3.            Since R in an equivalence binary relation, all S5 modal axioms are valid 

in M, in fact in the frame < W, R,> of M. 

Finally to obtain the simplest QML respecting our semantics, it suffices to 

add the laws and rules of classical quantification theory to the propositional 

modal logic S5 [pp. 245-247].[5] This is a kind of systems that philosophical 

logician like R. Barcan, E.N. Zalta, B. Linsky[6] and T. Williamson[7] argue 

that it best represents our intuitive understanding of metaphysical nature of 

alethic modality. 

 2. Ibn Sina’s anticipations 

According to the received texts of the ancient Greek and the carly Islamic 

period Ibn Sina (Avicenna, 980-1037) was the first logician who realized that the 
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meanings of modal quantified propositions are sensitive to the order of their 

quantifiers and modal operators and extensively discussed what are now called 

Buridan and Barcan formulas. So in Kitab al-‘Ibara, the third volume of his major 

work al-Shifa (in Latin known as Sufficientia) Ibn Sina writes: [pp. 115-116][8] 

If we say that [*] every human being possibly is a writer, …, no one 

would doubt it, …, but if we say that [**] possibly every human being 

is a writer, and possibility comes before quantifier, then that would be 

really doubtful. (My translation from Arabic.) 

Here, Ibn Sina, after some illuminating remarks, concludes that [**] implies 

[*] but not vice versa. So he accepts BUF and rejects its converse CBUF as a modal 

principle. 

As to BF and CBF he writes: [pp. 115-116 again][9] 

But to say that some people possibly are not writers is modally the 

same as saying that possibly some people are not writers. 

In modern symbolism this is formulized as: 

$xaØW(x) « a$xØW(x) 

and by taking negations of both sides, we have 

"xðW(x) «  "xW(x) 

which is the conjunction of BF and CBF in one biconditional. 

Finally, and this is what I regard as Ibn Sina’s most important innovation in 

the subject, he discovered that there are two kinds of modality and coined the names 

“mode of predication” (Jahat-e Haml) and “mode of quantifier” (Jahat-e sour) for 

what, more than one hundred years later, medieval logicians called respectively de 
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re and de dicto modality. This is a distinction which has become the subject of many 

discussions in modern philosophy of logic and language. 

In conclusion I think, to do justice to the pioneer work of Ibn Sina, it would 

be fair to rename Buridan and Barcan formulas as Ibn Sina Buridan and Ibn Sina 

Barcan formulas. 
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