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Abstract

Hilbert’s choice operators 7 and e, when added to intuitionistic logic, strengthen it. In
the presence of certain extensionality axioms they produce classical logic, while in the
presence of weaker decidability conditions for terms they produce various superintuitionistic
intermediate logics. In this thesis, I argue that there are important philosophical lessons
to be learned from these results. To make the case, I begin with a historical discussion
situating the development of Hilbert’s operators in relation to his evolving program in
the foundations of mathematics and in relation to philosophical motivations leading to the
development of intuitionistic logic. This sets the stage for a brief description of the relevant
part of Dummett’s program to recast debates in metaphysics, and in particular disputes
about realism and anti-realism, as closely intertwined with issues in philosophical logic,
with the acceptance of classical logic for a domain reflecting a commitment to realism for
that domain. Then I review extant results about what is provable and what is not when
one adds epsilon to intuitionistic logic, largely due to Bell and DeVidi, and I give several
new proofs of intermediate logics from intuitionistic logic+e without identity. With all this
in hand, I turn to a discussion of the philosophical significance of choice operators. Among
the conclusions I defend are that these results provide a finer-grained basis for Dummett’s
contention that commitment to classically valid but intuitionistically invalid principles
reflect metaphysical commitments by showing those principles to be derivable from certain
existence assumptions; that Dummett’s framework is improved by these results as they
show that questions of realism and anti-realism are not an “all or nothing” matter, but that
there are plausibly metaphysical stances between the poles of anti-realism (corresponding to
acceptance just of intutionistic logic) and realism (corresponding to acceptance of classical
logic), because different sorts of ontological assumptions yield intermediate rather than
classical logic; and that these intermediate positions between classical and intuitionistic
logic link up in interesting ways with our intuitions about issues of objectivity and reality,
and do so usefully by linking to questions around intriguing everyday concepts such as “is
smart,” which I suggest involve a number of distinct dimensions which might themselves be
objective, but because of their multivalent structure are themselves intermediate between
being objective and not. Finally, I discuss the implications of these results for ongoing
debates about the status of arbitrary and ideal objects in the foundations of logic, showing
among other things that much of the discussion is flawed because it does not recognize the
degree to which the claims being made depend on the presumption that one is working
with a very strong (i.e., classical) logic.
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Chapter 1

Introduction

In 1975 Radu Diaconescu proved that, in a topos, if every epimorphism has a section then
every subobject has a complement. If the metaphysical implications of this result are
not immediately apparent, the reader can be forgiven. Even mathematically sophisticated
readers might not recognize the import of this result, which is why in the same year
Goodman and Myhill felt the need to translate the proof into a language more common
to mathematical logicians, publishing a short proof of the analogous result in set theory,
which showed that in intuitionistic set theory a choice function of a certain type implies
the law of excluded middle (¢f. DIACONESCU, 1975; GOODMAN and MYHILL, 1975). The
metaphysical implications of this result should be obvious due to the importance the law
of excluded middle has played in debates over realism, specifically in the work of Michael
Dummett.

It is now well known among specialists that the axiom of choice, added to intuitionistic
set theories of various sorts, makes them classical. But even in a logical, rather than set
theoretic, framework one can strengthen a logic by adding choice principles. Hilbert’s e
and 7 operators, for example, are well known examples of logical formulations of the axiom
of choice. The 7 operator was introduced by Hilbert as the “transfinite axiom” in “Die
logischen Grundlagen der Mathematik” (HILBERT, 1923, p.156)!. Hilbert later replaced 7
with the weaker ¢ axiom (cf. HILBERT, 1926, 1927)%. The € and 7 axioms may be written
as follows:

(L.1) o(z) = 9(c,)

'First presented in a lecture course of the same name over the 1922-1923 winter term (see GRATTAN-
GUINNESS, 2000, p.473).

2That is, € is weaker that 7 when they are added to “weak” systems like intuitionistic logic. They are
inter-definable (in fact, dual) operators in classical logic: we can, for instance, define 7, to be e—,.

<
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(1.2) (7o) = ()

Under the standard interpretation of the existential and universal quantifiers (1.1) gives
us dx Az <+ A(e4) and (1.2) gives us A(74) > Vo A(x). Hence it can be said that the epsilon
operator can be thought of as asserting that there is an object €, that is most likely to
have the property ¢, while in sentence (1.2) the tau operator asserts that there is an object
7, that is least likely to have the property ¢. As Hilbert puts it:

For us to illustrate its content, if we take the predicate A to mean “to be
corrupt,” then we would have to understand by 74 a man of such inviolable
sense of justice, that if he should prove to be corrupt, then all human beings
are corrupt.’

The € and 7 term forming operators.* are conservative over classical logic; that is their
addition to classical logic does not enable one to prove any proposition which one could
not prove with classical logic, which doesn’t include the operator in question. However,
e and 7 can strengthen intuitionistic logic, without necessarily making it classical. In
certain contexts choice operators strengthen intuitionistic logic by making DeMorgan’s
intuitionistically invalid law, =(B A C) F =B V =C, and the linearity axiom, - (C' —
B)V (B — (), derivable. In other contexts, notably when they include an extensionality

34Um uns seinen Inhalt zu veranschaulichen, nehmen wir etwa fiir A das Pradikat “bestechlich sein”;
dann hétten wir unter 7 A einen bestimmten Mann von so unverbriichlichem Gerechtigkeitssinn zu ver-
stehen, dass, wenn er sich als bestechlich sollte. Tatsédchlich alle Menschen iiberhaupt haupt bestechlich
sind” (My translation. HILBERT, 1923, p.156).

4Strictly they are variable binding term forming operators which are a category of operators that include
Hilbert’s €, 7 and n and Russell’s 2. They are also referred to by some as subnectors; a term Haskell Curry
coined to describe “a functor which converts [a sentence]... into a noun” (CURRY, 1966, p.14) Curry’s
taxonomy of functors was developed from Tarski and Carnap (see TARSKI 1935 fn.7 p. 274 or TARSKI
1956 fn.2 p.161 and CARNAP 1942). However, what Carnap called a functor, Curry names a “nominal
functor” (CURRY, 1966, p.13 fn. 19). Tarski employs the term functor in this sense due to Kotarbinski
and the terms: “‘sentence-forming functor’ and ‘name-forming functor’ from Kazimier Ajdukiewicz” (see
AJDUKIEWICZ, 1928). These terms belong to what Curry refered to as the grammatics of communicative
languages a “study of the rules for determining the sentences of a language”. In Curry’s grammatics, the
significant class of objects are not expressions, by which he means simply strings of symbols, but phrases
of which:

There are three main classes ... wviz., nouns, sentences, and functors. A noun names some
object (real or imaginary); a sentence expresses a statement; and a functor is a means of
combining phrases to form other phrases (CURRY, 1963, p.32).

Nouns and sentences are called “closed phrases” and functors are phrases that combine other phrases
(see CURRY 1966, p.13, and CURRY 1963, pp.32-34). Though Curry notes that his terminology for types
of functor, i.e. ‘junctor’ and ‘nector’ are “suggested by the use of ‘junction’ and ‘nexus’ in Jespersen
(JESPERSEN, 1924)” his usage is different. The following table depicts Curry’s taxonomy of functors:

4



axiom, they make the logic classical. Because of the ontological nature of choice operators,
i.e. they in some manner assert the existence of objects, they provide a particularly
interesting example of how logics are strengthened. This is of interest because of the close
relations between logical strength and metaphysics.

1.1 Logic and Metaphysics

The goal of this thesis is to extract the metaphysical lessons offered by these results. On
their face they suggest that choice principles—which postulate the existence of particular
sorts of objects—are intimately related to the validity of principles that are, from the
classical point of view, logical. Thus these results seem likely to tell us something important
about the relationship between existence and correct reasoning—between metaphysics and
logic. We intend to make clear the lessons that results of this sort can teach us. Learning
why the results are true will involve becoming clear about how the results are proven.
Along the way we prove some new results about the implications of choice principles in
logics without identity, which help fend off some misconceptions about what is presupposed
when getting the “logic” out of the “metaphysics.”

The metaphysical lessons this topic promises are best seen by considering the role of
logic in metaphysics. According to Dummett’s analysis, a logic is correct for a particular
domain of discourse if it reflects the metaphysical status of the entities discussed in that
discourse. And so, he argues, metaphysical debates about realism and anti-realism are
really about the correct set of logical laws (DUMMETT, 1978b). Specifically Dummett
asserts that one is realist about a domain if one accepts bivalence for that domain, which
implies the law of excluded middle, and rejecting the law of excluded middle as a logical
law is a prerequisite to any sort of anti-realism or even metaphysically neutral position
about a domain.

The most well known example of Dummett’s argument, that the law of excluded middle
implies realism for a domain, is in reference to the debate between intuitionism and math-
ematical Platonism (c¢f. DUMMETT, 1975 and DUMMETT, 1977). He has also applied this

Values
Arguments Phrase Noun Sentence
Phrase Functor Nominal Functor Sentential Functor
All Nominal Junctor Adjunctor or Operator Predicator
Some Sentential Nector Subnector (Pronector)
Mixed Mixed Nector (Mixed Nector) (Ad Nector)
All Sentential (Pure Nector) (Pure Subnector) Connector

In above table of functors, the names in parentheses are not present in Curry’s system, and he added
them simply to provide completeness (see CURRY, 1966, pp.14-15).



argument to anti-realism about the past (¢f. DUMMETT, 1978b and DUMMETT, 1978a)
and critiqued David Lewis’s argument that all possible worlds are real (¢f. LEWIS, 1986
and DUMMETT, 1993c). In all these cases Dummett argues that, to resolve metaphysical
debates, we must choose a logic that does not appeal to principles which are not justifiable
in that domain (DUMMETT, 1991).

In the The Logical Basis of Metaphysics Dummett asserts that most attempts to solve
metaphysical debates over realism take a “top down approach” starting at the level of
justifying a particular metaphysical position, or principle, and applying it then to the
domain in question. Instead he suggests that we should approach such problems from the
“bottom up” (DUMMETT, 1991, pp.12-13). By this he means we should look at the logic
that underlies the language of the domain of the entities in question.

Realism about a domain involves the entities of that domain being “mind independent”
in some suitable sense. That is, if realism is true, the claims we make about those entities
are, Dummett suggests, made true or false independently of us. So, at least for well
formulated claims in that domain, our claims should be true or false, whether or not we
can come to know their truth values. This, broadly stated, is the way Dummett makes
the connection between realism and bivalence. Since bivalence implies the correctness
of classical logic, we get the connection between realism about a domain and the law of
excluded middle holding for that domain. When we think about varieties of anti-realism
in the history of philosophy—phenomenalism or nominalism, for instance—we see that
the “objects” in question are somehow mind- or language-dependent, and so, Dummett
suggests, we have no recourse to mind-independent reality to fix truth values of claims that
are in principle unknowable by us. Hence we have no principled reason to accept bivalence
in these domains, and so no justification for the adoption of excluded middle.

Thus he simplifies the question about the reality of entities to a more tractable question
about the semantic value of statements referring to the entities in question; that is, whether
these sentences are or can be true or false, independent of our knowledge, or ability to have
knowledge, of them. From there, he makes the connection to debates about the correctness
of logical principles in a domain.

In a like manner we can look at how the addition of something like a choice principle
would modify that interpretation by strengthening the logic. Not only can we use the formal
results about choice principles to investigate the general position that there is a connection
between realism and logic, but we can also look at the arguments Dummett has made with
reference to particular domains, e.g. time. These arguments can be used as examples of
investigations of the relation between various domains and different logical systems. By
looking at these arguments we gain some insight into the relation between logics that are
created by the addition of choice axioms and the objects that choice principles seem to
posit.



1.1.1 Problems with Dummett’s views

Dummett’s argument is if realism is correct then there is a mind independent reality that
our language latches onto correctly, that is accurately represents, in certain domains —
i.e. those for which realism holds. This reality, rather than our knowledge, fixes the truth
values of claims in such domains, whether or not we can, even in principle, actually know
the truth of a sentence. Since our language hooks up to the reality of those domains, all
sentences about such domains are either true or false. This argument thus connects logical
principles to realism through truth.

However there are problems with arguments of this sort. There is of course the question
of whether or not our language ever totally and completely accurately depicts reality, that
is, the problem of radical anti-realism. There is also the problem that one could accept
classical logic and not bivalence. While realism perhaps implies classical logic, through
the law of excluded middle, classical logic may not necessarily in the same manner imply
realism. One could accept some sort of supervaluational semantics or boolean algebra
valued semantics. In any boolean algebra, the value of sentences would not necessarily be
true or false, but the law of excluded middle would still hold.

1.2 The Axiom of Choice and Hilbert’s Programme

The axiom of choice is the claim that for a family of non-empty sets £ there is a function
that selects an element of each set which is a member of that family £. Zermelo first
formulated the axiom in 1904 as a choice function f on £ such that for each non-empty
set X € L, f(X) € X (BELL 2009, pp.1-2 ¢f. ZERMELO 1904, p.140 ). Zermelo used the
axiom to prove the well ordering theorem, that every set can be well-ordered (ZERMELO,
1904, p.140). This answered part of the first question that Hilbert posed in his famous 1900
address where he posed 23 questions that he saw as shaping the future of mathematics.”

The existence of a choice function is easily established for finite families of sets. More-
over, the “countable” axiom of choice is usually regarded as uncontroversial. For infinities
beyond that, however, it encountered criticism almost immediately, with Emile Borel as-
serting that “any argument where one supposes an arbitrary choice a non-denumerably
infinite number of times is outside the domain of mathematics” (quoted in BELL 2009

5While the first problem “Cantor’s Problem of the Cardinal Number of the Continuum” cannot be said
to be solved, or even perhaps solvable, it is in Hilbert’s discussion of it that the well-ordering theorem is
mentioned. Hilbert asked, “whether the totality of all numbers may not be arranged in another manner
so that every partial assemblage may have a first element” and suggests that the solution to this problem
may be key to the provability of the entire problem (HILBERT, 1900b, p.446-47).



p.2).5

John Bell asserts that the axiom of choice is “the most fertile principle of set theory” and
notes that over 200 principles have been proven classically equivalent to the axiom of choice
(BELL, 2009, pp.2-4).” Foundationally, though, one of the most important developments
is Diaconescu’s proof showing that the axiom of choice enables one to derive the law of
excluded middle in an intuitionistic context.

Errett Bishop argued that the axiom of choice is acceptable in a constructive system as
it is implied by what we mean by existence (BISHOP, 1967, p.9). Bishop, in fact, criticised
the understanding of choice by classical mathematicians, while asserting that choice was
constructive:

When a classical mathematician claims he is a constructivist, he probably
means he avoids the axiom of choice. This axiom is unique in its ability to
trouble the conscience of the classical mathematician, but in fact it is not a
real source of the unconstructivities of classical mathematics. A choice func-
tion exists in constructive mathematics, because a choice is implied by the
very meaning of existence. Applications of the axiom of choice in classical
mathematics either are irrelevant or are combined with a sweeping appeal to
the principle of omniscience. The axiom of choice is used to extract elements
from equivalence classes where they should never have been put in the first
place. For instance, a real number should not be defined as an equivalence
class of Cauchy sequences of rational numbers; there is no need to drag in the
equivalence classes. The proof that the real numbers can be well ordered is an
instance of a proof in which a sweeping use of the principle of omniscience is
combined with an appeal to the axiom of choice. Such proofs offer little hope of
constructivization. It is not likely that the theorem “the real numbers can be
well ordered” will be given a constructive version consonant with the intuitive
interpretation of the classical result (BisHOP, 1967, pp.9-10).

While the axiom of choice in intuitionistic set theory implies the law of excluded middle,
it does so only if, as is usual in most set theories, the sets or functions are extensional.
Hence it has been noted that in Martin Lof’s constructive type theory the axiom of choice is
derivable, but not the law of excluded middle, because there is no extensionality principle.
As well, John Bell has presented what he calls a ‘weak set theory’ in which the law of
excluded middle does not follow from the axiom of choice (BELL, 2009, pp 120-131).

6Quite a few seemingly paradoxical results can be obtained by use of the axiom of choice, or its
equivalents, which is why it is so often criticised, including the fact that, in topology, any solid sphere can
be decomposed into a finite number of subsets and recomposed into two spheres of the same size.

"These include: Zermelo’s well-ordering theorem, the trichotomy principle, Kénig’s theorem, Tarski’s
theorem, Tychonov’s theorem, the model existence theorem for first order logic, the Hamel basis theorem,
Tukey’s lemma, Hausdorff maximal principle, the antichain principle, and Zorn’s lemma to name a few.



1.3 Structure of Thesis

This dissertation will be divided into three parts. The first part is a historical contextual-
ization of the inquiry. The metaphysical debates and the positions various philosophers, lo-
gicians and mathematicians engaged with were constrained by the historical circumstances.
Describing the historical circumstances should help clarify how the various streams come
together and why. This story has been told in bits and pieces by various authors but the
big picture, as it relates specifically to the topics we want to address, has not been sorted
out.

We will start by looking at Hilbert’s attempts to fight a rearguard action against con-
structivists and find a finitist foundation for mathematics that would prevent us from being
evicted “from the paradise Cantor has made for us”. Then we will look at Dummett’s ap-
propriation of Brouwer’s mathematical anti-realism, through which he suggests that the
link between “mind- or language-dependence” of a domain of discourse and the correctness
of intuitionistic logic for it should serve as a model for anti-realism more generally. This
will set the stage for part two, where we will introduce certain mathematical results that
have only begun to be properly investigated post-Dummett.

In part two we will briefly set out the main results that show the relationship between
choice principles and logical principles, and prove a several new ones. We will also survey
two semantics for intuitionistic predicate logics + <.

In part three we will develop the argument that there are important philosophical
lessons to be learned from the results in part two. For the main results, the lessons have
not been properly drawn because the mathematical results have been presented by math-
ematicians who have been at times content to pronounce on what they take to be the
metaphysical import, but who have not provided the necessary philosophical arguments.
In this part of the thesis we will attempt to provide these arguments and show how these
results provide two important philosophical insights. The first is a point about the in-
tersection of logic and metaphysics. Dummett’s argument about the interconnection of
realism about a domain and acceptance of the law of excluded middle, and anti-realism
about a domain and anti-realism paints a rather black and white picture.

What we show is that the ontological assumptions inherent in the e-operator produce
logics that describe middle grounds between classical and intuitionistic logics, and hence,
between full blown realism and anti-realism about a domain. To do so, we need not tackle
a large intractable philosophical problem like “what would the correct logic for ethical
language be.” We will find that many common properties, that seem at first quite simple
and to some degree objective, may have structures that call for a logic weaker than classical
logic, but more metaphysically rich than intuitionistic logic. For example, consider the
metaphysical implications of a domain where Dummett’s scheme (A — B) V (B — A)



holds, but the law of excluded middle doesn’t. In such domains we can model examples
of properties composed of ‘objective’ but non-comparable sub-properties. Take, as an
example, the concept of intelligence, which is itself composed of various dimensions (or sub-
concepts), each of which seems in itself objective but when combined you get something
that is less objective—since it might not do to compare mathematical with musical or
literary genius, though we might feel quite at ease measuring such aspects of intelligence
separately.

The second contribution that our investigations of choice operators will provide is with
regard to some long standing discussions of the inter-related issues of abstraction and ideal
(or generic or arbitrary) objects. We will show, among other things, that much of the
discussion is flawed because it does not recognize the degree to which the claims being
made depend on the presumption that one is working with a very strong (i.e., classical)
logic.
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Part 1

Historical Context
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Chapter 2

The Origins and Development of
Hilbert’s Programme

2.1 Introduction

The development of the logical systems we will consider in this thesis was motivated by
the debates over the foundations of mathematics in the late nineteenth and early twentieth
century. There were several catalysts that brought foundational issues to the foreground
at the end of the nineteenth and beginning of the twentieth century. The development in
the nineteenth century of non-Euclidean geometry which undermined Kant’s position that
geometry was the a priori intuition of space,! and then Dedekind’s the construction of the

IEfforts were made to recover the Kantian view, for example Bertrand Russell’s fellowship dissertation,
An Essay in the Foundations of Geometry (RUSSELL, 1897), made an attempt at resolving the Kantian
position by generalizing on this point to allow for certain non-Euclidean geometries, allowing for geome-
tries that preserved “constant measure of curvature”. However, he ended up accidentally asserting the
impossibility of Reinmann geometry of which he had not heard (RUSSELL, 1959, p.31). Brouwer notes
this in his early paper on the “Nature of Geometry” (BROUWER, 1909A) where he states that Russell’s
early view that only the projective axioms in physics are a priori would work, except that for the recent
discovery that “this standpoint becomes untenable in light of modern mechanics, because space and time
are no longer considered as independent, and therefore not unambiguously defined”. However in his thesis
(¢f. BROUWER, 1907, pp.65-71), before becoming aware of Einstein’s theory of general relativity, Brouwer
discussed Russell’s attempt at reconstructing a Kantian view, admitting that it was not contradictory, but
in the end rejected it. Brouwer argued that Euclidean geometry was not a priori:

The three-dimensional Euclidean geometry is a six-parameter group, in which the motions
of empirical rigid bodies in our immediate neighbourhood can be represented with a high
degree of approximation... but it can be very well imagined that with the same organization
of human intellect another mathematical construction would have become as popular (cf.
BROUWER, 1907, pp.69-71).
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real numbers and the work of Cantor on transfinite numbers, which introduced the concept
of a completed infinite, both of which were rejected by early constructivists like Leopold
Kronecker.?

Another catalyst was the “antinomies of set theory”, that is the set theoretic paradoxes
(HILBERT, 1905) discovered by Russell and Zermelo. These were a profound motivating
factor in the development of several foundational programmes including intuitionism and
Hilbert’s metamathematical theory, as Jean van Heijenoort summarizes:

The paradoxes were extremely disconcerting to those then engaged in investi-
gating the logical foundations of mathematics, and, together with other factors,
they led to four major new developments, which occurred within a very short
span of time:

1) Hilbert’s metamathematics ;

(1)

(2) Brouwer’s intuitionism ;

(3) Zermelo’s axiomatic set theory ;
(4)

4) Russell’s theory of types .

Hilbert’s metamathematics was, at that time, a rudimentary and vague pro-
gram, which was to be developed only 20 years later. Brouwer’s intuitionism
was a profound new conception of mathematics that demanded much time to
be developed and understood (VAN HEIJENOORT, 2012, p.328).

Hilbert knew of Russell’s paradox quite early on, not only because Frege himself had
written to him about it in 1903 describing Russell’s letter that showed the paradox in
basic law five of Frege’s Grundgesetze (FREGE, 1893, 1903), but also because his protégée
Ernst Zermelo had discovered the same set theoretic paradox “three or four years” before
Russell (GRATTAN-GUINNESS, 2000, p.216).> However, van Heijenoort is correct that
both Hilbert’s and Brouwer’s programmes took 20 or so years to develop, so until then the
foundational programme of importance was logicism and the development of type theory.
But while Brouwer and Hilbert both gave lip service to the fact that the set theoretic
paradoxes were motivators for a new development of mathematical foundations, neither
approached them directly. Hilbert’s axiomatics became model theory as we know it today,
and while Brouwer did produce an intuitionistic set theory, it was not the basis of his
foundational arguments, but a consequence.

2Who once famously asserted that,“God made integers; all else is the work of man.” Original: “Die

ganzen Zahlen hat der liebe Gott gemacht, alles andere ist Menschenwerk” (VON WEBER, 1891, p.19).

3If it should seem an injustice that the paradox is known as Russell’s, Grattan-Guinness notes we should
not worry as Russell developed a version of the axiom of choice the summer before Zermelo (GRATTAN-
GUINNESS, 2000, p.340).
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Hilbert’s work is often divided into several periods. Hermann Weyl’s obituary, “David
Hilbert and his Mathematical Work” divides it neatly into five periods:

i. Theory of invariants (1885-1893).
ii. Theory of algebraic number fields (1893-1898).
iii. Foundations:

(a) Foundations of geometry (1898-1902),
(b) Foundations of mathematics in general (1922-1930).

iv. Integral equations (1902-1912).

v. Physics (1910-1922) (WEYL, 1944, p.617)

However, several people have pointed out this division does not take into account much
of the work Hilbert was doing in lecture courses, nor the overlap where Hilbert was working
or publishing in multiple areas. Hence we can extend his foundational periods: while it is
true that he published on foundations of geometry from 1898 to about 1902 and foundations
of arithmetic from 1900 to 1905; he also gave lectures on foundational topics in 1908, 1910,
1913, 1914/15, 1917, and 1918. In addition, much of the work he did on axiomatizing
physics is tightly connected with his programme for mathematics. In the 1920s onward he
continues to lecture and publish on foundations of mathematics and was also adding to his
Foundations of Geometry (see MOORE 1997, p.68, SIEG 1999, p.2-3, 8, and EWALD 1996,
p.1088 for details.)

In this chapter, first we will discuss Hilbert’s reaction to early constructive views, which
were restrictive with regard both to reasoning in mathematics, and the subject matter of
mathematics. Then we will briefly discuss Hilbert’s invariant theory papers and how the
success of such non-constructive efforts may have affected his views toward the importance
of non-constructive proofs, which will lead to a discussion of his early foundational work
first on geometry then on analysis. At first Hilbert wanted to justify what he took to be
standard mathematical practice by developing a consistent axiom system for arithmetic.
Hilbert’s second major foundational period produced what is often referred to as Hilbert’s
programme, this comes out of his reaction to what he saw as the work left to be done
after logicism. Hilbert’s programme was his attempt to provide a ‘finitist’ foundational
system for mathematics. We will continue to see the development of Hibert’s foundational
work throughout the period from 1910-1918, including Hilbert’s response to Russell and
Frege’s logicism and how this response informed the logical programme that led Hilbert,
Ackermann, and Bernays to introduce first the 7 and then the £ axioms in the early 1920s.
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The goal of the this chapter then is to tell the story of the development of Hilbert’s
choice operators in the context of the development of his views on mathematics, logic and
philosophy of mathematics. Hence the choice operators will be treated as an end point and
we will look at the various influences that brought about the development of Hilbert’s e-
calculus through that lens. The development of € and 7 were integral to Hilbert’s strategy
for developing his ‘finitist’ foundational system, especially as it pertains to his reaction
to the various forms of constructivism from the early constructivism of Kronecker, which
Hilbert rightly saw as a form of conservatism in mathematical methods, through to the
more philosophically grounded positions held by Poincaré, the French semi-intuitionists,
and Brouwer.

Various aspects of Hilbert’s metamathematical development influenced or were prereq-
uisites for development of choice operators. As noted above we start with the early desire
to protect indirect proof from Kroneckarian type criticism. Hilbert’s rejection of the un-
knowable in mathematics served as an early motivation for the development of Hilbert’s
programme. Hilbert’s development of the axiomatic method applied successfully to geom-
etry and then to arithmetic and his approach to developing manageable systems rather
than universal logics enabled him to separate out foundations from ordinary mathematical
practice. The development of the views about metamathematics as different from ordinary
mathematics was to some extent worked out as a reaction to Poincaré’s accusations of cir-
cularity, and his interest in Frege and Russell’s logicist programmes, which was tempered
by the failures of Frege and the limitations of Principia Mathematica. Dealing with the
criticism of Brouwer and Weyl inspired Hilbert’s own finitism with regard to metamathe-
matical reasoning.

Hilbert’s desire to protect what he referred to as “transfinite” reasoning from the crit-
icisms of constructivists led him to the strategy of providing a foundation that would be
‘finitist’ at the level of methamathematics to provide for classical logic at the level of ordi-
nary mathematics. This strategy ended of course with Godel’s incompleteness proof, but
the logical machinery that Hilbert invented for this purpose remains.

Hilbert saw the questions of foundations of mathematics not as obstacles to overcome,
but as questions that will have a final answer:

I should like to rid the world of the question of the foundations of mathemat-
ics once and for all by making every mathematical statement into a formula
that can be concretely exhibited and rigorously derived, and thereby bring
mathematical concept formations and inferences into such a form that they are
irrefutable and yet furnish a model [Bild] of the entire science (HILBERT, 1931,
p.1152).

The development of Hilbert’s 7 and e-operators must be seen in this light, as part of the
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machinery to provide methods for the foundation of basic number theory, despite the fact
that these operators smuggle in less than constructive assumptions.

2.2 Early Constructivism

Before presenting the development of Hilbert’s foundational programme, we should briefly
give a short account of Kronecker’s position, as it was the dominant view to which Hilbert
developed in opposition to, especially in the first phase of his foundational work.

For Kronecker analysis and specifically the then new method of treating the notion of
infinity as a number, as Cantor did, was unacceptable. Kronecker asserted that eventually
it would be shown that such methods were inexact and lacking rigour.*

Unfortunately a detailed account of Kronecker’s position in his own words is not avail-
able, as William Ewald points out: “Despite his deeply held philosophical convictions,
Kronecker’s writings on the philosophy of mathematics are scanty and contain little more
than a sketch of his position” (EwALD, 1996, p.942). Hilbert surveyed Kronecker’s phi-
losophy of mathematics in his 1920 lectures at Gottingen, listing the following aspects of
Kronecker’s views:

...he rejected set theory as a mere game of fantasy containing nothing but
illegitimate combinations that are no longer mathematical concepts. In number
theory all truths are indubitable, the proofs incontestable and immediately
comprehensible to common sense. This rests on their enduring checkability...

On the basis of his way of looking at things, Kronecker forbids already the
simplest irrational number v/2; he introduces the concept of the modulus 22 — 2
in place of this ‘inadmissible’ concept...

4Weierstrass recounts Kronecker’s assault on mathematical analysis in the wake of Cantor’s work,
quoting him as saying:

If T have time and strength, I myself will show the mathematical world that not only geometry,
but also arithmetic can lead the way for analysis and are certainly more rigorous. If I can
not do it, those who come after me will ... and they will recognize the inexactitude of all of
these findings which you term so-called analysis.

Original:

Wenn mir noch Jahre und Kréfte genug bleiben, werde ich selber der mathematischen Welt
zeigen, dass nicht nur die Geometrie, sondern auch die Arithmetik der Analysis die Wege
weisen kann, und sicher die strengeren. Kann ich es nicht mehr thun, so werden’s die thun,
die nach mir kommen... und sie werden auch die Unrichtigkeit aller jener Schliisse erkennen,
mit denen jetzt die sogenannte Analysis arbeitet. (KRONECKER quoted by WEIERSTRASS in
MITTAG-LEFFLER, 1900, p.151. My translation.)
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Kronecker told me personally that the statement that there are infinitely
many prime numbers makes no sense until one has shown that after every
prime number there is another prime number within a determinable numerical
interval...

And Kronecker restricts logic as well. Just as he forbids arbitrary operation
with the concepts ‘reducible’, ‘irreducible’; etc., so he stands towards the purely
logical propositions like the tertium non datur, whose applicability he admits
only under the condition that there is the possibility of deciding the existential
question by a finite procedure (HILBERT, 1920, p.944).

Besides accounts by other people, often those opposed to his position e.g. WEIER-
STRASS (1874-1888), VON WEBER (1891) and HILBERT (1920), we have a statement
of Kronecker’s philosophy of mathematics only in his paper “On the Concept of Num-
ber” (KRONECKER, 1887) and the introduction to his Lectures on the theory of numbers
(KRONECKER, 1901) which covers much the same material (EWALD, 1996, p.947 fn.a).

In KRONECKER (1887) he writes that finite arithmetical methods were the only ones
that we were able to treat a priori, and hence these were the only methods that were on
a firm basis:

The difference in principle between geometry and mechanics on the one hand
and the remaining mathematical disciplines (here gathered together under the
term ‘arithmetic’) on the other is, according to Gauss, that the object of the
latter, number, is merely our mind’s product, while space as well as time also
have outside of our mind a reality, whose laws we cannot completely prescribe
a priori (KRONECKER, 1887, Intro.)

Kronecker presented a view that ‘arithmetic’ grounds all of mathematics, by arthmetic
he meant, “all mathematical disciplines with the exception of geometry and mechanics—
especially, therefore, algebra and analysis” (KRONECKER, 1887, Intro.). But Kronecker
was sure that soon:

we shall one day succeed in ’arithmetizing’ the entire content of all these math-
ematical disciplines—that is, in grounding them solely on the number-concept
taken in its narrowest sense, and thus in casting off the modifications and ex-
tensions of this concept... (KRONECKER, 1887, Intro.)

Kronecker proceeded to define the integers and from there the laws of addition and mul-
tiplication of numbers (KRONECKER, 1887, §1-4), then he asserted that the “introduction
in principle of ‘indeterminates’” allows us to disregard “all the concepts that, properly
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speaking, are foreign to arithmetic — for instance, that of irrational algebraic numbers,”
and even, should we wish, negative numbers (KRONECKER, 1887, §5).

Kronecker was thus very much opposed to any sort of mathematical practice that was
not specifically reducible to the natural numbers. In contrast to this position Hilbert’s
first large success in mathematics, his invariant theory papers, was based on an infinitely
ranging non-constructive existence proof, which was exactly the sort of infinitiary reasoning
to which Kronecker objected. Hilbert’s programme, the development of his foundational
view, is often seen as a rebellion first against Kronecker’s constructivism and then only
later Brouwer’s (¢f. GRAY, 2000, 1998, 1999; Posy, 1974; REID, 1986). Gray asserts that
his opposition to Kronecker “dates from Hilbert’s activities in foundations of mathematics,
has been read back into the earlier period” (GRAY, 1998, p.24). However the story is more
complicated, Hilbert was aware of Kronecker’s objection to his work on invariant analysis
and clearly would have known that his claim, in “On the Concept of Number” (HILBERT,
1900a, §16), that his method will provide a “proof that the system of real numbers is
a consistent (complete) set”, would be rejected by Kronecker for whom even negative
integer’s were suspect (KRONECKER, 1887, §5). Hilbert certainly criticised Kronecker as
early as 1904 (see HILBERT 1905, p.130 ) and Hilbert generally does not mention Brouwer’s
foundational position until (HILBERT, 1923), after the point that his former Ph.D. student
Weyl converted to intuitionsim. Up until this period Hilbert generally uses Kronecker
and Poincaré as his foil when discussing constructive mathematics (see HILBERT 1920,
pp.944-945). However we should note that Hilbert’s desire to provide a finitist foundation
for mathematics and his attempts to provide axiomatizations of arithmetic show that he
took seriously the challenges and criticisms that views like Kronecker and other early
constructivists like Poincaré made. In fact Hilbert’s criticism of Kronecker’s “dogmatist”
views about integers was actually made from a more conservative position regarding their
existence and a was part of his attempt to provide a logico-mathematical foundation for
the concept of number, rather than taking even the concept of integer as a given (HILBERT,
1905, p.130).

2.3 The Road to Hilbert’s Programme

Hilbert’s programme is generally said to have developed in the period from 1917 to 1930
when the terms “‘formalism’ and ‘metamathematics’ became attached to his philosophy
and techniques.” However Hilbert’s first period of interest in foundations of mathematics
which ran until 1905 could be characterised as “axiomatics with proof and model theory”
(GRATTAN-GUINNESS, 2000, p.208). ® Before his production of this work on the founda-

SEwald like Weyl divides Hilberts career into several phases. Ewald describes this period as lasting
from 1898 to 1903, being when: “Hilbert’s career was devoted to the foundations of geometry and to the
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tions of geometry, Hilbert produced the work which brought him notoriety and put him
into conflict with those early constructivists whose views he would try to answer in his
foundational programme.

2.3.1 The Invariant Theory Papers

From 1885 to 1893 Hilbert published a series of papers that solved several long standing
problems in invariant analysis (HILBERT, 1885, 1887, 1890, 1893). Unlike Gordan’s earlier
proof of a basis for binary forms which was computational, that is constructive, Hilbert
provided an existence proof, which relied on the use of the law of excluded middle extended
to an infinite case.® The invariant theory papers, and specifically the proof of Hilbert’s
basis theorem, were greeted with mixed responses. Since Gordan’s proof there had been
little progress on what had become known as Gordan’s problem,” as Constance Reid writes
“in 20 years of effort by English, German, French and Italian mathematicians, no one had
been able to extend Gordan’s proof beyond binary forms” (REID, 1986, p.30). Hilbert’s
basis theorem® answered that question, but did not provide a construction of each of
the specific systems of invariants. Hilbert provided only an existence proof of the basis
theorem, a method well used in geometry, but not so accepted in analysis at the time
(pp-36-37 REID, 1986; GRAY, 2000, p.31). As Gray puts it, Hilbert’s proof was “decidedly
non-constructive” and “clear from everything Hilbert wrote that he thought it at most a
small step from geometry to algebra and back” (GRAY, 1997, p.8).”?

axiomatic method, with some excursions into the foundations of arithmetic” (EwALD, 1996, p.1088). As
we have noted 1905 was not the end of Hilbert’s interest in foundations and considering his lectures on
foundational topics in 1908, 1910, 1913, 1914/15, 1917, and 1918, dividing his interests into set periods
must always be understood with a grain of salt. That his views developed eventually into a more defined
programme though cannot be denied.

6There have more recently been several constructive proofs of the basis theory (GRAY, 1999, p.9). Gray
notes the result is recent citing (STURMFELS, 1993, p.11). The first proof I can find of it is by student of
Errent Bishop (TENNENBAUM, 1973).

“This problem could be stated as follows: “was there a basis, a finite system of invariants in terms
of which all other invariants, although infinite in number, could be expressed rationally and integrally?”
(REID, 1986, p.30).

8that states that “If R is a Noetherian ring, then so is any polynomial ring in a finite number of
indeterminates over R” (¢f. ZARISKI et al., 1958, pp.200-203)

9Gray gives a short description of Hilbert’s invariant theory papers:

The first of these four papers is a rich one, broaching the theory of syzygies, and asking for
the generalisation of Noether’s theorem to arbitrary dimensions... The second paper shows
how to use the basis theorem to illuminate the ideas of dimension, genus, order, and rank of
an algebraic variety, and so makes explicit contact with Kronecker’s work. Setting the third
paper on Gebilde [varieties] aside, we come to the famous paper in which the basis theorem
is proved. ... Only the final section of the paper is specifically addressed to the theory of
algebraic invariants (GRAY, 1997, p.8) .
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The result was therefore not immediately welcomed by all; Gordan objected to Hilbert’s
non-computational proof method remarking: “Das ist nicht Mathematik. Das ist Theolo-
gie” (“This is not Mathematics. This is Theology”) (NOETHER, 1914, p.18),'% in a letter
communicating his review of Hilbert’s papers to Felix Klein the editor of Mathematische
Annalen. Others realized the value of Hilbert’s result. Hermann Minkowski for example,
in a letter to Hilbert, wrote:

For a long while it has been clear to me that it could be only a question of time
until the old invariant question was settled by you — only the dot was lacking
on the ‘i’; but that it all turned out to be so surprisingly simple has made me
very happy, and I congratulate you (quoted in REID, 1986, p.37).

But it was Felix Klein, who would later bring Hilbert to Gottingen from Konigsberg,'t
who was Hilbert’s biggest advocate. He, as the editor of the Annalen Mathematische,
disregarded Gordan’s negative review and wrote to Hilbert that: “Without doubt this is
the most important work on general algebra that the Annalen has ever published” (quoted
in ROWE, 1989, p.195). And in this manner the use of existence proofs ranging over an
infinite class was tied to Hilbert’s first great mathematical achievement. In their defence
Hilbert was later to write:

The value of pure existence proofs consists precisely in that the individual
Construction is eliminated by them and that many different constructions are
subsumed under one fundamental idea, so that only what is essential to the
proof stands out clearly; brevity and economy of thought are the raison d’étre of
existence proofs. In fact, pure existence theorems have been the most important
landmarks in the historical development of our science. But such considerations
do not trouble the devout intuitionist (HILBERT, 1927, p.475).

Defence of existence proofs and the mathematical achievements that Hilbert saw flow-
ing from them was one of the early motivations for the development of the Hilbertian
foundational programme. Motivated to justify and protect his earlier victories, Hilbert
saw that pure existence proofs could be justified in analysis if it could be given a solid
foundation that answered the criticisms of Kronecker and other early constructivists. His
first attempts at this would lean heavily on his work on axiomatization of Geometry, so
that is where we turn to next.

10Note that as Hilbert’s method became much more accepted, Gordan relented and was quoted as saying,
“T have convinced myself that even theology has its merits.” (REID, 1986, p.37).

1On Klein’s building of the ‘Géttingen Empire’ in mathematics, an attempt to move the centre of
German mathematics from Berlin to Gottingen, see GRAY (2000, pp.23-35).
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2.3.2 From the Foundations of Geometry to the Foundations of
Mathematics

At the beginning of his career Hilbert, though an algebraist by training, focused on ge-
ometry, which he was concerned with throughout the 1890s, giving a course while still
a Privatedozent at Konigsberg on projective geometry in 1891 and one in 1894 on foun-
dational questions.'? In 1894, he published a short paper in which he derived a novel
proof that “the straight line is the shortest connection between two points” (HILBERT,
1894).13 Tn 1895, after moving to Gottingen, Hilbert gave special short course over Easter
in 1898 “On the concept of the infinite”, dealing with geometrical spaces and continuity
(GRATTAN-GUINNESS, 2000, p.207). Since as “part of the growing interest in axiomatics,
it had become clear that Euclid had not specified all the assumptions that he needed...
Hilbert decided to fill all the remaining gaps” (GRATTAN-GUINNESS, 2000, p.207). The
result of this effort was published as The Foundations of Geometry (HILBERT, 1899).1
The study of the foundations of geometry stayed an interest of Hilbert, who continued to
add to the book over the years. The original book (HILBERT, 1899) grew from 92 pages
to over 320 pages by the seventh edition (HILBERT, 1930). The first edition (HILBERT,
1899) consisted of seven chapters, the first listing five groups of axioms, and the second
focusing on independence and consistency of the axioms.!® In writing the The Foundations
of Geometry Hilbert developed our modern conception of an axiomatized system, setting
the stage for his development of metamathematics and what we now know as model theory.
The development of separate logical systems for different purposes, rather than a universal
logic, with all the problems of such systems, can be in some ways be traced to his attempt
to do separately for arithmetic what he had done for geometry. Much of Hilbert’s foun-
dational approach can be related to his understanding of what mathematicians use when
they reason about certain parts of mathematics, in geometry we do not need all the axioms
we use in algebra, and wvice-versa.

12These included: the independence of axioms, and axioms of connection and continuity i.e.‘ Archimedes’s
axiom’ (GRATTAN-GUINNESS, 2000, p.207).

I3He derives this as an exercise in the foundations of geometry on the “assumption that points, lines,
and planes are taken as elements” and the following axioms: the axioms of the elements’ mutual relations
(every line has two points), the axioms of segments and sequences of points on a line (that between two
points of a line there is a third, and that points can be ordered); and the axiom of continuity (that an
infinite sequence of points on a line can be extended) (HILBERT and BERNAYS, 1999, pp.108-109).

4The short book was one of a two volume special edition honouring Carl Friedrich Gauss and the
physicist Wilhelm Weber, conceived of by Klein.

15The other chapters were: “The Theory Of Proportion”, “The Theory Of Plane Areas”, “Desargues’s
Theorem”, “Pascal’s Theorem” and “Geometrical Constructions Based Upon The Axioms I-V” (HILBERT,
1899, 1902).
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2.3.3 Hilbert’s Problems

While Hilbert’s 1904 address to the international mathematics conference in Heidelberg,
“Uber die Grundlagen der Logik und der Arithmetik” (HILBERT, 1905) has been said to
mark the beginning of Hilbert’s foundational programme,'® Hilbert had already mentioned
the need for such a proof in the presentation of the second of the problems listed in his
famous 1900 address (HILBERT, 1900b) to the Third International Congress of Mathemat-
ics.!” In this address, Hilbert outlined a series of 23 ‘problems’ for mathematics in the next
century.’® In addition to these problems he presented a call to arms asserting that:

this conviction of the solvability of every mathematical problem is a powerful
incentive to the worker. We hear within us the perpetual call: There is a
problem. Seek its solution. You can find it by pure reason, for in mathematics
there is not ignorabimus (HILBERT, 1900b).

This optimistic call to arms was a response to a view put forth in Emil du Bois-Reymond’s
1872 address that there were limits to scientific knowledge (DU BoOIsS-REYMOND, 1872,
1880) often summarized in the maxim “ignoramus et ignorabimus”*® (see BARTOCCI et al.
2011, p.3, and, GRAY 2000, p.57).

Hilbert’s epistemic optimism held that for mathematics and physics that there are
no unknowable truths, or perhaps more generously, unsolvable problems. This is one
philosophical position that needs to be understood when comparing the motivations for
his foundational to those of constructivists. In addition the series of problems Hilbert
presented in 1900 included at least two that touch issues we will discuss in this thesis:
the first problem, which lead his student Zermelo to first formulate the axiom of choice
(ZERMELO, 1908), and the second problem, which called for a providing of a foundation for
mathematics, specifically one which would be resistant to the criticism of constructivists.

Hilbert’s opposition to to constructivist viewpoints, both the conservatism of Kronecker
and Brouwer’s later ideas, has often been connected with this epistemic optimism, that is,
the view that all mathematical problems have a solution. 2° Yet he was not deaf to their

16Tt was, Richard Zack writes, “the first time, he sketched his plan to provide a rigorous foundation for
mathematics via syntactic consistency proofs” (ZAcH, 2009).

1"Regarded even to this day as, “perhaps the most influential speech ever given to mathematicians” (
JOYCE 1997 quoted in HARDY et al. 2009 p.142, interestingly this sentence shows up in several other books
without attribution, e.g. SAXE 2002, p.26, CHIMAKONAM 2012 p.102).

18The oral address presented 10 problems, the written version (translated to French and available to the
congress attendees) provided the full 23 problems.

19“We do not know and will not know.” Note that du Bois-Reymond did not use this exact phrasing,
rather he discussed the ignoramus and the ignorabimus separately.

204.e. his rejection of the ignorabimus in mathematics.
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arguments, which lead him to attempt to develop a consistency proof for mathematics,
specifically for arithmetic, using finitary methods. Another important and central aspect
of Hilbert’s various research programmes was his use of axiomatic systems, first in his work
in geometry and then in arithmetic. Although he did not publish on foundational questions
between 1905 and 1917, he returned to these questions in his 1921 paper (HILBERT, 1923).
His return to such issues has been suggested to have been in response to what he saw as
Weyl’s defection to the intuitionism (WEYL, 1921).2!

Throughout his early writings on foundational issues Hilbert also rejected Frege’s logi-
cist view that arithmetic could be reduced to logic, arguing rather that concepts belonging
both were presupposed in the definition of the other (HILBERT, 1905, p.131), and hence
that they needed to be defined together. Hilbert thus rejected the idea that propositions
were primary in a logico-arithmetic system and began with developing his system from
‘entities’ (¢f. HILBERT, 1905, p.132ff.). It is not surprising then that he introduced the
7 and € axioms into his logical system when he returned to foundational investigations
(HiLBERT, 1923, 1926) linking as they do elements of the domains with a propositional
logic.

2.4 The Origin of the Ignorabimus

The famous expression of Hilberts that “there is no ignorabimus in mathematics” is often
mentioned (REID 1986, p.72, GrRAY 2000, p.58, McCARTY 2004, p.530, CORRY 2004,
p.102, BOTTAZZINI 2011, p.2) as response to Emil du Bois-Reymond.?> Emil du Bois-
Reymond was a well respected German physiologist, whose address, Uber die Grenzen
des Naturerkennens” (“On the limits of our understanding of nature”)? which he gave to

21Tn the words of Per Martin Lof:

A new phase in this controversy began in 1921 with the publication of Weyls paper Uber
die neue Grundlagenkrise der Mathematik (WEYL 1921), and that is what really fired it and
made it so bitter. (And it seems clear that it had to do with the fact that Weyl was after
all Hilberts doctoral student: he took his doctors degree with Hilbert, and I do not know,
but presumably Hilbert thought of him as the best of his doctoral students over the years)
(MARTIN-LOF, 2008, p.246).

22Brother of the mathematician Paul du Bois-Reymond.
23Which ended with the following passage:

With regard to the enigma of the physical world the investigator of Nature has long been wont
to utter his “Ignoramus” with manly resignation. As he looks back on the victorious career
over which he has passed, he is upheld by the quiet consciousness that wherein he now is
ignorant, he may at least under certain conditions be enlightened, and that he yet will know.
But as regards the enigma what matter and force are, and how they are to be conceived, he
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the of 1872 to the Society of German Scientists and Physicians, in Kénigsberg (Du Bors-
REYMOND, 1872) and elaborated on in his 1880 speech “Die sieben Weltrdthsel” (Seven
World Problems) before the Berlin Academy of Sciences (DU BO1s-REYMOND, 1880), be-
gan a wide ranging debate in the German speaking world on the nature and possibility
of scientific knowledge. The public debate that followed was referred to as the “Ignora-
bimusstreit” (McCARTY, 2004, p.523).2*

The “no ignorabimus” assertion is the key to much of the motivation of Hilbert’s pro-
gramme, also know as his “solvability thesis”; it also sets the background to Brouwer’s
reaction to Hilbert’s programme in his thesis, and early expressions of his rejection of the
excluded middle (BROUWER, 1907, 1908C). Hence it will be enlightening to look at the
origins of the debate.

Emil du Bois-Reymond stated in his 1880 speech that he was surprised at the reaction
to his earlier address and its claims of “the impossibility, on one hand, of comprehending
the existence of matter and force, and, on the other hand, of explaining consciousness, even
in its lowest degree, on a mechanical theory” which to him seemed “a truism” (DU BoOIs-
REYMOND, 1880, p.433). The original paper was well discussed and opinions were so
divided that du Bois-Reymond asserts that by 1880 the term “ignorabimus” had become
a “philosophical shibboleth”.

Du Bois-Reymond’s point was that certain foundational questions in the natural sci-
ences were unanswerable. Though the views of du Bois-Reymond were widely thought
to be Kantian, he himself rejected this classification. In fact, throughout both texts du
Bois-Reymond leans more heavily on Leibniz than any other philosopher, agreeing about
consciousness with Leibniz that even if “he could create an homunculus atom by atom

he might make the creature think, but not comprehend how it thought” (DU Bois-
REYMOND, 1880, p.435). His argument about the origin of matter and force is based on
what he considered the basic properties of matter, its divisibility. He describes atoms as
“infinitesimals” which are “regardless of its names ideally divisible” and to which “prop-
erties or a state of motion are attribute” (DU BO1s-REYMOND, 1872, p.21).

Likely more important than the details of the Emil’s du Bois Reymond’s argument, for
our interests in Hilbert’s reaction, is the fact that his brother, “Paul du Bois-Reymond’s
1882 monograph General Function Theory... [was| devoted to transplanting a similar skep-
ticism into the realm of pure mathematics” (MCCARTY, 2004, p.524).

Much of Paul du Bois-Reymond’s General Function Theory, is written as a form of a

must resign himself once for all to the far more difficult confession “Ignorabimus!” (pu Bois-
REYMOND, 1872, p.32)

24Denis Charles McCarty notes that Emil’s address “...unleashed a whirlwind of argument and counter-
argument in the press and learned journals over Ignorabimus that continued well into the 20th Century ”
(McCARTY, 2004, p.523).
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dialogue between an idealist and an empiricist who answer differently to various questions
about infinities and infinitesimals. For example the empiricist accepts that the unit segment
can be split into an unlimited points while the idealist expands on this asserting that the
number of these points is infinitely large. In this way the idealist “believes in the reality of
extensions of concepts that go beyond the imagination but are necessitated by our thought
processes”, while, on the other hand the “empiricist always remains within the limits of
the natural domain of imagination. He concedes and acknowledges the arbitrarily exact in
geometry but calls the ideally exact an axiom” (STOLZ, 1882, p.4).

Paul du Bois-Reymond distinguished between potentially and actually infinite sets,
noting that potential, but not actual, infinities “call into question” the law of excluded
middle (MCCARTY, 2004, p.525). He presents this account, possibly the first example of
a description of a lawless sequence, in the following manner:

One can also think of the following means of generation for an infinite and
lawless number: every digit is determined by a throw of the die. Since the
assumption can surely be made that throws of the die occur throughout eternity,
a conception of lawless number is thereby produced. Indeed the contemplation
of nature provides us with even better examples (DU BO1S-REYMOND, 1882b,
p.91).%

Paul du Bois Reymond argues that the lack of laws that encode sequences found in nature
give him reason to agree with his brother that we can never possess complete knowledge of
physical systems. Indeed the real infinitesimals that his idealist wishes to claim exist are
not definable if we accept du Bois-Reymond’s empiricist’s view of sequences.?® In addition
unlike Hilbert, and later Brouwer, who despite their differences, both saw mathematics
as an autonomous subject, du Bois-Reymond saw his empiricism as needing a foundation
in the study of “the simplest constituents of our thinking, the representations” i.e. the
physiological psychology studied by his brother Emil (McCARTY, 2004, pp.529-530).

Hence what became known in German academic circles as the “Ignorabimusstreit”
would have been clearly in Hilbert’s mind in 1900 when giving his address to Paris. But not
only would he be reacting in general to the concept that there were unsolvable problems

25Qriginal:

Man konnte auch an folgende Entstehungsweise einer endlosen und gesetzlosen Zahl denken:
Jede Stelle wird einfach ausgewiirfelt. Da doch die Annahme gemacht werden darf, dass dies
Wiirfeln von Ewigkeit her oder in alle Ewigkeit stattfindet, so wére hiermit eine gesetzlose
Zahl in der Idee hergestellt. Indessen die Naturbetrachtung liefert uns bessere Beispiele

My translation, extended and adapted from version quoted in MCCARTY (2004, p.525).
26McCarty points out there are many “structural similarities between this argument of du Bois-Reymond
and Brouwer’s weak counterexamples” (MCCARTY, 2004, p.525), which we will discuss in the next chapter.
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in the sciences, he would be defending mathematics from this claim, and defending its
autonomy.

The assertion of an ignorabimus fits well within the constructivism of Kronecker and
other 19th century mathematicians. The preservation of existence proofs were part of
Hilbert’s defence of mathematics; but the methods, of infinitely ranging existence proofs,
which Hilbert had adapted from his work on geometry could not answer the demands of
constructivism. Hence Hilbert’s attempts at a what he called a “finitary” foundational
project. Hilbert was attempting to preserve mathematical practice from ideological re-
strictions. And practice was key to why Hilbert introduced his 7 and e-operators, which
formalized the manner in which mathematicians proved facts about arbitrary objects of a

type.

2.5 Axiomatizing Arithmetic

What we know as Hilbert’s programme was his attempt to provide formalization, specif-
ically a axiomatization of all of mathematics and a proof of the the consistency of math-
ematics. In response to constructive criticism of Hilbert’s proof methods in his invariant
theory papers, and to the Ignorabimusstreit Hilbert wanted this consistency proof to be
created using only “finitary” methods. Though Hilbert’s programme took this form only
in the 1920s, the origins of it can be seen as nascent even in the second problem in his
famous 1900 Paris address. We will trace the development of his programme through his
early attempts to axiomatize arithmetic and his development of his logical methods.

As mentioned above it was the second problem of Hilbert’s famous 1900 Paris address
“The Compatibility of the Arithmetical Axioms” (HILBERT, 1900b, pp.447ff.) that actually
transformed into what became the focus of what is called Hilbert’s programme. Axiom
systems had existed before Hilbert, of course, however what was new with Hilbert in the
use of the axiomatic method was its model theoretic nature. As Michael Hallett notes, the
difference between Hilbert’s axiom systems and those that preceded him is that Hilbert
separates a “certain body of facts” that are given a special status in relation to the system
as a whole (HALLETT, 1996, pp.136-137).

The service of axiomatics is to have stressed a separation into the things of
thought [die gedanklichen Dinge| of the [axiomatic| framework and the real
things of the actual world, and then to have carried this out (Hilbert 1922-1923
lecture quoted in HALLETT, 1996, p.137).

In his 1922 paper “Die Bedeutung Hilberts fiir die Philosophie der Mathematische”
(“On the Meaning of Hilbert’s Philosophy of Mathematics”), Bernays discusses the differ-
ence between Hilbert’s and pre-Hilbert axiom systems. Before Hilbert, he writes that an
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axiom system was created by starting “with a few basic principles, of whose truth one is
convinced, [one| places these at the beginning as axioms” developing theorems from these
using logical deductive procedures. In contrast Hilbert’s axioms:

...are not judgements of which it can be said that they are true or false. Only in
connection with the axiom system as a whole do they have a sense. And even
the entire axiom system does not constitute the expression of a truth. Rather
the logical structure ... is in Hilbert’s sense purely hypothetical... The axiom
system itself does not express a state of affairs but rather represents a possible
form of a system of connections, a system which is to be investigated according
to its internal properties (BERNAYS, 1922b, pp.95-96)

Hilbert’s axiomatic method focused on establishing the consistency of the axioms. All
the atomic objects are thus introduced in axioms rather than being added in an ad hoc
manner. Hence Hilbert’s axiomatising of numbers (HILBERT, 1900a, 1905) begins with
the primitives (e.g 1, =) but does not try to reduce them further, say to equivalence sets.
Rather their nature is expressed in the axioms, i.e. what can be deduced from them. As
Michael Hallett has pointed out, Hilbert was not interested in a universal logic, a logica
magnus in van Heijenoort’s terminology,?” like Russell and Frege, so “there is no necessity
to a say anything about the primitives prior to the development of the theory. Thus, in
particular, there is not necessity (as regards the primitives) for a strong ambient logic”
(HALLETT, 1996, p.135-141).

2.5.1 Hilbert’s “On the Concept of Number”

Hilbert’s Paris address is more famous but it was in an earlier paper published the same
year, “Uber den Zahlbegriff” (“On the Concept of Number”) (HILBERT, 1900a), which is

27

van Heijenoort described the difference between the two types of logical programmes, logica magnus
and logica utens:

. over what domain are the quantifiers supposed to range?” At this point the opposition
between absolutism and relativism in logic strikes us with full force. For an absolutist, there
is just one domain, a fixed and all-embracing universe (either on one level or hierarchized in
several levels) which comprehends everything about which there can be any discourse. Such
was the conception of Frege, such was also the conception of Russell, though for him this
universe was stratified according to the theory of types. Under the name of logica magna, such
a universal system has been the constant dream among logicians. Logicism is a modern form
of logica magna. The well known diculties with logicism have led contemporary logicians, for
the most part, away from that dream. Rather than being a logica magna, present-day logic is
a logica utens; systems are introduced, here and there, according to needs. Different domains
are successively considered for interpretations. In that sense, relativism has at present the
upper hand (VAN HEIJENOORT, 1985, pp. 79-80)
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where Hilbert first tackled the axiomatizing of arithmetic and which can be seen as his first
move in what would become his wider foundational programme. This paper can be seen as
a rhetorical response to Kronecker’s paper of thirteen years earlier of the same name (cf.
KRONECKER, 1887). In his 1887 paper, Kronecker introduced the integers in a manner
Hilbert describes as “genetic”. Kronecker further argued that the use of algebraic numbers
is unnecessary in that one can reduce all higher algebraic terms to natural numbers.

Hilbert begins by describing what he terms the “genetic method”. The genetic method
of constructing number starts with imagining the: “further positive integers 2, 3, 4 ...
as arising through the process of counting” after which “one develops their laws of cal-
culation” including universally applicable “subtraction” through which “one attains the
negative numbers.”?® Next, fractions are defined as a pair of numbers such “that every
linear function possesses a zero,” then finally the real numbers are defined “as a cut or
a fundamental sequence” which means that “every entire rational indefinite (and indeed
every continuous indefinite) function possesses a zero” (HILBERT, 1900a, p.109-211).

The genetic method, Hilbert states, can be contrasted to the axiomatic method used in
geometry which postulates elements and then “brings these elements into relationship” by
means of the axioms “of linking, of ordering, of congruence and of continuity.” He writes
that, these axioms must be shown to be consistent and complete (HILBERT, 1900a, §3)
and then states the following opinion:

My opinion is this: Despite the high pedagogic and heuristic value of the genetic
method, for the final presentation and the complete logical grounding [Sicherung]
of our knowledge the axiomatic method deserves the first rank.

Hilbert then describes the form that the axiomatic method should take with reference to
“the theory of the concept number”:

We think a system of things [denken ein System von Dingen|; we call these
things numbers and designate [bezeichnen| them by a,b,c,... We think these
numbers in certain reciprocal relationships [Beziehungen| whose exact and com-
plete description occurs through the following axioms (HILBERT, 1900a, §7).

Hilbert presented his axiom system for arithmetic, which describe the real numbers ax-
iomatically as “an ordered Archimedean field that cannot be embedded in any larger such

field” (EwALD, 1996, p.1090), as follows:

e axioms I 1-6, entitled “Axioms of connection,” defined addition and multiplication;

28 A step we can contrast to Kronecker’s paper of the same name where he suggest one can dispense with
negative integers (KRONECKER, 1887, §5)
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e axioms Il 1-6, entitled “Axioms of calculation,” covered the use of the equality
relation;

e axioms III 14, entitled “Axioms of ordering,” provided ordering by inequalities; and
finally

e axioms IV 1-2 entitled “Axioms of continuity” were the “Archimedian axiom” which
stated:

If a > 0 and b > 0 are two arbitrary numbers, then it is always possible
to add a to itself so often that the resulting sum has the property that
a+a+..+a>0b.

i.e. the real numbers formed an Archimedian field, and the “Axiom of completeness”:
which stated:

It is not possible to add to the system of numbers another system of things
so that the axioms I, II, III, and IV-1 are also all satisfied in the combined
system; in short, the numbers form a system of things which is incapable
of being extended while continuing to satisfy all the axioms (HILBERT,
1900a).

The completeness axiom stood out in that it was not directly about the real numbers.
Ewald notes that the axiom “was criticized at the time both for its logical complexity... and
for not obviously being the statement of a continuity condition for the real line” (EWALD,
1996, fn. b, pp.1090-1091).2° After presenting these axioms Hilbert then confidently
remarked that: “To prove the consistency of the above axioms, one needs only a suitable
modification of familiar methods of inference” (HILBERT, 1900a, §16). Such a “suitable
modification” was obviously not easily found and Hilbert continued in his quest to prove the
consistency and completeness of arithmetic up until Godel gave his famous incompleteness
proofs.

However in his next paper on the subject (HILBERT, 1905) Hilbert changes his method
and provides a syntactic consistency proof.

2.5.2 Hilbert “On the Foundations of Logic and Arithmetic”

In 1904 Hilbert addressed the “Third International Congress of Mathematicians” and
sketched his plan to provide a rigorous foundation for mathematics, published as ‘On

298pecifically by Poincaré for being impredicative (POINCARE, 1906)
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the Foundations of Logic and Arithmetic’ (HILBERT, 1905)3°, specifically by showing the
consistency of arithmetic.

Hilbert discussed the positions and labelled the views of others who had investigated the
foundations of number dividing them into two groups. In the first group, whom he asserted
did not investigate “deeply into the essence of the integer” Hilbert put Kronecker, whom he
labelled a “dogmatist”, and whose restrictive philosophy of mathematics he rejected assert-
ing that his philosophy of mathematics accepted the integer as dogma without providing
a foundation; Hermann von Helmholtz whom he labeled an “empiricist”, and whose views
he rejected because they were to his mind not just finitist, but unable to deal with large
finites; and Elwin Bruno Christoffel, whom he labelled an “opportunist”, whom, though
an opponent of Kronecker’s views qua the value of irrational numbers, did not succeed in
giving “a pertinent refutation of Kronecker’s conception” (HILBERT, 1905, p.130). Then
Hilbert turned to those whom he felt had probed “more deeply into the essence of the inte-
ger” | these included Gottlob Frege, Richard Dedekind and Georg Cantor. However Hilbert
realised that Frege’s logicism was vulnerable to set theoretic paradoxes, and that: “from
the very beginning a major goal of the investigations into the notion of number should be to
avoid such contradictions and to clarify these paradozes” (HILBERT, 1905, p.130, emphasis
in original). Dedekind’s method Hilbert labelled as “transcedental” damning it as using a
similar method of “philosophers”, because it uses the concept of the “totality of all objects”
which he asserted would lead to a contradiction. Finally he assessed Cantor’s work as “leav-
ing room for subjective judgement” in distinguishing between consistent and inconsistent
sets, praising him for noticing this distinction, while criticising him for not providing clear
criteria with which to distinguish the two (HILBERT, 1905, p.131). Here we begin to see a
foreshadowing of Hilbert’s approbation of Whitehead’s and Russell’s Principia Mathemtica
which would lead Hilbert in 1917 to proclaim their “enterprise of axiomatizing logic” as
the “crowning achievement of the work of axiomatization” (HILBERT, 1917, p.9).

After rejecting the above methods of grounding the concept of integer, Hilbert presents
his own. He writes that the method should be axiomatic, but at this time, he rejects the
logicism of Frege:

Arithmetic is often considered to be a part of logic, and the traditional fun-
damental logical notions are usually presupposed when it is a question of es-
tablishing a foundation for arithmetic. If we observe attentively, however, we
realize that in the traditional exposition of the laws of logic certain fundamen-
tal arithmetic notions are already used, for example, the notion of set and, to
some extent, also that of number (HILBERT, 1905, p.131)

30Grattan-Guinness points out that the original title was simply ‘Uber die Grundlagen der Arithmetik’
but was changed for publication to ‘Uber die Grundlagen der Logik und der Arithmetik’ perhaps to avoid
confusion with Frege’s publication of the same name (FREGE, 1884)
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Hilbert first introduces an object, or rather a “thought-object... denoted by a sign... 1
(one)”. This (simple) object he then concatenates in combinations e.g.: “11, 111, 1111,”
and combinations of combinations e.g.: “(1)(11), (11)(11)(11), ((11)(11))(11), ...” then he
adds a second simple object “=" and forms combinations with it:

Next he introduces the notion of differing combinations: “combinations deviate in any
way from each other with regard to the mode and order of succession in the combinations”,
and divides the combinations into two classes: of entities and of nonentities. A combination
is a “true proposition” if it belongs to the class of entities, and its negation true if it belongs
to the class of non-entities. He then introduces notation for implication, ‘and’” and ‘or’.

Hilbert now introduces his axioms (1) and (2)3!

These two axioms define the notion represented by ‘=" according to Hilbert, and the
consequences of the two axioms are particular sequences of 1s and =s. Note though that
axioms (1) and (2) do not provide any sentences of the form —a (HILBERT, 1905, pp.131-
132).

Hilbert adds the symbols for belonging to a infinite set the ‘following’ operation and

an ‘accompanying’ operation and uses this notation to introduce the following axioms??:

(3)f(rev) = (f')ev
4)(f(rer) = flyev)) = (rev = yev)
(5)~(f(rev) = lev)

Now he questions as to whether such axioms could create a contradiction. He notes
that only (5) can give rise to axioms of the form —a, and hence asserts that any axiom
that would contradict (5) would be of the form:

(6)E|l'f(l'€U) = 1€U

31T have used modern notation. Hilbert used: ‘| for implication, ‘u.’(und) for conjunction, and ‘o.’
(oder) for disjunction; Z for negation; and A(z") for universal and A(x°) for the existential quantifiers.
32which he writes, ux, f and § respectively
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At this point he shows that all the formulas of the form a = b that can be generated
using the axioms have the quality of being “homogeneous” i.e. are of the same number of
simple objects on either side of the = sign, and notes that (6) is a homogeneous equation,
and so provides a syntactic consistency proof of his axiom system (HILBERT, 1905, pp.133-
134).

Hilbert’s goal in this paper was to “develop logic together with analysis in a common
frame, so that proofs can be viewed as finite mathematical objects; then show that such
formal proofs cannot lead to a contradiction” (SiEG, 1999, p.7). HILBERT (1905) thus
shows several features of his later programme. The first is the desire for a consistency
proof, specifically one that works on the syntax of the system. Hilbert’s later programme
focuses on providing a finitist foundation and here we see Hilbert’s first real attempt to
deal with Kronecker’s position, on his own terms. Poincaré’s response to Hilbert’s 1904
address would further refine his approach to his programme.

2.5.3 Poincaré’s Response to Hilbert (1905)

Poincaré contrasts Hilbert’s efforts in this paper with Russell’s logical system3?, noting
that for “Russell any object whatsoever, which he designates by x, is an object absolutely
undetermined about which he supposes nothing; for Hilbert it is one of the combinations
formed with the symbols 1 and =” (POINCARE, 1906, pp.1039-1040). This means that there
may not be the introduction of undefined objects only combinations of defined objects.

Poincaré notes that the “contrast with Russell’s viewpoint is complete” this is because
according to Poincaré:

Russell is faithful to his point of view, which is that of comprehension. He
starts from the general idea of being, and enriches it more and more while
restricting it, by adding new qualities. Hilbert on the contrary recognizes as
possible beings only combinations of objects already known; so that (looking at
only one side of his thought) we might say he takes the viewpoint of extension
(POINCARE, 1906, p.1040).

Poincaré asserts that this difference can be seen in Hilbert’s criticism of Fregean logi-
cism, specifically in naive set theory’s susceptibility to paradoxes. Noting that: “in
Hilbert’s eyes, to take, in an intransigent fashion, the point of view of comprehension
(as Russell does) is to be lacking in precision and rigour, and to expose oneself to contra-
diction” (POINCARE, 1906, p.1039-140). Though Poincaré does not dwell on the question,
and criticises Hilbert use of complete inductions the principle of induction, he asserts that

33That is the system presented in RUSSELL (1903).
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“the example of Burali-Forti ... inclines me to say that Hilbert is right” (POINCARE, 1906,
p.1039-140).

2.5.4 Hilbert’s 1905 Lecture Course ‘Logical Principles of Math-
ematical Thought’

In the lecture course on the ‘Logical principles of mathematical thought’ in 1905 Hilbert
had more time to expand on the paper he had given in 1904 (HILBERT, 1905). The
course began by contrasting differing methods of presenting arithmetic: the geometrical,
by appeal to diagrams; the genetic, where rationals were ordered pairs of integers, and
irrationals treated as decimal expansions; and the axiomatic. Again his preference as in
(HiLBERT, 1905) was the axiomatic. He followed along the lines of his paper, but with
much more attention to consistency and independence. The lectures were not only focused
on providing axiom systems for arithmetic and geometry but also physical systems and
probability (see GRATTAN-GUINNESS 2000, p.215 and ZAcH 1999, p.333). Hilbert was
developing his logical methods, which he would take up again in 1917. He starts the course
off by presenting first set theory and introducing the paradoxes discovered by Russell and
Zermelo, later noting:

“The paradoxes we have just introduced show sufficiently that an examination
and redevelopment of the foundations of mathematics and logic is urgently
necessary” (HILBERT 1905 Lectures quoted in ZACH, 1999, p.333).

Hilbert presents, in these lectures, an algebraic presentation of propositional logic much
like that used in the Heidelberg lecture, HILBERT (1905)3!

It would now have to be investigated in how far the axioms are dependent and
independent of one another [ . . . | What would be most important here,
however, is the proof that the 12 axioms do not contradict each other, i.e., that
using the process defined one cannot obtain a proposition which contradicts
the axioms, say, X +X = 0. These are only hints which have not been carried
out completely as of yet, and one still has free reign in the details; generally
speaking this whole section supplies material for the ultimate solution of the
interesting questions, rather than give the ultimate solution (HILBERT quoted
in ZACH, 1999, p.334)

)

34In these lectures Hilbert uses “=’ for identity, ‘| * for implication, and in a reverse from normal © -
for disjunction and * 4+’ for conjunction” and, 0 for truth and 1 for falsehood and X for the negation of X
(GRATTAN-GUINNESS, 2000, p.215).
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As seen above much of what he needs for this has been presented in 1905. Zach notes
also that Hilbert presents a “nonderivability proof using an arithmetical interpretation of
the axioms” (ZAcCH, 1999, p.334). In addition Hilbert shows that “every propositional
formula can be brought into one of two normal forms” by using de Morgan’s laws to
show that all propositions can be turned into sums and products of atomic propositions
and their negations, then “using the distributive law, this can be rewritten as a sum
of products” (HILBERT 1905 lectures quoted in ZAcH, 1999, pp.334-335). Hilbert also
discussed consequence, interpreting implication using the standard classical definition of
the material conditional “Y" follows from X if X - Y = 0" (HILBERT 1905 lectures quoted
in ZACH, 1999, p.335). Hilbert proves this about consequence:

A proposition Y follows from another proposition X if and only if it is of the
form A - X, where A is some proposition. To deduce is to multiply correct
propositions with arbitrary propositions. (HILBERT 1905 lectures quoted in
ZACH, 1999, p.335).

Hilbert asserts that A is to be defined as a proof. He then uses his normal form
theorem as the first attempted proof of decidability for the propositional calculus (ZACH,
1999, p.335). This is an example of what Hilbert was looking for in his Paris address when
he declared that there is no Ignorabimus. But as Zach notes, there are several problems
with his presentation, including, “Hilbert’s earlier error of claiming that the normal form
for a given formula is unique” (ZACH, 1999, p.336). Hilbert’s previous method could not
work because:

For Hilbert’s procedure to work, we would not only have to be able to enumerate
all possible proofs A, but also be able to check if A-(a+b+---) =Y . This
would presumably have to be done by comparing normal forms, since no other
method—e.g., truth tables—is available. But normal forms are not unique, so
there is no guarantee that the left and right side will result in the same one
(ZAcH, 1999, p.336).

Still this course presents many of the aspects of Hilbert’s programme that he would not
come back to until 1917. As Zach puts it:

Here, in 1905, one of Hilbert’s aims in the foundations of mathematics is made
almost explicit, namely the aim to provide decision procedures for logic on the
one hand, and particular systems of mathematics and science, e.g., arithmetic,
on the other (ZACH, 1999, p.336).
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2.6 The Middle Period

Hilbert, though he did not publish on the foundations of mathematics during the period
from 1905 to 1917, did however give several lecture courses on set theory, logic and the
foundations of mathematics and physics:

Hilbert lectured on Zahlbegriff und Prinzipienfragen der Mathematik [The Con-
cept of Number and Principle Issues of Mathematics] (Summer 1908), on El-
emente und Prinzipienfragen der Mathematik [Elements and Principle Issues
of Mathematics|(Summer 1910), on Grundlagen der Mathematik und Physik
[Foundations of Mathematics and Physics|(Summer 1913), Prinzipien der Math-
ematik [Principles of Mathematics] (Summer 1913), Probleme and Prinzipien
der Mathematik [Problems and Principles of Mathematics](Winter 1914/15),
and on Mengenlehre [Set Theory| (Summer 1917) (STEG, 1999, p.8).3.

Wilfried Sieg notes that none of the courses “broke new ground” and in none but the
ones given in the summer of 1905 does he take up the proof theoretic approach of his 1904
paper (HILBERT, 1905) (SIEG, 1999, p.9). In the lecture notes of 1910 Hilbert does provide
an extended discussion of the “set theoretic antinomies”. As Sieg writes: “This time the
fundamental problem is seen as related to what Hilbert calls genetische Definitionen,” the
genetic definitions that Hilbert discussed in his papers Uber den Zahlbegriff (HILBERT,
1900a). This discussion linkes his previous discussion of Kronecker “to the future, i.e., to
a fully developed finitist standpoint” (SIEG, 1999, p.9).

There is no need to consider irrational numbers; the geometric series 1+ 1/2 +
1/4+1/8+ “and so on” is already an example. Not even formulas in which finite,
but only indeterminate whole numbers n occur are immune to our critique. To
be able to apply them one sets n :: 1,2,3,4,5, “and so on”. Kronecker who
intended to reduce all of mathematics to the whole numbers was consequently
not radical enough, for n” does occur in his formula. He should have restricted
himself to the specific numbers 7, 15, 24. Thus, one sees what kind of difficulties
have to be faced when calculating with letters. Already the simple formula
a+b=0b+ a can be attacked.

...Despite the high pedagogic and heuristic value of the genetic method, for
the final presentation and the complete logical grounding of our knowledge the
axiomatic method deserves to be preferred (HILBERT 1910 lecture quoted in
SIEG, 1999, p.10).

35For more information see also Vito Michele Abrusci’s (ABRUSCI, 1989) and Volker Peckhaus’ surveys
of Hilbert’s lectures (PECKHAUS, 1990, 1994)
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He then presents an axiom system for natural numbers and notes that it is the “first step
in the foundational investigation”:

if we set up the axioms of arithmetic, but forego their further reduction
and take over uncritically the usual laws of logic, then we have to realize that
we have not overcome the difficulties for a first philosophical-epistemological
foundation; rather, we have just cut them off in this way (HILBERT 1910 lecture
quoted in SIEG, 1999, pp.10-11).

At this point Hilbert suggests that we can further reduce the axioms given to the laws of
logic. He does not do this though, and this part of his project will have to wait until 1917
(S1EG, 1999, p.11).

2.6.1 Hilbert and Logicism

As noted above Hilbert’s foundational periods are often times divided into two periods from
1900 to 1905 and from 1922 to 1931, however these dates are based on the publications of
the early papers on arithmetical foundations (HILBERT, 1900a,b, 1905) and the papers on
mathematical logic HILBERT (1923, 1926, 1927) but fail to note his address on “Axiomatic
Thinking” HILBERT (1917, 1918) (see SIEG 1999, p.2-3, MOORE 1997, p.68) and of course
his courses from 1917/18, 1920 “The problem of mathematical logic” (HILBERT, 1920), and
1921/22. At first Hilbert’s goal seemed to be only to derive a consistent system, but by 1913
the logicist programme seemed to have achieved this much success, Hilbert refers to Russell
and Whitehead’s Principia Mathematica (WHITEHEAD and RUSSELL, 1910, 1912, 1913) in
glowing terms in his 1917 address®® “Axiomatische Denken” (Axiomatic Thinking) stating
that, “In the completion of this extensive enterprise by Russell for the axiomatization of
logic one can behold the crowning of the work of axiomatization in general” (HILBERT,
1918, p.8). And in fact it would be one of Russell’s innovations in the Principia, specifically
the 7»operator, that would lead Hilbert to develop the 7 and e-operators.

Frege and Hilbert’s early exchange about the nature of axiomatic systems and the
discovery of Russell’s paradox or rather the discovery of how it applied to Frege’s basic law
V of his Grundgesetze der Arithmetik (FREGE, 1893, 1903) had originally made Hilbert
critical of the logicist programme. In Hilbert’s address to the international congress of
mathematician in Heidelberg we have him noting that the distinction between mathematics
and logic is not clear:

Arithmetic is often considered to be part of logic and the traditional fun-
damental, logical notions are usually presupposed when it is a question of es-
tablishing a foundation of arithmetic. If we observe attentively, however, we

36Which he gave in neutral Zurich, where he invited Paul Bernays to work with him at Gottingen.
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realize that in the traditional exposition of the laws of logic certain fundamen-
tal arithmetic notions are already used, for example, the notion of set and, to
some extent, also that of number. Thus we find ourselves turning in a circle,
and that is why a partly simultaneous development of the laws of logic and
arithmetic is required if paradoxes are to be avoided ( HILBERT 1905, p.131
translated in ZAcH 2003, p.211).

Hilbert returned to writing on foundational issues, in his 1917/1918 paper “Azioma-
tisches Denken” (HILBERT, 1917, 1918) where he seems to have actually embraced some
aspects of logicism. By this time Hilbert’s concerns with set theoretic paradoxes have been
dealt with by the development of Russell’s type theory.

In his 1917 address Hilbert details the nature of what he sees as the place for the
axiomatic method in math and the neighbouring sciences. First “the facts of a specific
field of more or less comprehensive knowledge” are collected and “set in order”. This
ordering of facts is done with the aid of a “framework of concepts” which Hilbert notes
becomes the “theory” of the field of knowledge. The “framework of concepts” is defined by
him as the logical relation between concepts that corresponds to first the relation between
the concepts and objects of the field of knowledge, and second the relation of the facts of
the field of knowledge and relations of concepts to one another (HILBERT, 1918, p.1).

He asks what criteria must such a successful framework satisfy:

If the theory of a field of knowledge, that is, the framework of concepts that
represents the theory, is to serve its purpose, namely the orientation and order,
it must then satisfy chiefly two fixed demands: it must offer, first, a general
view of the dependence or independence of the propositions of the theory and,
second, a guarantee of consistency of all propositions of the theory. In particu-
lar; the axioms of each theory have to be proved in accordance with these two
viewpoints (HILBERT, 1918, p.3).

With regard to independence results, Hilbert gives several examples: “parallel axiom
in geometry offered the classic example for the examination of independence of an axiom”;
“arbitrary forces,” and “arbitrary secondary conditions” in classical mechanics; and in
the analysis of “real numbers” he gives the example of the Archimedian axiom which is
“independent of all other axioms of arithmetic” again drawing comparisons with physics
(HILBERT, 1918, pp.4-5).

After presenting these examples Hilbert now turns to consistency, with which he is
much more concerned. He notes that consistency is “manifestly of greater importance,
since the presence of a contradiction in a theory manifestly imperils the stability of the
entire theory” (HILBERT, 1918, p.6). Not only is it important, Hilbert notes that it is often
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contentious as “[t|he understanding of the internal consistency is linked to difficulty even
in the long accepted and flourishing theories” (HILBERT, 1918, p.6). This happen Hilbert
says because: “It often happens that the internal consistency of a theory is considered
self-explanatory while, in truth, deep mathematical developments are necessary for proofs
” (HILBERT, 1918, p.6).

Moving from examples in physics to mathematics, Hilbert states that in physics the
changes in axiom systems are based on observation of the physical world, but notes that,
“the situation changes, however, if contradictions appear in purely theoretical fields of
knowledge”. He gives the example of the “paradox of the set of all sets” noting that
“distinguished mathematicians as Kronecker and Poincaré for instance felt induced to
deny set theory ...any justification of existence” (HILBERT, 1918, p.7). Hilbert credits the
axiomatic method for resolving the paradox:

As he [Zermelo| set up suitable axioms to restrict, on the one hand, the arbi-
trariness in the definitions of sets themselves and, on the other, the admissibility
of statements on their elements in a specific way, Zermelo succeeded to develop
set theory in such a manner that the paradoxes under discussion fall away and,
for all restrictions, the purport and applicability of set theory remains the same
(HILBERT, 1918, pp.7-8).

Hilbert asserts that for set theory as well as in physical cases, the contradictions were
“brought out in the process of developing a theory” and were eliminated as the definition of
the system was revised. Hilbert thus felt that in a properly developed axiomatic systems,
“contradictions are always altogether impossible in a field of knowledge founded on the
erected system of axioms” (HILBERT, 1918, p.8).

Like he found in geometry, Hilbert notes that the consistency of any axiom system that
depends upon the consistency of arithmetic can then be reduced to that problem, pointing
out that “no doubt for the fields of physical knowledge, too, it is always sufficient to reduce
the question of inner consistency to the consistency of arithmetic axioms” (HILBERT, 1918,
p.8). Likewise he continues “the consistency of the axiomatic system for real numbers is
reduced, through the use of set theoretic concepts, to the same question for integers”
(HILBERT, 1918, p.9). At this point there is nowhere else to go, Hilbert writes:

Only in two cases, namely if it is a question of the axioms of integers themselves,
and if it is a question of the foundation of set theory, this mode of reduction
to another specific field of knowledge is manifestly impracticable, since beyond
logic there is no more discipline to which an appeal could be lodged (HILBERT,
1918, p.9).
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Hence the necessity to “axiomatize logic itself and then to establish that number theory
as well as set theory is only a part of logic,” which at this point Hilbert writes has finally
been accomplished by Russell and Whitehead (HILBERT, 1918, p.9). However Hilbert has
not completely bought into the logicist programme, believing that there are still “difficult
epistemological questions of specific mathematical coloration” to be answered before the
axiomatization of logic could be said to be finished. These include:

1. “the problem of principal solvability of every mathematical question”

2. “the problem of supplementary controllability of the results of a mathematical inves-
tigation”

3. “the question of a criterion for the simplicity of mathematical proofs”

4. “the question of relations between contentualness (Inhaltlichkeit) and formalism in
mathematics and logic”, and

5. “the problem of decidability of a mathematical question by a finite number of oper-
ations” (HILBERT, 1918, p.9).

These problems, made perhaps more clear by the study of Principia Mathematica by
Hilbert and his students, started Hilbert on a series of investigations that developed into
the programme of the 1920s and on. As Zach puts it:

These unresolved problems of axiomatics led Hilbert to devote significant effort
to work on logic in the following years. In 1917, Paul Bernays joined him as
his assistant in Gottingen... The course from 1917, in particular, contains a
sophisticated development of first-order logic, and forms the basis of Hilbert
and Ackermann’s textbook Principles of Theoretical Logic ... In 1918, Bernays
submitted a treatise on the propositional calculus of Principia mathematica as a
Habilitationsschrift; it contains the first completeness proof of the propositional
calculus for truth-functional semantics (ZACH, 2006, 415).

The fifth