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Abstract

Philosophers argue that scientific discovery is far from be-
ing a rule-following procedure with a general logic: More
likely it incorporates creativity and autonomy of the scientist,
and probably luck. Others think that discovery can be au-
tomatized by some computational process. Based on a con-
crete example of Schmidt and Lipson Schmidt and Lipson
(2009), I argue that the bottom-up discovery is computable
and that both aspects of creativity and autonomy can be in-
corporated. The bio-inspired evolutionary computation (ge-
netic algorithms) are the most promising tool in this respect.
The paper tackles the epistemology of applying a evolution-
ary computational and genetic algorithms, to the process of
discovering laws of nature, invariants or symmetries from
collections of data. Here i focus on more general aspects of
the epistemology of evolutionary computation when applied
to knowledge discovery. These two topics: computational
techniques applied in science and scientific discovery taken
separately are both controversial enough to raise suspicions
in philosophy of science. The majority of philosophers of sci-
ence would look with a jaundiced eye to both and ask whether
there is anything new to say about discovery and computers
in science. This paper is a first stab to the philosophical rich-
ness of computational techniques applied to the context of
discovery. I discuss the prospect of using this type of com-
putation to discover laws of nature, invariants or symmetries
and appraise their role in future scientific discoveries.

Is scientific discovery an algorithmic
process?

I argue in this paper for a deeper connection between bio-
inspired computation and the process of scientific discovery.
Based on new concrete results of Schmidt and Lipson 2009, I
infer here some epistemological consequences for using evo-
lutionary computation in scientific discovery.

Knowledge is central to virtually all advanced forms of life;
discovery and learning characterize us as a species as well as
other higher order animals. We discover in order to survive
and adapt. Science is just another specific form of knowl-
edge in which data and experiments play a fundamental role
in conjecturing hypotheses about the world. If discovery is
probably intrinsically linked to our evolution as a whole, sci-
entific discovery played a central role only in the evolution
of humanity in the last four centuries or so (a good turning
point is the work of Francis Bacon and its influence during
the “Scientific Revolution”).

How do we infer laws and generalizations from data? How do
we discover new models and theories? Are creativity and au-
tonomy of scientists major cognitive faculties that define and
shape science, or, on the contrary, is scientific discovery just
a process of following rules, methods and algorithms? The
nature of scientific discovery, together with, arguably, artis-
tic creativity, moral decision making and religious experience
are among those faculties that define us as humans better than
anything else.

These fundamental questions about the nature of scientific
discovery are germane to the discussion of artificial scien-
tific discovery. As I link the process of discovery to human
life as a species, it is germane to investigate philosophically
the paths to an artificial process of scientific discovery. Can
we create machines that would perform activities deemed by
many as “human-only”?

The broader scope of this paper is to investigate the possi-
bility of a cooperation between the human scientist and the
artificial discoverer. I based my argument on a specific

Two approaches to scientific discovery

For the purpose of this paper, the scientific endeavor can be
divided between the context of discovery and the context of
justification. The distinction can be traced to H. Reichen-
bach’s early works but it is very clearly expressed in Reichen-
bach (1949). After introducing the infamous distinction, Re-
ichenbach discussed the reliability of a logic and epistemol-
ogy of discovery. Epistemology is a rational reconstruction
of a thought process. In a common interpretation, there is
no epistemology of discovery, which is basically a subjec-
tive and irrational process: P. Duhem, E. Mach, K. Popper,
R. Carnap, C. Hempel, or R. Brainwaite for different reasons
deemed discovery as irrelevant when compared to the context
of justification. The iconoclastic view of scientific discovery
as a “happy guess” or “mystic presentiment” is discussed in
Koestler (1959). In a different key, M. Curd and Th. Nickles
interpreted Reichenbach’s discovery-justification distinction
as not excluding an epistemology of discovery. There is an
epistemology of discovery, with or without a logic of discov-
ery. So epistemology is much a broader area than logic in this
specific framework.

For both these contexts it is relevant to ask this question: is
science based on deductive logic, induction or on heuristics?
A similar question can be asked about the nature of discovery:
is scientific discovery algorithmic, nearly algorithmic or, on



the contrary, is it non-discursive, not re-constructible, non-
reproducible, singular, a “Eureka”-like mental episode? Is
discovery merely a psychological process with no epistemo-
logical significance (when compared to the process of justifi-
cation, for example)?

There are perhaps two main programs in the philosophy of
scientific discovery. First, there is a strong program aiming
to formulate a general logic for scientific discovery, to en-
compass all scientific discoveries under one formalism Simon
(1973); Hanson (1958). The connection proposed by Lan-
gley, Simon, Bradshaw and Zytkow (Langley et al., 1987)
between discovery and the heuristic search procedure falls
under this strong program. But this strong program felt in
disgrace for several reasons and was replaced with a weaker
program that gives up the idea of a formal and general logic
of scientific discovery and tackles the epistemological as-
pects of particular discoveries Nickles (1980b,a); Meheus and
Nickles (2009)." Here epistemology can be both descriptive
and normative and more attention is paid to non-formal and
non-logical epistemological aspects of discovery: heuristics,
search, risky generalizations, etc. This weak program is more
sensitive to the specific conditions of the discovery and of the
specific nature of the discoverer. One can ask two questions:

(1) How do individual scientists, with
their limited cognitive faculty, discover
new scientific theories? By following a
set of rules or by sheer creativity?

(2) How new theories can be discovered
by scientists aided by computers, by Arti-
ficial Intelligence systems, or any system
other than individual scientists?

The descriptive epistemology of scientific discovery can an-
swer (1) by a careful analysis carried within history of sci-
ence. Here the discoverer is an individual—the lone genius
of Kant, or any scientist experiencing the “Eureka” moment
of discovery. We face here a “dilemma of explanation” if we
have a theory about scientific discovery as algorithmic Nick-
les (1980b); Wartofsky (1980):

(3) DILEMMA OF ALGORITHMIC EX-
PLANATION: The dilemma is then: ei-
ther the theory succeeds, and the concept
of discovery is explained away, or re-
ductively eliminated—or the theory fails,
and discovery remains unexplained.

I emphasize here the novelty of question (2). First, it does
not have a complete answer in the history of science, because
the computer-aided scientific discovery or discoveries made
by large teams of scientists have a shorter history—when com-
pared to scientific discoveries made by individuals. When the
discoverer is a collaborative team, a whole scientific commu-
nities, a team working with computers, or a set of computa-
tional processes, or all these working together, rationality and
creativity may well have radically opposite meanings. The
answer to (1) does not entail an answer to (2), and vice-versa.
Communities, computers or other entities may discover sci-
entific laws, patterns, or theories by an altogether different
mechanism than human scientists do, with or without explain-
ing away creativity.

This paper aims to answer (2) and show in what sense there is
“a third way” in Wartofsky’s dilemma (3). The way in which

"For reasons why the strong program failed, see Curd (1980);
Laudan (1980).

computers and artificial intelligence are used in science may
elucidate the normative part of this epistemological approach,
but we do not need to equate computational techniques with
rational agents, machines, number crunching devices, etc. |
do not identify rationality with logic, irrationality with cre-
ativity, or machines with logic and creativity with humans
only. When used in the scientific discovery, the computa-
tional technique comprehends several elements such as: cre-
ativity, rule-following procedures, logic etc. I think there is
something interesting for philosophers to study about discov-
ery and about computation, taken separately or when compu-
tation is directly applied to scientific discovery.

The skeptic against computers used in areas in which human
knowledge reigns may raise important questions: Are cur-
rent computational techniques versatile enough to reproduce,
and eventually enhance, the process of scientific discovery?
If so, which type of computation is the most promising? And
moreover, is this process going to slowly replace humans with
machines, even in the process of discover? I reckon that all
these questions are attractive from a philosophy of science
point of view. It is even more contentious whether a computa-
tional process can discover solutions to problems that humans
(alone) cannot discover.

In focusing on the epistemology of scientific discovery and
the possibility of its algorithmic reconstruction, the current
approach is more local and partial: 1 focus on a specific
bottom-up approach to discovery: inferring invariants and
laws of nature from large sets of data, and on a specific type
of computation: the evolutionary computation implemented
by genetic algorithms.

The philosophy of computation in science follows the debates
on the relation between data, phenomena, models and theo-
ries. For the purpose of my analysis, two contexts of compu-
tational science are relevant, both inspired by recent discus-
sions on applying science/applied science Morrison (2006);
Bod (2006); Boon (2006). (a) The computational technique
starts from a scientific theory and move towards the data: here
computation is the application of a theory or a “top-down”
approach. Or (b), computation is a heuristic tool that starts
from data and builds a theory in a “bottom-up” approach.
Each of these two approaches may have their own specific
computational turns: computational techniques used in one
may or may not be as revolutionary as they seem in the other.
Differentiating these two contexts may help the philosopher
argue for the novelty of the epistemological aspects of (b)
when compared to (a).

Evolutionary Computation and the
Bottom-up Approach to Theory-building

On different occasions, philosophers and scientists alike
pointed out to a major difference among two types of sci-
entific reasoning (Th. Kuhn, L. Laudan, among others). On
one hand, one has the rule-based reasoning in which new the-
ories or models are inferred from a set of rules. The system
of abstract rules is used to solve problems. The rules in gen-
eral are content-neutral and in the ideal situation they can be
applied to virtually any new set of data. On the other hand,
one witnesses case-based reasoning in science. Th. Kuhn
and K. Popper asked incessantly: is science applied by fol-
lowing rules? Exemplars are solutions to previous problems
that scientist learn during their scientific education and solve
future puzzles based on an “acquired similarity”Kuhn (1962).



Scientists try to make a new phenomenon fit to one or more
previous phenomena.

A relevant step forward is to show that neither science, nor
computation can be reduced to a succession of rule-following
procedures. If we restrict computers to rule-following, then
there is little chance, if any, that computational techniques
can be useful in scientific discovery. Some philosophers
of science have analyzed computation as heuristics device
in the discovery of new theories. Here concrete results are
less notable than in (a). Computer scientists try to use al-
gorithms to discover laws of nature, invariants or patterns in
data at least since the 1970s: the most known are the pack-
ages DENTRAL, EURISKO, GLAUBER, STAHL and BACON
Simon et al. (1981); Mitchell (1997); Waltz and Buchanan
(2009). They are designed for a theory-building procedure,
when the scientists have little or no idea about how the theory
is supposed to look like Keller (2003); Galison (1996); Lang-
ley (1979); Barberousse et al. (2007); Pennock (2000, 2007).
There is a similarity between the Case-Based reasoning sug-
gested by Kuhn and similar Al techniques used in problem-
solving Bod (2006). A case-based procedure always retrieves
cases whose problem is similar to the problem being solved.
The procedure discussed is data-oriented as opposed to rule-
based processing. Computers mimic frequently the process
of learning, which is not completely based on rules. Accord-
ing to Bod, data-oriented procedures in computers are similar
to the way scientists explain new phenomena “by maximiz-
ing derivational similarity between the new phenomenon and
previously derived phenomena” Bod (2006).

Therefore, neither scientists nor computers follow strict rules,
but reuse previous results in order to solve new problems. For
Bod, previous patterns of derivations are learned and accu-
mulated, not phenomena in themselves. Rules are always
present, but they are complemented with corrections, nor-
malizations, exemplars derivations, adjustments, all stored
and reused from previous cases. In context (b), in the data-
oriented discovery process, something else is needed than
rule-following procesures. This takes us a step towards an-
swering (1) and solving dilemma (3). As P. Langley et al.,
P. Thagard (1998) and L. Darden (1998) have argued, bring-
ing in computation into the discussion on scientific discovery
should majorly boost philosopher’s interest in discovery. But,
as my argument goes, the nature of computation plays a cen-
tral role in dismissing (3) as a false dilemma and answering
(2). I show that once we move to a new type of computation,
(3) is based on some false assumptions if we give up the very
restrictive concept of algorithm and adopt a general concept
of computation.

Based on the concrete case study (Schmidt and Lipson, 2009),
I show in what sense creativity and rationality can in fact
go hand in hand in the case of genetic algorithms applied
to scientific discovery. The answer lies in the artificial life
metaphor used by Schmidt and Lipson. Computational re-
sults in this context are still rare, but as my argument goes,
this case cuts deeper into the computational epistemology.
More concretely, in the following two sections I address these
questions:

(4) What are the epistemological conse-
quences of using evolutionary computa-
tion in scientific discovery?

(5) Is evolutionary computation the ap-
propriate type of computation for the
process of discovery?

Evolutionary Computation

Roughly speaking, computer algorithms were born based on
three distinct analogies: algorithms as “formal proofs”, algo-
rithms as “learning processes” and algorithms as “searching
procedures for optimality”. The latter inspired the area of
evolutionary computation, as the paradigm for optimality is
an organism optimally adapted to its environment.

How is “search” related to “life”? In the 1930s, S. Wright
(1932) interpreted a biological species as a system that
evolves in time by exploring a multi-peaked landscape heuris-
tic of optimal solutions to a “fitness problem” . The operation
of optimization of search which is typically performed by an
algorithm can mimic a living organism that over a long pe-
riod of evolution fits the environment. On the other hand the
process of adaptation and evolution is not smooth.

Organisms are subjected to random mutations, too. Taken
the biomimetic strategy on step forward: Is it a good idea
to add randomness to algorithms? There are several types
of stochastic algorithms each of them being more or less
biomimetic in their nature. Biomimetic strategies are widely
used in robotics and artificial intelligence, but they are almost
ignored by philosophers.? Are they useful when applied to
scientific discovery?

After a serendipitous proposal by A. Turing in the early
1950s, Evolutionary Computation (EC) was rediscovered and
reinvented at least ten times before the 1980s (Fogel, 1998).
The milestone is J. Holland’s work (1975). Following Tur-
ing and von Neumann, Holland was able to see the potential
of using the knowledge on natural adaptation process to im-
proving search techniques and applied the principles of nat-
ural selection directly to problem-solving algorithms. One
fundamental difference, not available in Turing’s time, is that
selection occurs better at the level of population, not at the
level of individuals.

The elements of a genetic algorithm

Genetic algorithms are iterative procedures of searching for
the optimal solution to a problem P. They are based on the
metaphor of biological processes in which organisms: (a)
non-consciously adapt to the “environment” P and (b) are
selected by a supraindividual mechanism such as selection.?
The question is whether we can generate algorithms in the
same way organisms are created through evolution.

Genetic algorithms start from a given number of initial indi-
viduals randomly distributed in a given space, called the ini-
tial population. The genetic algorithm transforms individuals,
each with an associated value of fitness, into a new generation
by using the principles of survival-of-the-fittest, reproduction
of the fittest and sexual recombination and mutation. Sim-
ilar to Wright’s landscape, the genetic algorithm finds “the
most suitable” or the “best so far” solution to the problem by
breeding individuals over a number of generations.

The procedure can be stopped by a termination condition:
when the sought-for level of optimality is reached or when all

20On the concept of biomimetics, see Srensen (2004); Muntean
and Wright (2007).

3 take here algorithms as abstract, mathematical objects,

whereas programs as their concrete instantiation on a machine.
A sensitive difference is between genetic algorithms, genetic pro-
gramming and genetic strategies. See Jong (2006).



the solutions converge to one candidate. The fitness function
estimates the fitness to breeding of individuals in accordance
with the principle of survival and reproduction of the fittest:

 Better individuals are more likely to be selected than infe-
rior individuals.

¢ Reselection is allowed.
¢ Selection is stochastic.

The genetic algorithm ends with a termination condition that
can be the satisfying of a success predicate or completing a
maximum number of steps. The success predicate depends on
the user’s choice and can be deemed as a pragmatic criterion.
The winner is designated at the “best-so-far” individual as the
result of the run.

Here is an abstract implementation of a genetic algorithm:

[1] produce an initial population of
individuals

[2] WHILE "“termination’ not met do
[3] evaluate the fitness of all
individuals

[4] select fitter individuals for
reproduction
[5] produce new individuals

[6] generate a new population by
inserting some new

good individuals and

by discarding some

‘bad’ individuals

[7] mutate some individuals
[8] ENDWHILE

[9] Call the individual (s) which satisfy
the ‘termination’ condition
the ‘‘best-fit-so-far’’

Case study: (Schmidt and Lipson, 2009):
Distilling laws and invariants

To show that “algorithmic explanation” and “creativity” are
not mutually exclusive in (3), I use as an example of compu-
tation applied directly to science the result reported in Nature
(Schmidt and Lipson, 2009). M. Schmidt and H. Lipson have
showed how symbolic regression based on evolutionary pro-
gramming can be used in discovering natural, non-trivial and
meaningful invariants in physics.* Their algorithm searches
over the infinite possible ways of modeling data to find the
best and most useful expression available given (i) a set of
data; (ii) a termination condition and (iii) a set of evolutionary
path. It starts with a set of individuals which can be equations,
models and scientific heuristic methods of search—not nec-
essary mathematical objects. Each individual is tested against
a bank of experimental data. Many individuals do not make

“The package is EUREQA, a software based on evolutionary
algorithms Lab (2009).
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Figure 1: The Pareto front with two “cliffs”.(Schmidt and
Lipson, 2009, supplementary online materials)

sense mathematically or do not meet some consistency crite-
ria, so they are discharged. Some may fit the data better than
others. The software saves these individuals for “breeding”,
cross-combining a ‘father’ with a ‘mother’. It is claimed that
over hundreds of thousands of generations, some extremely
fit individuals emerge.

Schmidt and Lipson approached scientific discovery as be-
ing data-driven. They started from a set of measured, un-
interpreted set of data representing the position, velocity and
acceleration of a lab experiment or a virtual system (gener-
ated by another algorithm). The method used, the “symbolic
regression”, is not new at all, but here the program searches
for both the form and the parameters of an equation that
model a given set of experimental data. They have discovered
not only analytic functions from empirical data, but structures
which are highly relevant to physical sciences: Hamiltonians,
Lagrangians, laws of conservation, symmetries, and other in-
variants.

Schmidt and Lipson adopted the balance between two objec-
tives: the predictive power and the complexity/parsimony of
each candidate. By calculating the “Pareto front” of the de-
pendence predictive ability versus parsimony, Schmidt& Lip-
son found that there are two cliffs where predictive ability
jumps rapidly at some relatively small increase in complex-

ity.

The Epistemology of Discovery with
Evolutionary Algorithms: Risks and
Advantages

One knee-jerk reaction to applying computation to science
is: what is so philosophical about (yet) another tool used by
scientists? Although we are nowhere near an “end of com-
putation”, the philosopher would not directly infer from its
success, its epistemological relevance. Many scientific tools
are successful in science, but philosophically inept, and vice
versa. Although not yet successful, I claim that this case
study is worth of a philosophical scrutiny as it sheds some



light on some concepts such as: creativity, rule-following,
knowledge production, etc. The procedure addresses some
very general epistemological issues of scientific discovery.
The knowledge-production in this case study uncovers inter-
esting aspects of the scientific discovery. I frame the follow-
ing epistemic “aspects” both as problems and as novel fea-
tures of the scientific discovery based on evolutionary algo-
rithms. The direct application of evolutionary computation
to scientific discovery shows how productive bio-inspired al-
gorithms can be. The most attractive feature of evolutionary
computation is its ability to “explore” the logical space of so-
lutions, even those which remains unconceived to the mind
of the scientist. But the whole process is not totally automa-
tized and the algorithm is not fully autonomous. The human
scientist imposes her own meta-rules on the algorithm. On
the other hand, because every solution is a model better or
worse adapted to data, the bio-mimetic aspect of this exam-
ple is clear: scientific models adapt to the data and create
populations of solutions such that each individual contributes
to the adaptation function of the population. After running
the algorithm as suggested by Schmidt and Lipson, the sci-
entist is able to explore the “tip of the iceberg”, i.e. the best
adapted in so far individual from a multitude of previous gen-
erations of solutions. The unconceived alternative models, al-
though not direcly present in the final solution did influence it
if they were part of the intermediate generations of solutions.
I relay the epistemological aspects of the genetic algorithms
used in scientific discovery to the various aspects of artifi-
cial life. A stronger connection, not endorsed here, would
connect knowledge in general to evolution, the are being the
evolutionary epistemology. The main part of my argument
is that the face of scientific discovery “as we know it” may
change radically once evolutionary computation is involved
in the process of discovery. I list here several aspects of this
“upward epistemology” that is still nascent but very enticing
philosophically.

Stochasticity versus scrutability of solutions

Genetic algorithms can be stochastic or not, depending on
the mutation operator occurring in step (7) or by selecting
the individuals for reproduction in step (5) (in Table 1). An
algorithm becomes deterministic if exactly one parent is iden-
tically reproduced or if two parents are combined without
adding or losing information based solely on their fitness.
Genetic algorithms are stochastic in two major respects: both
the operation of selection and reproduction are random. That
means the results (offspring) are not direct results of the input
data (the parents).

The crossover operator takes two individuals, the parents,
and produces two new individuals, the offspring, by swap-
ping substrings of the parents. Randomly choosing two par-
ents to mate or randomly deleting or adding information from
the parents will make the algorithm stochastic. Mutation is
a background redistribution of strings to prevent premature
convergence to local optima.

Weak individuals may survive “by luck” and fit individuals
may not be drawn to reproduce. The advantage of a random
mutation is that at least some populations, ideally a few only,
could escape the traps which deterministic methods may be
captured by, and end up with an unexpected and novel result.
For very complex problems, this biomimetic procedure can
output results which are definitely not accessible to determin-
istic algorithms if a delicate balance between the mechanism

of selection that decrease variation and those that increase
variation (mutation) has been achieved.

Because the scientist can control this mutation operator and
its frequency, the output of such a discovery algorithm is not
traceable by humans. At the limit, the solution of such an
algorithm may be inscrutable to humans. It is also the case
that for any run, because of the stochastic element, the best
individuals are not guaranteed to be selected, and the worst
are not eliminated. One can say that the algorithm favors the
best and marginalizes the unfit. The selection is not entirely
“greedy” in the search space. We do not need to associate cre-
ativity to such a random process. As I show before, human
element is not totally eliminated in this case. The creativity
is blind in this case, similar to mutation in biological popula-
tions.

Rules, laws and metarules

The evolutionary algorithms do not follow a set of rules in
respect of the discovery of new laws or invariants. As the case
study suggests, the process of discovery is here ruled by the
metarules of evolution as well as the method used to decide
about the fitness function and the termination condition.

For simple laws and invariants, genetic algorithms are easily
outrun but Turing machines. But given the complexity of cur-
rent science, deterministic algorithms may well be worn out
as aiding tools to optimality. Although this may sound specu-
lative, let us assume that science evolved toward increasingly
complex representations. Maybe the good-old-days of sim-
ple, beautiful laws of nature are gone. What if were not going
to encounter beautiful laws such as:
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anywhere down the road? For the time being, weve been
lucky enough that our best laws of nature could have been fit
on a “T-shirt”, as it were. How do we discover more and more
complex laws of nature? We are limited by conceivability
and our limited resources to recognize patterns and regular-
ities may become overtaken by the increasingly complex set
of data. Time in which we could deduct laws from phenom-
ena without any epistemic extenders may be over. More and
more complex data are collected. Cosmologists, neuroscien-
tists, sociologists, political scientists do not have the luxury
to infer their laws from laws as simple as Newton’s or Ein-
stein’s. What if, from now on, the would-be laws of nature
wont fit even a football banner? We need to brace up for
more and more complex scientific representations...

Social science, biology, suggest that we may want to drop
completely the ideal of laws of nature in their simplest and
purest form. In some historical cases, pre-existing theories
and the accompanying mathematics were not “already there”
when a major discovery in science occurred: contrast this
with the received view on the “unreasonable effectiveness of
mathematics”. We may even need to reconsider the concept
of universal laws of nature, existing independent of the way
we collect and simulate data.

Now, here is a brighter perspective. Even if the good old
days are bygone, there are new ways of coping with increas-
ing complexity in the form of invariants, regularities, laws
of nature and alike. Distributive knowledge in science is
a tempting idea. Science made by communities of scien-
tists, labs, research programs may steadily replace science



made by individuals. The other possible path suggested by
Humphreys is a collaborative work between computers and
humans. Maybe we have to face the fact that science is get-
ting closer to the limits of our knowledge, we as limited in-
dividual brains. Philosophically put, science is getting closer
to the conceivability limit of possibilities.

Triviality versus meaningless

In Schmidt and Lipson’s approach, there is a problem of triv-
iality and meaninglessness of solutions. For almost any set of
empirical data there are uncountable invariants or conserved
quantities, some of them being trivial, some being meaning-
less. The main task in this case is to find a non-trivial in-
variant of the system that also can be interpreted as having
a meaning. Schmidt and Lipson proposed a criterion based
on decomposability: the candidate equations should predict
connections between dynamics of the subcomponents of the
system. This is done by pairing the variables and looking
for natural behaviors of parts of the system. More precisely,
the conservation equations should be able to predict connec-
tions among derivatives of groups of variables over time, re-
lations that we can also readily calculate from new experi-
mental data. Ultimately, their procedure was able to infer the
optimal form of the double pendulum Hamiltonian by avoid-
ing trivial and meaningless solutions. Schmidt and Lipson in-
cluded a human decision maker in their algorithm who stops
the search process at certain time and imposes the constraints
of the symbolic regression such as: “naturalness”, “interest-
ingness” or “meaningfulness”.

Interpretation versus understanding

Bootstrapping can also be used to infer laws for more com-
plex systems. Results about simpler systems can be used to
infer equations for more complex systems. From a statisti-
cal analysis, Schmidt and Lipson inferred that terms that are
frequently used and are more complex have also meaning.
For example, trigonometric terms represent potential energy,
squared velocities are associated to kinetic energy. The main
claim of Schmidt and Lipson is that these terms are ready for
a human interpretation:

These terms may make up an ‘emergent alphabet’
for describing a range of systems, which could accel-
erate their modeling and simplify their conceptual un-
derstanding. [...] The concise analytical expressions
that we found are amenable to human interpretation and
help to reveal the physics underlying the observed phe-
nomenon. Many applications exist for this approach,
in fields ranging from systems biology to cosmology,
where theoretical gaps exist despite abundance in data.

Might this process diminish the role of future sci-
entists? Quite the contrary: Scientists may use pro-
cesses such as this to help focus on interesting phenom-
ena more rapidly and to interpret their meaning Schmidt
and Lipson (2009).

The outcome of such an algorithm can help in the future with
understanding scientific results which are not strictly speak-
ing discovered by humans. The operation of distilling laws
from data does more than generating symbols, be them com-
plex expressions of conserved quantities or equations. Sim-
ilar to numerical simulations, “the results are not automati-
cally reliable” and more effort and human expertise is needed

to decide what results are reliable and which are not (Wins-
berg, 2009). But in this case the computation is more than a
tool or a technique because it makes the results intelligible to
the human scientist and the question whether the method can
be truly creative is up for grabs.

Path dependency versus global solutions

Genetic algorithms compensate some of their drawbacks by
their effectiveness in global search. Remember that they
maintain a population of solutions which are constantly up-
dated with fitter new individuals and hence avoid local op-
tima. For a certain complexity of the search space, a ge-
netic algorithm has a better chance to find the global opti-
mum. This changes radically the epistemological aspects of
genetic algorithms. They are very efficient in solving “hard
problems” where little or nothing is known about the sought-
for structure and when discovering new structures trumps the
process of evaluating existing knowledge.

The case study underscores well this problem of any evo-
lutionary computation: its path dependence. Even the non-
trivial and meaningful solutions are not unique! The proce-
dure does not produce a single set of solutions, but a set of
candidates for the analytical solutions. It is known that any
complex problem has a number of local maxima in the land-
scape of solutions with different fitness values. At different
runs of the simulations, different populations can converge to
different maxima. The human discoverer will always reach
only one solution, whereas a set of genetic algorithms run-
ning on the same initial population will end up with differ-
ent optimal solutions. This is a direct consequence of the
fact that similar to biological evolution, the process is non-
deterministic. As it was recently argued, this leads to a non-
modular functionality of the algorithms and hence to a lim-
ited understanding of the operations (Kuorikoski and Pyhnen,
2013). The only aspect which is etymologically accessible to
the scientist is comparing results and deciding the best fit. But
the way we achieved that results is inscrutable to the scientist.
Previous generations and the evolution itself is in many cases
too complicated to follow or alternatively, too stochastic to
constitute a justification per se. As we cannot trace the proof
of the algorithm and replicate it, this is in direct analogy with
the way we can run the tape of life and every time a different
rational agent will emerge as the “better-to-fit”. The princi-
ples of recombination, selection, and mutation are basically
“operators” in the algorithm to generate new individuals.

Turing versus non-Turing; abstraction versus implementation

This aspect is more speculative and reflects a general attitude
towards computation in general. Why is evolutionary compu-
tation so special? Some theoretical results suggest that evolu-
tionary Turing machines may are more expressive than Tur-
ing machines—at an abstract level.’ The so-called “Turing
Evolutionary machine” is more expressible than an ordinary
Turing machine, and its output can converge to the output
of an universal Turing Machine. More importantly, the evo-
lutionary Turing machine can solve the TM-unsolvable halt-
ing problem using non-algorithmic means (Eberbach, 2005).
Generalizing computation to a non-Turing aradigm would

5T will follow here mainly Eberbach (2005). See also Pudlk
(2001).



provide novel and unexpected epistemological results. Un-
like Turing machines, the theory of Evolutionary Turing Ma-
chines is relatively unknown to the philosophical community.
Eberbach has showed that evolutionary computation can be
non-algorithmic, can evolve non-recursive functions and that
an evolutionary Turing machine can solve the TM unsolv-
able halting problem of a UTM. “They are specific metaalgo-
rithms (i.e., algorithms operating on other algorithms) with
no restriction on their domain and some (rather historical)
restriction on evolutionary algorithms that they have to be
probabilistic, population-based, and using fitness function.”
Eberbach (2005). Practical implementations of evolutionary
computation are approximations of Turing machines and they
are heavily restricted to time and resources of concrete imple-
mentations.

Conclusion

With its “upward epistemology”, evolutionary computation
applied to discovery is a promising new tool for future sci-
entific projects. Evolutionary computation and genetic algo-
rithms in particular, anticipate the way scientific methodology
and knowledge may look in a couple of decades. And the
philosopher of science cannot wait for the foreseeable mo-
ment of the informational singularity when artificial intelli-
gence will compete with humans. My humble philosophical
prediction is that evolutionary computation, or some more
“evolved” offspring of it, will be there at the “singularity”
party - if there shall be any.
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