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Abstract 

The neutral theory of biodiversity assumes that coexisting organisms are equally able to 

survive, reproduce and disperse (ecological equivalence), but predicts that stochastic 

fluctuations of these abilities drive diversity dynamics. It predicts remarkably well many 

biodiversity patterns, although substantial evidence for the role of niche variation across 

organisms seems contradictory. Here, we discuss this apparent paradox by exploring the 

meaning and implications of ecological equivalence. 

We address the question whether neutral theory provides an explanation for biodiversity 

patterns and acknowledges causal processes. We underline that ecological equivalence, 

although central to neutral theory, can emerge at local and regional scales from niche-based 

processes through equalizing and stabilizing mechanisms. Such emerging equivalence 

corresponds to a weak conception of neutral theory, as opposed to the assumption of strict 

equivalence at individual level in the strong conception. We show that this duality is related 

to diverging views on hypothesis-testing and modeling in ecology. In addition, the stochastic 

dynamics exposed in neutral theory are pervasive in ecological systems and, rather than a null 

hypothesis, ecological equivalence is best understood as a parsimonious baseline to address 

biodiversity dynamics at multiple scales. 	
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Introduction	

Since the publication of the Unified Neutral Theory of Biodiversity and Biogeography 

(UNTB, Hubbell, 2001), the neutral theory has been very influential but also very 

controversial in ecology. Across the numerous models that have been elaborated, neutral 

theory focuses on stochastic variations in individual birth and death rates to predict long term 

trends in the composition of communities. Furthermore, the basic concepts of this theory are 

closely related to the neutral theory of molecular evolution, which has also been influential 

and controversial among evolutionary biologists from the 1960s (Kimura, 1984). At the heart 

of both approaches is the fundamental equivalence assumption that biological variation 

among organisms does not reflect any difference in their ability to survive, reproduce and 

disperse (Bell, 2001). Species coexistence is then a dynamical equilibrium driven by the 

stochastic variations in speciation and extinction at regional scale, and in basic life, death and 

dispersal dynamics at local scale (called "neutral dynamics"). The equivalence assumption is 

traditionally opposed to an exclusive explanatory role of niche variation and competitive 

exclusion in ecology (Whitfield, 2002), and to the correlated idea of natural selection in 

evolution (Mikkelson, 2005). 

The neutral theory has shown a remarkably good heuristic value to predict patterns of 

species abundance distributions (SAD) in a number of ecosystems (Bell, 2001; Chave, 2004; 

Hubbell, 1997; Hubbell, 2001). Encouraged by this apparent robustness, many studies have 

applied neutral models to analyze community dynamics in a variety of ecosystems (Chave et 

al., 2006; Latimer et al., 2005; Volkov et al., 2003). At the same time, variation in survival 

and reproductive abilities is often observed in real communities and apparently violates the 

equivalence assumption (Purves and Turnbull, 2010). The fact that the theory works well in 

terms of resulting species-abundance patterns despite the violation of its basic assumption is 

an apparent paradox (Gewin, 2006). A decade and half after the work of Hubbell (2001), 

debates and disagreement persist on whether neutral theory provides explanation for observed 

species diversity patterns, and on how to test its expectations. Our primary objective here is 

to clarify the explanatory nature of the theory. 

The basic idea of neutral theory is that numerous and repeated “microscopic” individual 

stochastic variations result, over space and time, in specific patterns of species relative 

abundances. Central to the debate on neutral theory is the divergence between "weak" and 

"strong" interpretations of the theory (Bell, 2001). The "strong" interpretation considers that 

neutral theory is refuted if strict fitness equivalence is not met at the individual level. 

Conversely, in the “weak” interpretation, variation in individual fitness can be 
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counterbalanced and neutral patterns of biodiversity can emerge without strict individual 

equivalence. In this case, the fact that an observed pattern does not reflect the influence of 

biological differences does not mean that individual dynamics are actually neutral, but it 

indicates that the observed pattern does not convey a signature of non-neutral processes. In 

this regard, the strong interpretation emphasizes basic neutral dynamics at individual level, 

while the weak interpretation emphasizes the emergence of neutral patterns.  

Here, we analyze the mechanistic understanding of neutral dynamics in the dual 

interpretations of neutral theory, and show that the issue more broadly relates to what 

explanation, causality and hypothesis testing mean in community ecology. In this regard, 

even a decade and a half after Hubbell's book, some basic questions are still hard to answer: 

Does neutral theory provide an explanation for real community dynamics? If so, is this 

explanation causal? Is the neutral theory a null hypothesis against which to analyze observed 

patterns? Are there instead signatures of both neutral and non-neutral processes in the 

composition of ecological communities? The nature of explanation is clearly a central issue, 

since answers to the above questions may rely on what we mean by “signatures” (from a 

pattern-oriented point of view) and “causal explanation” (from a process-oriented point of 

view). A basic aim of the paper is then to delineate more clearly the nature of ecological 

equivalence, central to the neutral theory, so as to better assess the status of causation within 

the theory. We will show that the weak and strong interpretations of neutral theory imply 

different conceptions of ecological equivalence, which entail a profound epistemic divide. 

We will emphasize that ecological equivalence can be found at multiple scales under the 

influence of both neutral and non-neutral dynamics and, therefore, that ecological 

equivalence can be part of a comprehensive theory of biodiversity dynamics. 

The paper will first address the nature of neutral dynamics, and whether the neutral 

theory can provide a mechanistic framework for biodiversity dynamics and species 

coexistence. We will especially focus on the relationship between neutral processes and 

neutral patterns. The second step will question the nature and status of ecological equivalence 

in terms of equalizing and stabilizing mechanisms, and how it should be used to investigate 

biodiversity dynamics from local communities to a regional set of species. We will discuss 

the philosophical nature of the dualism in neutral and non-neutral views, and highlight that 

spatial and temporal scales are critical aspects of the link between emerging patterns of 

ecological equivalence and possibly non-neutral underlying processes. We will then 

distinguish several levels at which mechanisms can be appealed to when one analyzes 

biodiversity patterns, and reconsider the notion of null hypothesis against which to test the 
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role of niche differences. Actually, a major gap exists currently in ecology between (i) 

hypothetico-deductive approaches where neutral “random” models represent null hypotheses 

that should be falsified in favor of alternative models representing the contribution of niche 

differences, and (ii) integrative approaches that recognize a genuine role for neutral dynamics 

and intend to characterize their contribution to community dynamics, possibly in combination 

with other niche-based processes. The fourth section will distinguish these perspectives and 

show that they pertain to different conceptions of hypothesis testing. From this analysis, we 

will show that the traditional dichotomy of neutral and niche-based biodiversity dynamics 

should be abandoned, and be replaced by a more comprehensive theory of ecological 

equivalence. When analyzing biodiversity dynamics in terms of ecological equivalence, the 

focus is no longer on the immediate and local effects of biological differences, but rather on 

the level and scale at which these differences matter to explain biodiversity patterns. Figure 1 

summarizes the overall logic and organization of the paper. Table 1 provides a glossary of the 

basic concepts of the paper. 

 

 

 

Figure 1. Conceptual diagram of the present paper, with emphasis on the central ecological 

equivalence assumption. The left part shows the basic motivations of the neutral theory, which 

translates in the middle part into a framework of ecological equivalence and biodiversity dynamics at 

local and regional scales. The right part introduces the main epistemic aspects that are discussed in the 

paper, with numbering of the corresponding sections.  
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Table 1. Glossary of the key concepts 

 

Term 

 

Definition 

 

Neutral biodiversity pattern 

 

A biodiversity pattern classically summarizes variation in species 

number and relative abundances, within and between 

communities. A neutral biodiversity pattern represents an 

equilibrium state resulting from neutral dynamics. 

 

Neutral dynamics A combination of immigration, speciation and ecological drift 

driving community and metacommunity composition over time, 

based on an assumption of ecological equivalence.  

 

  

Neutral model Mechanistic model of individual life, death, reproduction and 

dispersal events, under the assumption of per capita fitness 

equivalence. These basic stochastic events collectively yield 

neutral dynamics. 

 

 

Strict ecological equivalence 

 

All the individuals have identical prospect of living, dying, 

reproducing and dispersing, which implies that they have equal 

fitnesses. They can display distinct ecological properties, but 

equalizing mechanisms then yield fitness equality (Figure 2a). 

 

Emerging ecological 

equivalence 

 

 

All the populations of coexisting taxa show positive growth rates 

from low density, meaning that there is no better competitor. Strict 

equivalence implies emerging equivalence, but not the reverse. 

Non-equal individual fitness can be counterbalanced by stabilizing 

mechanisms yielding emerging equivalence (Figures 2b and 2c). 
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1. An explanatory theory of unspecified individual interactions 

To understand the role of the neutral theory in ecology, one should first focus on the kind 

of explanation it provides for biodiversity. In neutral communities, species abundances 

change with time according to stochastic birth, death and dispersal events, plus speciation 

events in a large-scale biogeographical metacommunity (Hubbell, 2001). This framework is 

analogous to the neutral theory of population genetics, where species abundance is replaced 

by allele frequency and speciation by mutation (Kimura, 1984). In finite communities, 

stochastic fluctuations of species abundances (so-called ecological drift, analogous to random 

genetic drift in population genetics) lead to random extinctions. Without any influx of 

migrants, a local community will undergo species loss until only one species survives 

(fixation). Likewise, at the regional scale, the metacommunity will lose species until fixation, 

unless new species are created by speciation. Although the stochastic variation in speciation, 

migration and local birth-death dynamics yields an unpredictable community composition at 

any given time, statistical patterns such as species abundance distributions (SAD) can be 

predicted at equilibrium depending on the balance between speciation, migration and drift. In 

the model of Hubbell (2001) with point speciation in the metacommunity, the regional 

balance of speciation and drift leads to an equilibrium mean number of species (Ewens, 1972) 

and to a log-series species abundance distribution. In addition, the relative abundances in a 

local community depend on the balance of local drift and immigration from this 

metacommunity. Alternative models have considered different speciation and migration 

processes, and thus predicted varying biodiversity patterns (e.g., Chave and Leigh, 2002; 

Rosindell et al., 2010). Apart from these variations, any neutral model assumes that there is 

no influence of biological differences between species on individual dynamics. 

Conversely, a niche-based theory of species coexistence (in short, “niche theory”) claims 

that species can coexist or not depending on their niche properties and on specific ecological 

interactions such as competition, mutualism, etc. Therefore, while niche theory is a theory of 

specified interactions and determinate processes, neutral theory is a theory of unspecified 

interactions and stochastic dynamics. In the context of population genetics, natural selection 

is analogous to niche-based processes as a theory of specified interactions between 

individuals having distinct genotypes. Even though neutral dynamics yield specific species 

abundance distributions (SAD), it may still be misleading to refer to them as neutral 

processes, in the sense that a process is classically defined as a determinate, i.e., specific, 
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cause of some outcomes, which is often characterized in terms of the typicality of some 

interactions (Dowe, 2009; Ellis, 1999). 

Given that a central motivation of neutral models has been to suggest new explanations 

of biodiversity patterns, let us now consider the explanatory difference between competing 

neutral and niche theories. Within the philosophical literature on explanation, explaining can 

be seen as either providing unifying schemes (Friedman, 1974; Kitcher, 1976), or 

characterizing causal relations (Salmon, 1984). These views are not necessarily exclusive 

(e.g. Strevens, 2004 for a conciliation), but in ecology a primary objective is to find 

“mechanistic explanations” to observed patterns, which is a causalist conception of 

explanation (McGill and Nekola, 2010). This conception is indeed central to niche-based 

coexistence theory, where mechanisms of resource use and interactions at the individual 

level, depending on niche differences, determine whether species can coexist or not 

(MacArthur and Levins, 1967). The word “cause” here purports to a view of a “difference 

maker” (Hall, 2004; Lewis, 1973; Menzies, 2004; Waters, 2007; Woodward, 2003), namely, 

a cause is a difference (e.g., changing the value of an input variable) that makes a difference 

(e.g., changing the value of an output variable). In the case of niche-based species 

coexistence, the difference in ecological characteristics between two species makes a 

difference in resulting species relative abundances. A species is expected to become more 

abundant than other species in a local community if it displays some attributes conferring 

better abilities for survival and reproduction in the local environment (Shipley et al., 2006). 

The niche theory then provides an explanation based on determinate causal processes at the 

individual level (e.g. competition, predation or mutualism). In population genetics, to be 

selected likewise means to be there because of a difference in individual fitness due to some 

genotypic attributes (Abrams, 2007; Brandon and Ramsey, 2007; Dietrich and Millstein, 

2008; Sober, 1993). Therefore, in niche theory, the difference – between species, alleles or 

genotypes – makes a difference upon the identity of species, alleles, or genotypes present at 

equilibrium, so that it provides causal relations in the sense of difference-making.  

Conversely, neutral dynamics are not causal in the same sense as niche-based processes 

are. Even though the relative species abundance distributions can be determined by a given 

set of neutral parameters, such as the fundamental biodiversity number of Hubbell (2001), the 

species composition is variable and changes from a replicate neutral community to another. If 

species A realizes the peak of the abundance distribution, by definition no biological property 

of A is a reason for its dominance in a neutral community; which means that, if we design a 
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replicate community and consider the resulting biodiversity pattern under the assumption of 

ecological equivalence, we will get a similar relative abundance distribution without A 

necessarily being a dominant species. The explanatory target of the neutral theory concerns 

the relative species abundance and resulting diversity patterns at local and regional scales. It 

explains these patterns in the sense that it provides a way to generate them while minimizing 

the appeal to the influence of numerous biological properties. 

As a consequence, neutral and niche theories cannot be considered two rival hypotheses 

that would stand on the same level, because their explanatory targets are partially different. A 

major reason for the success of neutral theory in community ecology is that it predicts 

realistic patterns of biodiversity, expressed via distributions of species abundances that were 

debated in macroecology for a long time, such as the log-series distribution (Bell, 2001; 

Fisher et al., 1943; Preston, 1948). This quest for general laws has long been centered on 

species diversity patterns (essentially SAD), which do not integrate the nature of species 

biological differences. A basic requisite of neutral theory is that these patterns should be 

independent of species properties. However if a niche model predicts a species diversity 

pattern, it may also explain why some species are more represented than others based on 

some biological properties (Grime, 1998; Shipley et al., 2006). Therefore, other patterns of 

diversity based on species properties should help detect the alternative effect of niche-based 

processes. Trait-based perspectives to community ecology (McGill et al., 2006b) and 

ecophylogenetics (Mouquet et al., 2012) have conveyed novel tests of niche-based processes 

by analyzing the diversity of species traits instead of relying solely on species taxonomy and 

abundances. Although the neutral theory does not say where a specific species stands in the 

abundance distribution, this question could be answered by niche theory, since niche 

properties then explain the success of a specific species in a specific environment (Chase, 

2005). We will keep this clarification in mind while turning in a second step to a specification 

of what the ecological equivalence assumption can integrate. 

2. The origin(s) of ecological equivalence 

The neutral theory explains and predicts biodiversity patterns at community and/or 

regional scales, based on the assumption of ecological equivalence, also termed neutrality 

assumption. Basic per capita ecological equivalence is defined in a very broad sense by 

Hubbell (2001:6): “I use neutral to describe the assumption of per capita ecological 

equivalence of all individuals of all species in a trophically defined community. This is a very 
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unrestrictive and permissive definition of neutrality because it does not preclude interesting 

biology from happening or complex ecological interactions from taking place among 

individuals.” The fuzzy limits clearly reflect the fact that the assumption represents some 

effective ecological equivalence. In the following, we will address how ecological 

equivalence so broadly defined can be reached in different ways, thus entailing different 

conceptions of neutrality. Quite independently of the neutralist perspective, Chesson (2000) 

proposed a general conceptual framework of diversity maintenance in ecological 

communities, linking individual fitness and niche properties to community-level patterns of 

coexistence. We will use here this framework to explore and discuss the meaning of 

ecological equivalence. It is based on the long-term per capita population growth rate of a 

putative invader i, denoted as , which initially occurs at low density in a local community. 

Invasibility here represents the ability of a species to increase from low abundance in the 

presence of the resident species of the community. If there is resource limitation in a system 

with a resident s and an invader i, the per-capita population growth rate of i is 

, where the µs represent the mean per capita growth rates of species i and s 

in the absence of resource limitation, and the bs are the rate at which these per capita growth 

rates decrease as resources decrease (Chesson, 2000; Chesson and Huntly, 1997). k. = µ./b. (. 

= i or s) is then a measure of the relative average fitness of species at population level, such 

that a species with the largest k will be the winning competitor. This basic model cannot lead 

to stable coexistence, as  will be positive for one species only. 

Conversely, in a context of niche partitioning between coexisting species, the per capita 

population growth rate of i can be written as , where ρ is a 

parameter of niche overlap of the two species, that is, the proportion of resources they both 

use. With ρ < 1 (niches do not completely overlap), the growth rates can be positive for both 

species i and s, and competitive exclusion by a top competitor can be avoided. The model can 

be generalized to multispecies assemblage, such as  

,   (1) 

where n is the number of species,  is the average fitness of resident species, and D is a 

positive constant. Coexistence will be possible for a set of species i when their  values are 
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positive, and long-term coexistence will occur if the  values are close to 0. This is a form of 

ecological equivalence expressed at the level of population dynamics, which differs from 

Hubbell’s (2001) primary assumption of fitness equivalence of individuals. This population-

level equivalence can be achieved either by (i) reducing the magnitude of per capita fitness 

differences between species in the left term of Eq. (1) (equalization, Figure 2a) or (ii) if 

processes overcome these differences in the second stabilizing term of Eq. (1) (stabilization, 

Figures 2b and 2c) (Adler et al., 2007). We will consider this formalism to explore the limits 

of the basic fitness equivalence assumption in the neutral theory (extent of equalizing 

mechanisms), and the robustness of its predictions when fitness equivalence is violated 

(extent of stabilizing mechanisms). 

2.1 Equalizing mechanisms 

Ecological equivalence has been captured by the concept of fitness invariance in the 

framework of Hubbell (2001:322): “By fitness invariance I mean that there are different 

trade-off combinations of life-history traits that confer equivalent per capita relative fitnesses 

on the species exhibiting them.” Even when ecological variation exists among individuals 

and species, the assumption holds whenever the lifetime survival and fecundity probabilities 

are invariant in mathematical expectation among individuals. Averaging out these differences 

amounts to equalizing fitness. Therefore, equivalence can stem from aggregated intrinsically 

non-neutral differences between organisms (Doncaster, 2009; Hubbell, 2006). Under 

Hubbell's definition of fitness invariance, the right term of equation (1) is equal to 0 (no 

stabilization), and the left term must be kept close to 0 to allow long-term species 

coexistence. The model then provides an instance of neutral dynamics. As Adler et al. 

(2007:96) noticed, “neutral models are simply the special case where species have equivalent 

fitnesses and there are no stabilizing niche-based processes”. The theory is thus robust to trait 

variation among species regarding some aspects of their biology, as far as they result in 

similar levels of fitness (Figure 2a). 

ir
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Figure 2. Patterns and spatial scales of ecological equivalence. The ellipses represent local communities 

including a set of individuals (circles). The motif and the color of the circles represent fitness variations between 

individuals. The three figures exemplify situations where ecological equivalence is expected at local and/or at regional 

scale. The curves represent some putative species abundance distributions at local and regional scales, in which 

species abundances depend on their niche properties (dashed line) or not (plain line). The Figures then basically 

stresses when and how species abundances are not influenced by niche differences at local and regional scale. In the 

strong interpretation of neutral theory (a), effective fitness equivalence of individuals within communities leads to 

niche-independent dynamics. Variation in ecological characteristics among species is possible, insofar as they level 

out and yield equivalent fitness. In a broader perspective of emerging ecological equivalence, as understood in the 

weak interpretation of neutral theory, there is no effect of biological differences on species population dynamics 

thanks to stabilizing mechanisms. In the case of local stabilizing mechanisms (b), fitness differences are 

counterbalanced by mechanisms such as negative frequency dependence within communities, which prevent the most 

competitive species to dominate. In the case of regional stabilizing mechanisms (c), fitness differences within local 

communities are counterbalanced by the dynamics between communities as, e.g., when there is a competition-

colonization trade-off. Stabilization allows local and regional ecological equivalence despite actual fitness differences 

between individuals (variation of motif and color of individuals).  
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2.2 Stabilizing mechanisms 

Conversely, several studies showed that patterns of community diversity quite similar to 

those predicted by the neutral theory can be found even when fitness is uneven across species 

(Allouche and Kadmon, 2009; Chave et al., 2002; Doncaster, 2009). In these cases, the 

fitness difference in the left term of equation (1) is no longer equal to 0 and the model does 

not conform to the equivalence assumption as defined by Hubbell (2001). However, the 

stabilizing term of equation (1) can still be large enough to overcome the effect of fitness 

differences. Specifically, the stabilizing term can be increased by niche differences between 

species, which allows species coexistence in communities at equilibrium (MacArthur and 

Levins, 1967). In particular, niche differences between species make competition stronger 

within species than between species, so that the growth rate ri can decrease when population 

density of species i increases (negative density-dependence). Negative density dependence 

can, therefore, prevent competitive exclusion by maintaining the coexisting species at low 

density (Levine and HilleRisLambers, 2009). Another factor contributing to the stabilizing 

term is differences in colonization abilities (Mouquet and Loreau, 2003, Figure 2c). In this 

case, a less competitive species can survive in a community because more competitive 

species display lower colonizing ability, so that they cannot establish everywhere and occupy 

all the communities at the same time (Hubbell, 1979; Tilman, 1994). Coexistence of many 

species is thus possible within communities despite a competitive hierarchy (Mouquet and 

Loreau, 2003). Here stabilization occurs in the overall set of communities connected by 

migration (the metacommunity), and can maintain species equivalence in the local 

community despite the asymmetry in species fitness. 

2.3 Emergence of ecological equivalence 

Therefore, a per capita ecological equivalence can be reached via two ways in Chesson’s 

framework. Doncaster (2009) introduced the concept of “realized fitness” to stress that 

“species must achieve ecological equivalence at their coexistence equilibrium, which is 

defined by equal realized fitness for all.” Therefore, various mechanisms can make the global 

state of a community close to ecological equivalence through the stabilization and 

equalization terms of Equation (1). The role of equalization and stabilization is central to the 

distinction between the "weak" and "strong" interpretations of neutral theory. The strong 

interpretation is a mechanistic view of the neutral theory, where the fitness equivalence must 

actually be met at the individual level, with or without the influence of equalizing 

mechanisms. In this case, equivalence is explanatory of the processes that yield the 
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biodiversity patterns. Conversely, “the weak version recognizes that the neutral theory is 

capable of generating patterns that resemble those arising from survey data, without 

acknowledging that it correctly identifies the underlying mechanism responsible for 

generating these patterns” (Bell 2001). Therefore, ecological equivalence entails neutral 

dynamics in the strong interpretation, while it is a consequence of neutral and possibly non-

neutral dynamics in the weak interpretation of the theory. Here stabilization can 

counterbalance the influence of fitness differences and generate patterns of relative 

abundances close to that of neutral models (Allouche and Kadmon, 2009; Chave et al., 2002; 

Doncaster, 2009). In this case, the pattern is considered to be neutral in the weak 

interpretation, but the dynamics are non-neutral in the sense of the strong interpretation. It 

entails that a basic neutral model of speciation, migration and drift does not necessarily 

represent actual dynamics in the weak interpretation.  

 A central role in the weak interpretation is granted to dispersal limitation, which can act 

as both an equalizing and a stabilizing factor (Holyoak and Loreau, 2006: 1273). It is 

equalizing because dispersal limitation limits the number of competitors coexisting at a given 

time and hence the extent of effective fitness differences (Hurtt and Pacala, 1995). It is 

stabilizing because locally dispersed propagules tend to generate spatial clustering of 

populations, which increases intraspecific competition compared to interspecific competition. 

In addition, dispersal couples local and regional species dynamics and requires moving from 

the individual-level conception of equivalence to a larger-scale emerging conception, as 

understood in the weak interpretation. Acknowledging the pervasive effect of dispersal 

limitation in ecological communities is, therefore, a key to understanding the relevance of 

ecological equivalence when explaining patterns of biodiversity from local to regional scale. 

In this context we can specify the reason why the term process does not mean the same 

thing in neutral and niche-based models. On the one hand, niche-based models address the 

determinate effect of elementary ecological processes based on specific, individual-level 

biological differences. These differences constitute the basic ecological non-equivalence. On 

the other hand, neutral theory represents stochastic biodiversity dynamics based on some 

species ecological equivalence, but it does not preclude a role of niche-based differences in 

yielding this ecological equivalence. Ecological equivalence can itself be the result of 

different processes – here, based on equalizing and stabilizing mechanisms. Therefore, when 

one actually wants to talk of “neutral processes”, there is an equivocation: “the neutral 

processes” either mean a set of equalizing and stabilizing mechanisms yielding ecological 

equivalence, or the dynamics occurring under the condition of ecological equivalence. With 
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respect to this equivocation, Doncaster (2009) wrote that “neutral patterns need not imply 

neutral processes”. 

Thus we have used the Chesson's framework to address the nature of ecological 

equivalence from individual to population level.  Because individual niche differences can 

play a role in stabilization, the way ecological equivalence is reached in this framework do 

not necessarily conform to the patterns predicted by neutral models considering strict 

equivalence at individual level. But whatever is the mathematical nature of the pattern, any 

ecological equivalence emerging from equilization and stabilization prevents a determinate 

influence of niche differences on the species relative abundances. In this regard, it basically 

emphasizes the role of unspecified interactions and stochastic dynamics, which conforms to 

the nature of neutral theory (§1). The focus on emerging ecological equivalence thus allows 

extending the scope of original neutral models while retaining their epistemic specificify. 

Given that the processes considered at the source of ecological equivalence may not occur at 

the same scale, this leaves open the issue of the scale at which ecological equivalence can 

occur, a question that we now address. 

3. What is the scale of ecological equivalence? 

In order to clarify at which spatial and temporal scale ecological equivalence can occur, 

one needs to characterize the role of species ecological attributes for their persistence at 

nested spatial scales. A traditional top-down scheme of niche-based processes represents 

successive ecological filters determining how individuals from a regional source may 

establish and survive in a local community (Cornwell and Ackerly, 2009; Lortie et al., 2004, 

Figure 3 left). However, such top-down approach to niche-based processes is challenged by 

the idea of ecological equivalence, which can emerge from stabilizing and equalizing 

processes operating at a finer spatial scale (Figure 3 right). In addition, Chesson (2000) 

highlighted that the balance of equalizing and stabilizing mechanisms can change according 

to the spatial and temporal scale. Therefore, Holyoak and Loreau (2006) stressed that 

“ecological equivalence (…) occurs because species that have spatial or temporal niche 

partitioning become equivalent in their competitive abilities at some spatial or temporal 

scale”. Several hypotheses exist regarding the scales at which equalizing and stabilizing 

mechanisms can yield ecological equivalence: 

 Local-scale equalization (Figure 2a). Hubbell (2001) and Leibold and McPeek (2006) 

proposed that local guilds of functionally equivalent species are included in a matrix of 
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heterogeneous habitats inhabited by other guilds (see also Leibold, 2008). In this case, niche 

variation can exist between individuals of distinct communities, while the individuals within 

local communities are ecologically equivalent (Walker, 2007). The ancient concept of 

ecological guild and the modern notion of functional group represent such hierarchy of 

ecologically similar organisms embedded in dissimilar groups (Wilson, 1999). A point of 

reference for this theory is the guilds of canopy tree species in wet evergreen tropical forests: 

many species, often more than 100 species in a 1ha patch of forest, appear to be functionally 

equivalent and to display a neutral pattern of relative species abundances at very local scale. 

The spatial extent of habitats occupied by guilds varies according to the nature and function 

of organisms (e.g., coral reef communities, mycorrhizal networks in soil, etc.). In this regard, 

ecological equivalence is restricted to a homogenous environmental context where coexisting 

species display similar prospects of living, reproducing and dispersing, while environmental 

variation selects different compositions in separate communities. Dispersal limitation 

contributes to local equalization by limiting the probability that many competitors are found 

in the community at the same time (Hurtt and Pacala, 1995). In an	evolutionary perspective, 

the interplay of neutral and niche-based dynamics can yield the emergence of distinct guilds 

along environmental gradients (Scheffer and van Nes, 2006; Vergnon et al., 2009).  

 Local-scale stabilization (Figure 2b). Local stabilizing mechanisms can prevent 

competitive dominance and maintain species-rich local communities. This is the core idea of 

the negative density dependence model, which predicts that the competitive advantage of a 

species decreases as its density increases, because it is penalized by stronger intraspecific 

competition.The underlying mechanism may be related to limited resources (Levine and 

HilleRisLambers, 2009), including limited pollinator availability (Chesson and Warner, 1981; 

Gigord et al., 2001), or to species-specific parasites or predators (Hatcher et al., 2006; 

Johnson et al., 2012; Louda et al., 1990). As mentioned above, dispersal limitation also 

contributes to negative density dependence and local stabilization, because clusters of 

individuals of the same species are formed close to the parents and increase intraspecific 

competition (Holyoak and Loreau, 2006: 1273). 

 Large-scale stabilization (Figure 2c). Much research in ecology still emphasizes that 

variation in local performance relates to niche differences between coexisting species (Grime, 

1998; Shipley et al., 2006). In situations where such non-neutral processes dominate locally, 

niche variation across species can still average out across communities dispatched in 

heterogeneous habitats, leading to a larger-scale pattern of ecological equivalence (Lavin et 
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al., 2004; Muneepeerakul et al., 2008; Pueyo, 2006). Dispersal limitation acts as a mechanism 

of large-scale stabilization by avoiding the predominance of better competitors or better 

colonizers across communities (Mouquet and Loreau, 2003). This form of stabilization can 

create neutral patterns of biodiversity at the regional scale, but not locally.   

 

Therefore, addressing niche-based and neutral dynamics is fundamentally contingent 

upon the spatial and temporal scales of interest (Chase, 2014; Garzon-Lopez et al., 2013). A 

critical issue here is to characterize ecological objects at a level (e.g., by delineating guilds) 

and a scale (local or regional), which comply or not with an equivalence assumption. In 

addition, considering the way ecological equivalence and niche-based dynamics are 

intertwined across scales uncovers a tension between top-down (from regional to local) and 

bottom-up (from local to regional) approaches to biodiversity dynamics (Figure 3). To this 

extent, the question of how to handle ecological equivalence connects to Ricklefs' (2008) 

challenge about community ecology. He argued that working at community level is not 

appropriate because it does not take into account the influence of regional dynamics. The way 

niche-based and neutral dynamics drive regional biodiversity in turn influence the dynamics 

of local communities receiving immigrants (Mouquet and Loreau, 2003). In our case, we 

highlight the potential for confusions in any discussion of the status of the neutral theory that 

implicitly focuses on the local scale.  

Furthermore, the question of scale concerns not only community assembly in geographic 

space, but also evolution in multidimensional niche space. Scheffer and van Nes (2006) 

predicted that guilds of equivalent species can evolutionary emerge in distinct regions of 

niche space, as a result of both niche-based and neutral processes. As a consequence, "when 

considering pairs of competitors, or species-poor assemblages, competitive divergence is 

expected, but when considering entire, species-rich communities, convergence among subsets 

of the community can generate sets of nearly competitively equivalent species" (Holt, 2006).  

 

Up to this point we have analyzed differences proper to the explanatory structure of 

neutral theory in ecology: first the explanatory nature and the predictions of neutral models 

vs. niche models, and second the processes yielding ecological equivalence either locally or 

regionally (Figures 2 and 3). The role of equalizing and stabilizing mechanisms is here 

central, and models of ecological equivalence can extend beyond neutral models based on 

individual fitness equivalence (§2.3). In what follows, we discuss the status of neutral theory 
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regarding its role as a possible null hypothesis or a parsimonious baseline for community and 

metacommunity ecology, in such a broad perspective of ecological equivalence. 

 

 

Figure 3. Contrasting representation and hypothesis testing of biodiversity dynamics in a top-down 

framework of niche-based ecological filters from the regional scale (left, adapted from Lortie et al. 

2004), and in a bottom-up framework from individual dynamics to emerging patterns of ecological 

equivalence (right). In both cases, the varying ecological properties of local individuals (different 

symbols in the community ellipse) entail niche differences. On the left, the diversity of the properties 

observed in the community is the result of filtering processes depending on niche differences and 

selection of successful individuals from upper-level pools. On the right, trade-off in niche dimensions 

can result in fitness equalization, or niche differences can overcome the effect of competition to yield 

emergent neutral patterns of community structure (local ecological equivalence). Larger scale 

mechanisms of stabilization (e.g., source-sink metacommunity dynamics) can further generate neutral 

patterns of biodiversity at regional scale, even if niche-based processes predominate in local 

communities (see Figure 2). These contrasting frameworks involve different approaches for 

hypothesis testing. In the top-down framework, the uppest-level pool is given and random 

communities are generated by assuming the absence of filters (pattern-generating null models). In the 

bottom-up framework, mechanistic models of niche-based and neutral dynamics are compared to their 

neutral counterparts without niche difference (nullification), and their predictions are tested at local 

and regional scales. 
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4. Is the neutral theory a null or a parsimonious hypothesis? 

The success of the neutral theory since Hubbell (2001) has primarily relied on its 

heuristic ability to account for some patterns of diversity, even though these patterns had 

been interpreted as niche-driven for decades. Based on the fit of species abundance 

distributions (SAD), some authors compared the predictive ability of neutral vs. niche-based 

models, yielding conflicting results and much debate (Chave et al., 2002; McGill, 2003). A 

critical point is whether such comparison allows concluding in favor of one or the other 

theory. Therefore, much subsequent research turned to define neutral models as a basis for 

hypothesis testing (Bell, 2001; Gotelli and McGill, 2006). Now that we have circumscribed 

the explanatory specificity of neutral theory and of the central equivalence assumption, in a 

scale-dependent framework of equalizing and stabilizing mechanisms, we aim to clarify the 

status of the neutral theory for hypothesis testing after one decade of conflicting views. In this 

regard, we will investigate the meaning of the neutralist claim that neutral models explain 

biodiversity patterns (Bell, 2001; Hubbell, 2001), against the idea that neutral models should 

rather be used as null hypotheses for understanding these patterns (Holyoak et al., 2006; 

McGill et al., 2006a). 

4.1 Conflicting conceptions of the null hypothesis 

Beyond the context of neutral theory, two diverging conceptions exist in ecology on what 

a null hypothesis is:  

 Generation of null patterns. Gotelli and Graves (1996) promoted an instrumentalist 

treatment of the null hypothesis based on pattern-generating null models. These models 

perform "randomization of ecological data or random sampling from a known or specified 

distribution. The null model is designed with respect to some ecological or evolutionary 

process of interest. Certain elements of the data are held constant, and others are allowed 

varying stochastically to create new assemblage patterns. The randomization is designed to 

produce a pattern that would be expected in the absence of a particular ecological 

mechanism" (Gotelli and Graves, 1996). Emphasis is put here on designing a randomization 

procedure that generates a variety of virtual communities complying with a null hypothesis, 

under which some processes are not involved. The alternative hypothesis hence states that 

these neglected processes are actually involved, and the null hypothesis is rejected when the 

observed patterns significantly deviate from the randomized communities, provided that the 

empirical data are relevant enough to allow discernment. This approach is closely related to 

the top-down conception of ecological filters (Figure 3 left), where the constraints represent a 
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regional background context from which we assemble null communities by using a 

randomization scheme. There has been much debate on how to design appropriate null 

models (Gotelli and Entsminger, 2001, 2003; Gotelli and Ulrich, 2012; Ulrich and Gotelli, 

2013). In order to detect the effect of niche-based processes in the alternative hypothesis, 

classical randomization schemes shuffle species biological attributes or community members 

under the null hypothesis that the distribution and abundances of species is independent of 

local environmental conditions and species attributes. A major issue is the nature of the 

processes represented by such randomization scheme: Do randomization procedures comply 

with a specific model of community dynamics? And, if not, should community dynamics be 

simulated directly? 

 Nullification of model parameters. In the second sense, a “null hypothesis” represents 

the influence of a set of processes but nullifies their parameters. To understand this, think of a 

process governed by several parameters, such that the null instance of the process is obtained 

when all the parameters are set to 0. Whether or not setting parameters to 0 in the model 

influences the ability to predict patterns similar to the observed one allows falsifying the null 

hypothesis, based on a statistical criterion of model comparison (Burnham and Anderson, 

2002). Contrarily to the pattern-generation conception, the nullification conception of null 

hypothesis represents explicit community dynamics.  

 

To what extent the neutral theory can be employed as a null hypothesis (Holyoak et al., 

2006; McGill et al., 2006a)? On one hand, the equivalence assumption can be considered of 

the nullification kind, such as the relative fitness parameters wi of all species are set to 0. If 

you consider equation (1), the null hypothesis would be then given by nullification of fitness 

differences only (equalization), which means that the terms from the stabilizing function are 

0: it is the interpretation given by Adler et al. (2007) when they see neutrality as “a special 

case where (...) there are no stabilizing niche-based processes” (quoted above). In this regard, 

the nullification approach resorts to the strong interpretation of the neutral theory. Under this 

interpretation, we see how the neutral model can be a null hypothesis: instantiating the 

random processes that take place when parameters ruling the influence of any biological 

difference are set to 0. In this regard, the main motivation of “nearly neutral models” (Noble 

et al., 2011; Ohta, 1992; Zhou and Zhang, 2008) is to provide an alternative model of fitness 

differences such that individual equivalence is obtained by simply constraining the 

parameters. In addition, because the null hypothesis explicitly considers no influence of 
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biological differences, any ecological equivalence emerging due to stabilizing mechanisms in 

fact pertains to the alternative hypothesis. 

On the other hand, we have underlined that the weak interpretation of neutrality is based 

on emerging neutral patterns, whatever the fine-scale dynamics are. We have integrated in 

this perspective patterns of ecological equivalence emerging at population level in the 

Chesson's framework (§2.3). In any case, emerging ecological equivalence constitutes a null 

hypothesis of the pattern-generation kind, resulting from both neutral and non-neutral 

dynamics through equalization and stabilization. In this conception, “the role of the neutral 

theory is then restricted to providing the appropriate null hypothesis when evaluating 

patterns of abundance and diversity. Even this relatively modest role, however, involves 

revising the comparative approach to ecology“ (Bell, 2001). Holt (2006) concured : “In its 

‘weak’ form, neutral theory at the very least provides the appropriate null model for 

evaluating patterns in comparative data sets”. Since the weak interpretation resorts to neutral 

pattern generation, it implies that the null hypothesis here is not defined by parameter 

nullification. Even so, the weak interpretation still does not comply with a randomization way 

of generating null patterns. Patterns resulting from dispersal and local birth-death dynamics 

are indeed sensibly different from that of shuffled compositions, as Bell (2001) underlined: 

“statistical null hypotheses based on randomization are not appropriate for evaluating 

ecological patterns that stem from species distributions, because local dispersal readily gives 

rise to spatial patterns.“ Therefore, simulation of emerging ecological equivalence should be 

preferred to randomization of community composition. A difficulty of such pattern-

generating model is that it needs estimating the parameters of the dynamics from the data 

(Gotelli and McGill, 2005).  

 

In the perspective of using neutral theory as a null hypothesis, we have related emerging 

ecological equivalence, and thus the weak interpretation of the theory, to the first kind of null 

hypothesis, i.e. pattern-generating, and the strong interpretation of neutral theory, which 

assumes strict equivalence at individual level, to the second kind of null hypothesis, i.e. 

parameter-nullification.  In both cases, a critical issue regards whether a model of neutral 

dynamics provides a well-defined null hypothesis. Specifically, we need to clarify what role 

we would expect for niche differences in the null and alternative hypotheses. Several authors 

have claimed that the hypothetico-deductive approach should begin with the examination of 

some maximally parsimonious model of community dynamics by eliminating non-

explanatory components related to an additional influence of niche differences. Holyoak and 
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Loreau (2006) emphasized that we have the choice “of whether to appeal to parsimony and 

select a neutral community model, or to accept a more complex niche model”. But, as noticed 

above, ecological equivalence can emerge even when niche-based processes influence 

individual dynamics, because of equalizing and stabilizing mechanisms (Figure 2). In this 

regard, emerging ecological equivalence is not a well-specified null hypothesis when the 

alternative hypothesis should identify a role for specified niche dimensions.  

In addition, we have underlined that the predominance of neutral and niche-based 

processes is basically scale-dependent (§3). It is then crucial to keep in mind that null 

hypotheses must be defined in a certain context and at a certain level. Hence, added to the 

alternatives of pattern generation and nullification in hypothesis testing, we have to consider 

the level and scale at which neutrality is envisaged. Conflicting takes on the neutral theory 

then reflect conflicting views on whether a “strong” neutral model would be an explanation 

for patterns extended from individual-level ecological equivalence, or a "weak" model would 

provide an emergent null reference against which to detect a large-scale imprint of niche-

based processes (Araújo and Rozenfeld, 2014). In this regard, aknowledging emerging 

ecological equivalence is required to address the scaling of niche-based processes from the 

scale of individuals bearing distinct biological attributes to larger-scale patterns of 

biodiversity.  

The focus thus shifts from testing the neutral theory against a single niche-based 

alternative, to testing ecological equivalence across scales. In the strong interpretation, a 

hierarchy of alternative hypotheses is needed to address the extent of the influence of 

stabilization and niche differences at multiple scales in space and time. The role of stabilizing 

processes must then be identified in the alternative hypotheses as, for instance, we expect that 

density-dependent effects would generate non-random spatial distributions of conspecific and 

heterospecific individuals (Comita et al., 2010). In the context of the weak interpretation, 

complying with a pattern of neutral dynamics at a given scale entails that niche differences do 

not contribute to explain it: it is a contraposition of the hypothesis that niche differences 

should influence biodiversity patterns, but not a validation of the hypothesis that everything is 

neutral. Therefore, the two approaches are not incompatible, but involve a different 

specification of the null hypothesis. As we will see below, the way the hypotheses are 

specified determines the conclusion to reach from their acceptation or rejection. 
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4.2 Falsification vs. parsimony 

We have seen above that neutral theory can be used as a null reference, but also that the 

nature of the null and alternative hypotheses is scale-dependent and differs between the weak 

and stong interpretations. Yet, apart from these distinctions, a more general methodological 

issue raised by neutral models in ecology is whether we should concentrate on rejecting a null 

neutral hypothesis (falsification), or we could accept it if the predicted patterns are consistent 

with observed ones (parsimony): 

 Falsification. In the hypothetico-deductive approach, the fact that the null hypothesis 

is not falsified does not mean that it is true. As Rosindell et al. (2011: 342) stated, “it does not 

follow that species-specific qualities are absent in the real world; instead, it suggests that their 

effects do not penetrate the foggy lens of the summary statistics being studied. This might 

explain how a neutral model can effectively fit data from a non-neutral world”. Biodiversity 

patterns may not be informative enough to allow discriminating the contributions of neutral 

and non-neutral dynamics, as they could indifferently be generated by a niche-based or by a 

neutral model (Chave et al., 2002; Chisholm and Pacala, 2010; Purves and Pacala, 2005). 

Then using a neutral model as a null hypothesis implies that only rejection of the null 

hypothesis makes sense, that is, we know in this case for sure that something else than this 

neutral model should be proposed for explaining the pattern of interest (McGill et al., 2006a). 

 Parsimony. On the other hand, a central concern in biology is to favor parsimonious 

explanations (the Occam's razor, Sober, 1981). In this regard, if two models can explain a 

given pattern, one should keep the most parsimonious one. A great deal of research in 

ecology is devoted to investigating alternative explanatory models according to a balance 

between their goodness of fit and their complexity (Burnham and Anderson, 2002), given that 

too complex models may pick out too much noise in the data. Then, if both a niche-based and 

a neutral model can explain an observed pattern equally well, the neutral model would be the 

best choice as it provides a more parsimonious explanation (Holyoak and Loreau, 2006). In 

the tradition of macroecology and biogeography, the neutral theory thus provides a most 

simple explanation of large-scale diversity patterns (Bell, 2001).This parsimony criterion has 

led some researchers to conclude that neutral theory predicts robust emerging patterns and is 

a relevant basis to assess the pervasive influence of dispersal limitation at large spatial scales 

(Leigh, 2007). If the neutral theory is a parsimonious hypothesis of biodiversity dynamics, it 

is not to be falsified, it is on the contrary a baseline from which to start.  

 



24	

4.3 From parsimony to integration: beyond the niche-neutral divide 

A key argument for using neutral theory as a parsimonious baseline is the generality of 

the basic mechanisms. We have mentioned that dispersal limitation is both a key equalizing 

factor determining the equilibrium composition of neutral communities in the strong sense, 

and a stabilizing factor allowing biodiversity to stay close to neutrality locally and regionally 

despite differences in competitive and dispersal between species. Indeed, no organism can 

disperse instantaneously and homogeneously across a whole region. Holt (2006: 531) thus 

underlined that dispersal limitation is pervasive in communities and may account for most 

neutral dynamics and patterns found in species-rich ecosystems. Stochastic fluctuations of 

birth and death rates are also ubiquitous and influence species populations dynamics because 

of finite-size effects (Lande et al., 2003). Therefore, a reasonable standpoint is that dispersal 

and population sizes of any species are axiomatically limited, so that neutral dynamics should 

be acknowledged everywhere, but still with a varying relative importance compared to niche-

based processes (Gravel et al., 2006; Leibold and McPeek, 2006; Munoz et al., 2014). 

Acknowledging pervasiveness of neutral dynamics ultimately leads to an integrative 

perspective, which forces one to overcome dualities in the interpretation of the neutral model 

as a null hypothesis, and in the acceptation or refutation of the theory. The recognition that 

stochastic processes of birth, death and immigration are ubiquitous and can predominate in 

some contexts has led some authors to plead for a more comprehensive approach, merging 

into one general model the effects of both niche-based and neutral processes (Adler et al., 

2007; Gravel et al., 2006; Holt, 2006; Holyoak and Loreau, 2006; Vellend, 2010). The neutral 

theory then becomes a component of a more general theory. In the logic of model selection 

mentioned above, one can then conclude that niche-based processes contribute to some 

observed pattern if they improve the goodness-of-fit with a limited increase in complexity 

(Burnham and Anderson, 2002). Such an approach aims at disentangling the signatures of 

neutral and niche-based processes from their combined effect (e.g., Adler et al., 2007; 

Doncaster, 2009). 

 

In this perspective, the neutral theory is no more a null hypothesis but a proper 

parsimonious hypothesis for explaining biodiversity. It holds that the mechanisms responsible 

for neutral biodiversity patterns are indeed of the sort Hubbell described, i.e. ecological drift 

etc., and a neutral model is accordingly a reference parsimonious model among a set of more 

complex models further incorporating the effect of niche differences. Along this line, neutral 
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ecology according to Hubbell (2005) did what neutral molecular evolution did regarding 

evolutionary theory (Veuille, 2000): it shifted the burden of proof, to the extent that the 

patterns against which one will check whether selection is acting (e.g. when doing a 

Kreitmann test on genomic sequences) are no longer the expected patterns under selection, 

but the patterns expected under the hypothesis of neutral dynamics alone. Therefore, the roles 

of neutral and of niche-based theories are actually not symmetrical, as neutral theory provides 

a baseline, parsimonious model against which to test more complex theories. Differences 

from the neutral predictions are then not a cause for rejecting a null hypothesis, but rather a 

call for complexifying the model by adding some parameters initially taken as null. 

5. Discussion 

We have identified several fundamental epistemic divides that explain conflicting takes 

on the role and use of neutral theory in ecology. The strong and weak interpretations of 

ecological equivalence differ in the way basic mechanisms or emergent patterns are 

considered, respectively. These interpretations relate to distinct conceptions of ecological 

equivalence as defining a null hypothesis, either as a nullification or a pattern-generating 

hypothesis, respectively. Furthermore, apart from the weak-strong distinction, considering the 

neutral theory as a null reference appeals to question whether the aim is to falsify a neutral 

model, or rather to accept it as a parsimonious explanation when data match the predictions. 

Beyond such dichotomy, we have stressed that the neutral theory is, by essence, a theory of 

pervasive and ubiquitous stochastic dynamics related to limited dispersal and population size. 

From this analysis of the neutral theory, we consider now what is its place in ecological 

research and what are the perspectives opened by this recent paradigm. 

5.1 Situation of the neutral theory in Levins’ triangle 

Wennekes et al. (2012) claimed that the perspectives appropriate to niche and neutral 

theories are different, in the sense Levins (1966) famously distinguished between possible 

model-building strategies based on the fact that a strategy cannot simultaneously fulfill 

generality, precision and realism as distinct epistemic values. Neutral theory would aim for 

generality and niche theory for realism, which means that they provide complementary rather 

than conflicting perspectives. In this viewpoint it is difficult to make sense of the claim that 

neutrality could be a null hypothesis – something Wennekes et al. (2012) acknowledged, 

calling it a 'baseline' model rather than a null model. Hence they see the neutral theory as an 

explanation that philosophically can be seen in an instrumentalist perspective.  
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In the view defended here, it is the very interpretation of ecological equivalence, as well 

as the perspective that the research strategy adopts on it, which determines the status of 

neutral theory. Whereas Wennekes et al. (2012) focused on a global opposition between 

realism and generality, we have insisted on the level- and scale-dependence of neutral and 

niche-based explanations. Understanding the stabilizing mechanisms that yield ecological 

equivalence in a community pertains to realism, whereas taking ecological equivalence as a 

macroscopic emergent property may illuminate the reasons for very general patterns in 

nature. These are two possible positions in the Levins' scheme, but according to the fine-

grained distinctions we have drawn between the strong and weak interpretations, the variety 

of epistemic distinctions between neutral and niche theories may increase. Finally, we have 

highlighted that neutrality can either emerge regionally from stabilizing mechanisms in the 

metacommunity, or locally in the community from equalizing and stabilizing mechanisms 

(Figure 2): hence in order to compare niche and neutral theories, the degree of generality of 

models seems to be less epistemically relevant than the status of scales. 

5.2 Ecological equivalence across scales 

To wrap up the view of the epistemological status of neutral theory and ecological 

equivalence, proposed throughout the paper, let us recall our previous claims. First, there is a 

distinction between ecological equivalence as a cause in the strong interpretation of neutral 

theory, and as an emerging pattern in the weak interpretation (§2). Second, neutral and niche-

based processes are entangled over a hierarchy of spatial and temporal scales, and yield 

emerging equivalence at multiple scales (§3). Third, neutral theory is a theory of ubiquitous 

stochastic dynamics of birth, death, dispersal limitation and regional speciation. This implies 

that neutral theory considers basic components of actual biodiversity dynamics and, as such, 

it is a component of a more integrative theory (§4). From these claims, a major challenge for 

modern ecology is to go beyond the niche and neutral divide, and to consider the nature and 

consequences of ecological equivalence. We should also go beyond the divide of the weak 

and strong interpretations, which should be bypassed by a focus upon integrating ecological 

equivalence in parsimonious models. 

The significance of stabilizing mechanisms leading to emerging ecological equivalence 

depends on the way the influence of individual biological attributes on the one hand, and of 

stochastic dynamics on the other hand, propagates across scales to shape the macroscopic 

patterns. As both an equalizing and stabilizing mechanism, dispersal limitation is a central 

aspect of this multiscale perspective on ecological equivalence. Because most organisms are 
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dispersal-limited, emerging equivalence is expected to be pervasive in ecological systems, 

not only when fitness equivalence occurs in local communities, but also via a combination of 

competition and dispersion leading to larger-scale stabilization, as in the Mouquet and Loreau 

(2003)'s model. In this regard, depending on the role of the stabilizing mechanisms, a neutral 

model based on strict individual ecological equivalence may not provide appropriate 

expectations of the species relative abundances. In contrast, the concept of emerging 

ecological equivalence goes beyond a particular neutral model, and concerns the fact that 

biological attributes do not make a difference in the relative abundances at local and/or 

regional scale. When authors say that there might be several ways towards neutral patterns, 

that in other words one can have neutral patterns with non-neutral processes (e.g., Doncaster, 

2009: 3), they talk about this second version of a neutral model, i.e., more generally, they 

address the status of neutrality as an attractor for many processes taking place at several 

scales in space and time. We must move then from a neutral theory of stochastic individual 

dynamics to a broader theory of ecological equivalence across scales.  

As such, a core aspect of a theory of ecological equivalence is that biological differences 

between species are not explanatory at all: hence we do not have here a causal explanation in 

the sense of difference-making, as emphasized before (§1), and no genuine causal process. 

Then in a perspective of emerging ecological equivalence, differences between species do not 

make a difference, but for a reason other than strict fitness equivalence: here, the differences 

play a role in stabilizing mechanisms so that, at an emergent level, they do no longer make a 

difference. This aspect may be frustrating for ecologists who long aimed at finding causal 

pathways of niche-based dynamics propagating over scales. However, addressing ecological 

equivalence is crucial to understand whether and how biological differences matter to explain 

emergent patterns, because these emergent patterns in turn influence the availability of 

immigrants in regional pools of species (Lessard et al., 2012; Mouquet and Loreau, 2003).  

In such an integrative perspective, neutral theory does not need to be proved or 

disproved. It is a parsimonious baseline model from which to build any refined model of 

biological interactions, in order to understand the nature and extent of equivalence and non-

equivalence in ecological systems. 
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Conclusions 

(1)  Characterizing the neutral theory as a null hypothesis (or not) seems too broad a 

characterization to capture what is epistemologically at stake when using neutral models. 

Mechanisms of species coexistence are multiple and nested in spatial scales and in niche 

dimensions, each of them defined by some salient processes, and these scales are at the same 

time decoupled and interacting (Figures 2 and 3). This was captured through the idea that the 

contribution of stabilizing and equalizing mechanisms to neutral patterns of biodiversity 

depends on spatial scale (§3). Here “neutrality” includes many more models than the neutral 

theory sensu Hubbell (2001). In this sense, ecological equivalence is not a null hypothesis on 

the absence of niche-based processes, since it may explicitly refer to an entangled set of 

generating processes, including niche-based ones. 

(2)  Therefore, the neutral theory encompasses, as explanatory, the processes that are 

involved in establishing a resulting or emerging ecological equivalence (§1). To this extent it 

is no longer the case that biological differences (between species) make no difference, 

amounting to a non-causal explanation – but these differences result in a pattern of no-

difference that can itself be explanatory of biodiversity. Therefore, we have to acknowledge 

that neutrality is not so neutral since it encompasses more than individual ecological 

equivalence. This extension and at the same time weakening of the original neutral theory 

parallels the fate of the neutral theory in molecular evolution, which gave rise to a more 

explanatory, powerful and encompassing “nearly neutral” theory with relaxed assumptions on 

fitness equality (Ohta, 1992). The controversies and developments that we have reviewed in 

this paper seem to attest that such a move has also occurred in community ecology. 

(3)  The necessity of an integrative and multiscale framework of ecological equivalence 

exposes the fact that niche-based processes cannot provide an exclusive causal explanation of 

biodiversity dynamics in space and time. Community ecology has underwent a profound 

paradigm shift with neutral theory, not only by providing a robust theory based on ecological 

equivalence, but also by connecting local ecological dynamics to regional biogeographical 

and evolutionary dynamics. Beyond the neutral-niche divide, a crucial role of a theory of 

ecological equivalence will be to solve the tension between the bottom-up and top-down 

perspectives on this relationship – as they were described in section 3 and illustrated in 

Figure 3 -, and to show how emergent patterns of biodiversity can in turn influence large-

scale biogeographical and evolutionary dynamics. This would make ecological equivalence 

the cornerstone of a comprehensive theory of the emergence and regulation of biodiversity 
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dynamics at multiple scales. In this regard, it will no longer be a phenomenological theory of 

emergent patterns, but a theory of the explanatory significance of ecological equivalence.  

(4)  Future research should help understand and predict the robustness and resilience of 

biodiversity dynamics in the face of ongoing environmental changes. In this regard, the 

urgent need for predictive ecology requires taking into account the mechanisms coupling 

local and larger-scale biodiversity dynamics (Mouquet et al., 2015). By considering the 

influence of equalizing and stabilizing mechanisms in space and time, multiscale modelling 

of neutral and niche-based dynamics should help forecast the rate and extent of biodiversity 

changes and the possible cascades of environmental alterations.  
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