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P -COMPATIBLE ABELIAN GROUPS

Abstract. Let τ : F → N be a type of a variety V . Every partition P

of the set F determines a so-called P -compatible variety. We consider the
varieties Gn

P defined by so-called P -compatible identities of Abelian groups
with exponent n. Besides, we study a connection between the lattice of all
partitions of the set F and the lattice of all subvarieties of the variety defined
by some kind of P -compatible identities — externally compatible identities
satisfied in the class of all Abelian groups with exponent n.
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1. Preliminaries

Let Id(τ) be the set of all identities of the type τ : F → N , where F is a set
of fundamental operation symbols and N is the set of non-negative integers.

For a set Σ ⊆ Id(τ) we denote by Cn(Σ) the deductive closure of Σ, i.e.
Cn(Σ) is the smallest subset of Id(τ) containing Σ such that:

1. x ≈ x ∈ Cn(Σ) for every variable x;

2. if p ≈ q ∈ Cn(Σ), then q ≈ p ∈ Cn(Σ);

3. if p ≈ q, q ≈ r ∈ Cn(Σ), then p ≈ r ∈ Cn(Σ);

4. Cn(Σ) is closed under replacement, i.e., given any p ≈ q ∈ Cn(Σ) and
any term r of the type τ , if p occurs as a subterm of r then, by letting s be
the result of replacing that occurence of p by q, we have r ≈ s ∈ Cn(Σ);
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5. Cn(Σ) is closed under substitution, which means that for each p ≈ q ∈
Cn(Σ) and each term r of the type τ , if we replace every ocurrence of a
given variable x in p ≈ q by r, then resulting identity belongs to Cn(Σ).

If Σ = Cn(Σ), then Σ is called equational theory.

The concept of a P -compatible identity is related to the special structure
of terms occurring in the identity. This structure is preserved by the operator
Cn, so we can consider equational theories determined by P -compatible
identities. Let P be a partition of F . By [f ]P we will denote the block of
P containing f . An identity p ≈ q of the type τ is P-compatible iff it is of
the form x ≈ x or the outermost operation symbols in p and q belong to the
same block of P .

The notion of a P -compatible identity was introduced by J. Płonka in
[9] and was a generalization of both an externally compatible identity intro-
duced by W. Chromik in [1] and a normal identity defined independently by
J. Płonka [8] and I. I. Melnik [5].

An identity p ≈ q of the type τ is externally compatible iff it is P -
compatible, where P contains singletons only.

An identity p ≈ q of the type τ is normal iff it is of the form x ≈ x or
neither p nor q is a variable.

By Mod(Σ) we denote the class of all models of Σ, that is the class of
all algebras of the type τ satisfying the identities from Σ.

We will use the following notations:

P (τ) — the set of all P -compatible identities of the type τ ,

Ex(τ) — the set of all externally compatible identities of the type τ ,

Id(V ) — the set of all identities satisfied in V ,

P (V ) — the set of all P -compatible identities satisfied in V ,

Ex(V ) — the set of all externally compatible identities satisfied in V ,

VP — the variety Mod(P (V )),

VEx — the variety Mod(Ex(V )).

It is known that the set of all subvarieties of a given variety is a lattice
ordered by set inclusion. The lattices of varieties were studied in many
works (see [2], [3], [6], [10]). Let L(V ) = (L(V ); ⊆) denotes the lattice of
all subvarieties of the variety V . For any partition P we have Ex(V ) ⊆
P (V ). Thus, the class Mod(P (V )) is a subvariety of Mod(Ex(V )). In
the next section we will describe the equational bases of varieties defined
by P -compatible identities of Abelian groups with exponent n of the type
τ1 : {·,−1 , e} −→ N , where τ1(·) = 2, τ1(−1) = 1, τ1(e) = 0 and in the last
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section we will study connections between the lattice of the partitions of
the set {·,−1 , e} and the lattice of all subvarieties of the variety defined by
externally compatible identities satisfied in the class of Abelian groups with
exponent n.

Let us consider algebras A = (A;FA) and I = (I;F I) of the type τ and
a partition P of the set F . The algebra A is a P -dispersion of I (see [4], [7])
iff there exists a partition {Ai}i∈I of A and there exists a family {c[f ]P }f∈F

of mappings c[f ]P : I → A satisfying the following conditions:

i. for each i ∈ I c[f ]P (i) ∈ Ai;

ii. for each f ∈ F and for each ai ∈ Aki
, i = 0, ..., τ(f) − 1,

fA(a0, ..., aτ(f)−1) = c[f ]P (fI(k0, ..., kτ(f)−1));

iii. if f ∈ [g]P then for each i ∈ I c[f ]P (i) = c[g]P (i).

In the case if the partition P contains singletons only, P -dispersion is
called a dispersion.

In [9] it was proved that

(1.1) Every P -dispersion of the algebra I satisfies all P -compatible iden-
tities satisfied in I.

2. Equational bases of P -compatible Abelian groups

Let us fix the type τ1 : {·,−1 , e} −→ N ,where τ1(·) = 2, τ1(−1) = 1, τ1(e) = 0.
Let Gn denotes the variety of Abelian groups of the type τ1 satisfying identity
xn ≈ x·x−1, where n ∈ N . In the present section we will construct equational
bases of the varieties Gn

P defined by P -compatible identities satisfied in Gn.
We restrict ourselves to the classes GP defined by P -compatible identities of
Abelian groups, because it is clear that the identity xn ≈ x · x−1 together
with equational bases of GP form equational bases of Gn

P .
First we describe the construction of finding an equational bases pre-

sented in [9]. Let τ : F → N be a type of algebras. Let P be a partition
of F . A block [f ]P of a partition P will be called nullary iff τ(g) = 0 for
each g ∈ [f ]P . Let V be a variety of the type τ satisfying the following three
conditions:

(2.1) There exists a non-trivial unary term q(x) such that for each f ∈ F ,
the identity

(1) q(f(x0, ..., xτ(f)−1)) ≈ q(f(q(x0), ..., q(xτ(f)−1)))
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belongs to Id(V ).

From now on, let q(x) be a fixed term whose existence is guaranteed by the
above condition.

(2.2) If [f ]P is a non-nullary block of P and g, h ∈ [f ]P , then there exists
a non-trivial unary term qg,h(x) such that the most external fundamental
operation symbol in term qg,h(x) belongs to [f ]P and the identities

g(x0, ..., xτ(g)−1) ≈ qg,h(q(g(x0, ..., xτ(g)−1))),(2)

h(x0, ..., xτ(h)−1) ≈ qg,h(q(h(x0, ..., xτ(h)−1)))(3)

belong to Id(V ).

From now on, for any [f ]P being a non-nullary block of P and g, h ∈ [f ]P ,
let qg,h(x) be a fixed term satisfying the above condition. The existence of
qg,h(x) is guaranteed.

(2.3) If [f ]P is a nullary block of P , then for each g ∈ [f ]P the identity

(4) f ≈ g

belongs to Id(V ).

Let B be an equational base of V . We define a set B∗ of identities of the
type τ satisfying the following three conditions:

(2.4) The identities:

(1), for any f ∈ F ,

(2), for any [f ]P — a non-nullary block of P and g, h ∈ [f ]P ,

and (4), for any [f ]P — a nullary block of P and any g ∈ [f ]P ,

belong to B∗.

(2.5) If φ ≈ ψ belongs to B, then the identity q(φ) ≈ q(ψ) belongs to B∗.

(2.6) B∗ is the smallest set satisfying (2.4) and (2.5).

In [9] J. Płonka proved the following
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Theorem 2.1. If B is an equational base of V , then B∗ is an equational
base VP .

It is a well known fact that the following identities of the type τ1:

(2.i) (x · y) · z ≈ x · (y · z),
(2.ii) x · y ≈ y · x,
(2.iii) x · x−1 ≈ e,
(2.iv) x · e ≈ x

form an equational base of the variety G of Abelian groups of the type τ1.

We have only the following partitions of the set {·,−1 , e}:

P0 = {{·}, {−1}, {e}},

P1 = {{·,−1 }, {e}},

P2 = {{·, e}, {−1}},

P3 = {{−1, e}, {·}},

P4 = {{·,−1 , e}}.

The partition P0 we will traditionally denote by Ex, and the partition P4

by N .
It is easy to check that the variety G of the type τ1 fulfills the assump-

tions of the above J. Płonka’s theorem concerning the construction of the
equational bases. Putting q(x) ≈ x · e, q·(x) ≈ x · e, q−1(x) ≈ (x−1)−1 we
receive the following

Lemma 2.1. The following identities of the type τ1:

(2.v) (x · y) · e ≈ ((x · e) · (y · e)) · e,
(2.vi) x−1 · e ≈ (x · e)−1 · e,

(2.vii) x · y ≈ ((x · y) · e) · e,
(2.viii) x−1 ≈ ((x−1 · e)−1)−1,

(2.ix) ((x · y) · z) · e ≈ (x · (y · z)) · e,
(2.x) (x · y) · e ≈ (y · x) · e,
(2.xi) (x · x−1) · e ≈ e · e,

(2.xii) (x · e) · e ≈ x · e

form the equational base of the variety GEx.

In the next theorem we present simplified set of identities axiomatizing
the same variety GEx.

Theorem 2.2. Identities (2.i), (2.ii) of the type τ1 and additionally identi-
ties:
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(2.xiii) x · y · e ≈ x · y,

(2.xiv) (x · e)−1 ≈ x−1,

(2.xv) x · x−1 ≈ e · e

form an equational base of the class GEx.

Proof. Let B∗∗
GEx

denotes the set of identities (2.i),(2.ii) and (2.xiii)–(2.xv),
while by B∗

GEx
we denote the set (2.v)–(2.xii). One can show that

Cn(B∗∗
GEx

) = Ex(G). From the lemma (2.1) follows that Cn(B∗
GEx

) = Ex(G).
Thus, to prove the lemma it is enough to show that the sets Cn(B∗∗

GEx
) and

Cn(B∗
GEx

) are equal. Since every base identity of the set Cn(B∗∗
GEx

) is an
externally compatible identity fulfilled in the variety of Abelian groups, thus
it is true that Cn(B∗∗

GEx
) ⊆ Cn(B∗

GEx
). We will prove the reverse inclusion.

Let us notice that from the identity (2.i) follows the identity (2.ix), while
from (2.ii) directly follows (2.x). From (2.xiii) and (2.xv) we have the iden-
tity (2.xi). By substitution of the term e for a variable y in (2.xiii) and by
the associativity of the operation ‘·’, we get that (2.xii) belongs to the set
Cn(B∗∗

GEx
). By substitution of the term y · (e · e) for a variable y in (2.xiii)

and by the associativity and commutativity of the operation ‘·’, we obtain
that x ·y · e · e ≈ x · e ·y · e · e belongs to the set Cn(B∗∗

GEx
). From that, by the

fact that the identity (2.xiii) belongs to Cn(B∗∗
GEx

), follows that (2.v) belongs
to Cn(B∗∗

GEx
). Moreover, directly from the identity (2.xiv) follows that the

identity (2.vi) belongs to the set Cn(B∗∗
GEx

). From the identity (2.xiii) and
the identity (2.i) follows that the identity (2.vii) is deducible from the set
Cn(B∗∗

GEx
). Now, let us substitute in (2.xiv) a term (x−1)−1 for the variable

x. We receive ((x−1)−1)−1 ≈ ((x−1)−1 ·e)−1 ∈ Cn(B∗∗
GEx

). Using the identity
(2.xiii) we get ((x−1)−1 · e)−1 ≈ ((x−1)−1 · e · e)−1 ∈ Cn(B∗∗

GEx
). Further, by

(2.xv), commutativity and associativity of the operation ‘·’ we have the fol-
lowing the identities: ((x−1)−1 · e · e)−1 ≈ ((x−1)−1 ·x ·x−1)−1 ≈ (x · e · e)−1.
From (2.xiii) follows that (x · e · e)−1 ≈ (x · e)−1 ∈ Cn(B∗∗

GEx
). Thus, we

have that ((x−1)−1)−1 ≈ (x · e)−1 belongs to the set Cn(B∗∗
GEx

). By the
last identity and (2.xiv), we have the identity ((x−1)−1)−1 ≈ x−1. By
the substitution of the term x−1 for a variable x in (2.xiv), we see that
((x−1 · e)−1) ≈ ((x−1)−1) ∈ Cn(B∗∗

GEx
). By the last statement we ob-

tain the identity ((x−1 · e)−1)−1 ≈ ((x−1)−1)−1. Therefore by the fact
that x−1 ≈ ((x−1)−1)−1 ∈ Cn(B∗∗

GEx
), it follows that (2.viii) belongs to

Cn(B∗∗
GEx

).

Analogously one can prove the next theorems:
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Theorem 2.3. The identities: (2.i), (2.ii), (2.xiii), (2.xv) and

(2.xvi) x−1 · e ≈ x−1.

form an equational base of GP1
.

Theorem 2.4. The identities: (2.i), (2.ii), (2.xiii) and

(2.xvii) e ≈ x−1 · x,

(2.xviii) x−1 ≈ (x · e)−1

form an equational base of GP2
.

Theorem 2.5. The identities: (2.i), (2.ii), (2.xiii), (2.xviii) and

(2.xix) e ≈ (x−1 · x)−1

form an equational base of GP3
.

Theorem 2.6. The identities: (2.i), (2.ii), (2.xiii), (2.xvi), (2.xvii), (2.xix)
form an equational base of GN .

From the theorem (2.4) follows

Corollary 2.1. GP2
= Mod(Cn(Ex(G) ∪ {e ≈ e · e})).

From theorem (2.5) we obtain

Corollary 2.2. GP3
= Mod(Cn(Ex(G) ∪ {e ≈ e−1})).

3. The lattice of partitions and the lattice of varieties

Let ΠF be the family of all partitions of the set F . It is known fact that
ordered pair (ΠF ; ≤), where ≤ is the relation on ΠF defined in the following
way:

(3.1) P1 ≤ P2 iff for every block A ∈ P1 there exists block B ∈ P2, such
that A ⊆ B,

is a lattice. From now on, by 1 we denote some fixed object which does
not belong to ΠF . Let us define the relation ≤1 on the set ΠF ∪ {1} in the
following way:

(3.2) P1 ≤1 P2 iff P1 ≤ P2 for every P1, P2 ∈ ΠF ,

(3.3) for every P ∈ ΠF ∪ {1} we have P ≤1 1.
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One can see that (ΠF ∪ {1}; ≤1) is a lattice. Let (ΠF + 1) denotes this
lattice. Let (ΠF + 1)d = ((ΠF ∪ {1})d; ≤d

1) be the dual lattice to the lattice
(ΠF + 1). As usually, ΠF ∪ {1} = (ΠF ∪ {1})d. In [4] it was proved that:

(3.4) The lattice (ΠF +1)d is isomorphic to the lattice of all subvarieties of
the variety determined by the theory Ex(τ), where the function h stating the
isomorphism is defined as follows: h(1) = Mod(Id(τ)), h(P ) = Mod(P (τ)),
for P ∈ ΠF .

In the present section we study a connection of the lattice (ΠF + 1)d

with the lattice L(Gn
Ex), where Gn

Ex is the variety of the type τ1. First, let
us notice that Mod(P (τ)) = G1

P and Mod(Id(τ)) = G1. So, from the lemma
(3.4) we obtain the following result

Lemma 3.1. The lattice of all subvarieties of the variety G1
Ex has the follow-

ing diagram:

G1

G1
N

G1
P1

G1
P3

G1
P2

G1
Ex

s

sss

s

s

Figure 1. The lattice L(G1

Ex)

However there are other connections between the lattice (ΠF + 1)d and
the lattice L(Gn

Ex).
We have the following theorem:

Theorem 3.1. The function h : (ΠF ∪ {1})d → L(Gn
Ex) defined as follows:

h(1) = Gn

h(Pi) = Gn
Pi

for i ∈ {0, 1, . . . , 4}

is order-preserving and injective.
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Proof. Let Pi, Pj ∈ ΠF , where i, j ∈ {0, . . . , 4} and Pi < Pj . Then
Pi(G

n) ⊆ Pj(Gn) and Gn
Pj

⊆ Gn
Pi

. Obviously 1 > Pi for i ∈ {0, . . . , 4}

and Pi(G
n) ⊆ Id(Gn). This implies Gn ⊆ Gn

Pi
. So, h is order-preserving.

If Pi 6= Pj and i, j ∈ {1, 2, 3} then there exists an identity, which is
Pi-compatible and it is not Pj-compatible. Thus we see that Gn

Pi
6= Gn

Pj
for

i, j ∈ {1, 2, 3} and i 6= j. The partition P0 is different from the partitions Pi

for i ∈ {1, 2, 3, 4} and it is easy to see that there exist identities which are
Pi-compatible and are not externally compatible for any i ∈ {1, 2, 3, 4} (see
theorems 2.3, 2.4, 2.5, 2.6). So the variety Gn

Ex is different from the varieties
Gn

Pi
for i ∈ {1, 2, 3, 4}. Similarly we prove that the variety Gn

N is different
from the varieties Gn

Pi
for i ∈ {1, 2, 3}. So we have that h is injection.

Let us observe that P2 ∨P3 = PN , and it is obvious that Gn
N ⊆ Gn

P2
∧ Gn

P3

(this is a consequence of the theorem 3.1). We will prove that Gn
P2

∧Gn
P3

6= Gn
N .

We will construct an algebra which belongs to the variety Gn
P2

∧ Gn
P3

and
does not belong to the class Gn

N . Let us consider a dispersion R of the group
Zn = ({0, 1, . . . , n − 1}; +n,−n, 0) which is defined in the following way:
R = ({0, 1, . . . , n− 1−, n− 1+}; +n,−n, 0), where:

Ri = {i} dla i ∈ {0, 1, . . . , n− 2},

Rn−1 = {n− 1+, n− 1−},

i = c+n(i) = c−n(i) = c0(i) dla i ∈ {0, 1, . . . , n − 2},

n− 1− = c−n(n− 1), n− 1+ = c+n(n− 1) = c0(n− 1).

From (1.1) we have that all externally compatible identities satisfied in Zn

are satisfied in R and it is easy to see that 0 = 0 +n 0, 0 = −n0 in R.
Thus the algebra R belongs to the class Gn

P2
∧ Gn

P3
. Let us consider identity

e ·x−1 ≈ x−1, which belongs to the set Id(Gn
N ). This identity is not satisfied

in variety Gn
N because −n1 = n− 1− whereas 0 +n (−n1) = n− 1+.

Theorem 3.2. The function h : (ΠF ∪ {1})d → L(Gn
Ex) defined as follows:

h(1) = Gn

h(P ) = Mod(Ex(Gn) ∪ EP ),

where EP = {f(e, . . . , e) ≈ g(e, . . . , e) : f, g ∈ {·,−1 , e}, g ∈ [f ]P } is a lattice
embedding.

Proof. Let us note first that instead of considering all identities in the sets
EP it is enough to consider only some of them. Namely, it is easy to see
that the following equalities are true:
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Cn(Ex(Gn) ∪ EEx) = Cn(Ex(Gn)),

Cn(Ex(Gn) ∪ EP1
) = Cn(Ex(Gn) ∪ {e · e ≈ e−1}),

Cn(Ex(Gn) ∪ EP2
) = Cn(Ex(Gn) ∪ {e ≈ e · e}),

Cn(Ex(Gn) ∪ EP3
) = Cn(Ex(Gn) ∪ {e ≈ e−1}),

Cn(Ex(Gn) ∪ EN ) = Cn(Ex(Gn) ∪ {e ≈ e · e, e ≈ e−1}).

As an immediate consequence of the first equality is: Mod(Cn(Ex(Gn) ∪
EEx)) = Gn

Ex. From Corollary 2.1 and 2.2 we have Mod(Cn(Ex(Gn) ∪
EP2

)) = Gn
P2

and Mod(Cn(Ex(Gn) ∪ EP3
)) = Gn

P3
. Let Cn, Cn

N denote
classes Mod(Cn(ExGn ∪ EP1

)) and Mod(Cn(ExGn ∪ EN )) respectively. It
is clear that h is injective and order preserving. Thus it is enough to prove
only that:

Cn ∧ Gn
P2

= Cn
N ,

Cn ∧ Gn
P3

= Cn
N ,

Gn
P2

∧ Gn
P3

= Cn
N .

Obviously Cn ∧ Gn
P2

= Mod(Cn((Ex(Gn) ∪ {e · e ≈ e−1}) ∪ (Ex(Gn) ∪ {e ≈
e−1}))). Since Mod(Cn((Ex(Gn)∪{e ·e ≈ e−1})∪(Ex(Gn)∪{e ≈ e−1}))) =
Mod(Cn(Ex(Gn) ∪ {e · e ≈ e−1, e ≈ e−1})), so Cn ∧ Gn

P2
= Cn

N . We act
similarly in the remain cases.
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