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Abstract This paper examines and classifies the computational complexity of model
checking and satisfiability for hybrid logics over frames with equivalence relations.
The considered languages contain all possible combinations of the downarrow binder,
the existential binder, the satisfaction operator, and the global modality, ranging from
the minimal hybrid language to very expressive languages. For model checking, we
separate polynomial-time solvable from PSPACE-complete cases, and for satisfiabil-
ity, we exhibit cases complete for NP, PSpace, NExpTime, and even N2ExpTime.
Our analysis includes the versions of all these languages without atomic propositions,
and also complete frames.

Keywords Hybrid logic · Downarrow operator · Satisfiability · Model checking

1 Introduction

Hybrid logics are powerful and well-behaved extensions of modal logic. However,
their expressive power often claims a high price in terms of computational costs:
Satisfiability for the language with the “downarrow binder” ↓ is undecidable Areces
et al. (1999).1 Facing this drawback, it is natural to ask for restrictions under which

1The original proof appears in Blackburn and Seligman (1995), but uses four modalities. Goranko’s proof
in Goranko (1996) uses the global modality.
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decidability can be restored. One way is to restrict the syntax, for instance by dis-
allowing certain combinations of ↓ and the � modality, which was examined in ten
Cate and Franceschet (2005). Another way is to restrict the semantics by considering
specific frame classes over which ↓ is not as expressive as over the class of all frames.
A successful “taming” (i.e., decidability for satisfiability) of the ↓ language has been
established for frames of bounded width in ten Cate and Franceschet (2005), and for
transitive and complete frames in Mundhenk et al. (2005). Furthermore, over linear
frames, where ↓ alone is useless, decidability has been shown for extensions of the ↓
language in Franceschet et al (2003).

Apparently, highly expressive hybrid languages can be tamed by restricting the
class of frames. We will consider very restricted frame classes and will show that
those languages still have high and different levels of complexity over them.

The starting point for our considerations is the NExpTime-completeness result for
satisfiability of the ↓ language over complete frames from Mundhenk et al. (2005).
What happens if we enrich the language and allow for slightly more general frames?
We consider hybrid languages with and without propositional variables (the latter
called pure languages) and each possible combination of ↓, ∃ (a binder stronger than
↓), the satisfaction operator @, and the stronger “somewhere” modality E. For these
languages, we examine model checking and satisfiability over complete frames and
over frames whose accessibility relation is an equivalence relation (ER frames for
short). The results cover a spectrum from polynomial time up to nondeterministic
doubly exponential time and thus exhibit the lack of robustness of binder languages.

The model-checking part of this paper mainly consists of consequences or refine-
ments of results from Franceschet and de Rijke (2005), where the complexity of
model checking for hybrid languages over arbitrary frames has been classified into
polynomial-time computable and polynomial-space complete cases. We obtain a sim-
ilar dichotomy. The interesting point is that the complexity only depends on whether
the language contains ↓. Essentially, the complexity of model checking is PSpace-
complete if the language contains↓, and otherwise it is in polynomial time (Franceschet
and de Rijke 2005). Whether the language is pure, and whether we are restricted to
ER frames or even complete frames, does not affect complexity.

The satisfiability part contains new and technically involved results for highly
expressive binder languages. For pure languages, we obtain a similar dichotomy as
for model checking. Satisfiability is PSpace-complete if the language contains ↓, and
otherwise it is NP-complete. The frame class (complete resp. ER) is irrelevant. For
“non-pure” languages, again a similar dichotomy is obtained for complete frames
only. Satisfiability over complete frames is NExpTime-complete if the language con-
tains ↓, and otherwise it is NP-complete. Over ER frames, we obtain an interesting
difference for the language with ↓ and E (which is the language with full expressiv-
ity). For all other languages, satisfiability over ER frames has the same complexity
as over complete frames. Adding E to ↓ or ∃ causes a whole exponential jump from
NExpTime-completeness to N2ExpTime-completeness, and adding ↓ to E causes a
doubly exponential jump from NP-completeness to N2ExpTime-completeness. As we
will show, this jump is due to two circumstances. First, the logic with ↓ and E lacks
the exponential-size model property with respect to ER frames. This is because this
language is expressive enough to enforce models of doubly exponential size. Second,
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Fig. 1 A hierarchy of hybrid languages and an overview of their complexity. (a) hierarchy of all HL(·)
(b) [P]HL(·)-compl-MC and [P]HL(·)-ER-MC (c) PHL(·)-compl-SAT and PHL(·)-ER-SAT (d)
HL(·)-compl-SAT (e) HL(·)-ER-SAT

we can encode a N2ExpTime-complete version of the the classical bounded tiling
problem in these large models.

Our results are visualised in Fig. 1 b–e, where the nodes of the diagrams correspond
to the languages given in part (a). These are obtained by analysing the interdefinabil-
ities between the considered operators in Sect. 2, most of which are due to Blackburn
and Seligman (1995, 1998). Part (b) of Fig. 1 shows the complexity of model check-
ing, and parts (c)–(e) the complexity of satisfiability. The abbreviations HL and PHL
stand for the full and pure (without atomic propositions) language, respectively. ER
and compl stand for ER frames resp. complete frames. The abbreviations in the nodes
denote complexities: P for polynomial-time computable, and the rest for completeness
with respect to NP, PSpace, NExpTime, and N2ExpTime. Each result is marked with
the number of the respective theorem or a reference to its origin.

This paper is organised as follows. In Sect. 2, we begin with basic concepts and
notations of hybrid logic, complexity theory, and tilings. Sections 3 and 4 contain our
results for model checking and satisfiability, respectively. We conclude in Sect. 5.

2 Preliminaries

2.1 Hybrid Logic

Hybrid languages are extensions of the modal language allowing for explicit refer-
ences to states. Here we introduce the languages relevant for our work. The definitions
and notations are taken from Areces et al. (1999, 2000).
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Syntax Let PROP be a countable set of propositional atoms, NOM be a count-
able set of nominals, SVAR be a countable set of state variables, and ATOM =
PROP ∪ NOM ∪ SVAR. It is common practice to denote propositional atoms by
p, q, . . . , nominals by i, j, . . . , and state variables by x, y, . . . The full hybrid lan-
guage HL(↓, ∃,@,E) is the set of all formulae of the form ϕ ::= a | ¬ϕ | ϕ ∧ ϕ′ |
�ϕ | ↓ x .ϕ | ∃ϕ | @tϕ | Eϕ , where a ∈ ATOM, t ∈ NOM ∪ SVAR, and x ∈ SVAR.
We use the well-known abbreviations ∨, →, ↔, 
 (“true”), and ⊥ (“false”), as well
as �ϕ = ¬�¬ϕ, ∀ϕ = ¬∃¬ϕ, and Aϕ = ¬E¬ϕ. Whenever we leave ↓, @, or E out
of the hybrid language, we omit the according symbol from HL(·).

A hybrid formula is called pure if it contains no propositional atoms; nominal-free
if it contains no nominals; and a sentence if it contains no free state variables. (Free
and bound are defined as usual; the only binding operators here are ↓, ∃.)

Semantics for HL(↓, ∃,@,E) is defined in terms of Kripke models. A Kripke model
is a triple M = (M, R, V ), where M is a nonempty set of states, R ⊆ M × M is
a binary relation — the accessibility relation — , and V : PROP → P(M) is a func-
tion — the valuation function. The structure F = (M, R) is called a frame.

A hybrid model is a Kripke model with the valuation function V extended to
PROP ∪ NOM, where for all i ∈ NOM, #V (i) = 1. Whenever it is clear from the
context, we will omit “hybrid” when referring to models. In order to evaluate ↓- and
∃-formulae, an assignment g : SVAR → M for M is necessary. Given an assignment
g, a state variable x and a state m, an x-variant gx

m of g is defined by gx
m(x) = m and

gx
m(x

′) = g(x ′) for all x ′ �= x . For any atom a, let [V, g](a) = {g(a)} if a ∈ SVAR,
and V (a), otherwise. Given a model M = (M, R, V ), an assignment g, and a state
m ∈ M , the satisfaction relation for hybrid formulae is defined by

M, g,m � a iff m ∈ [V, g](a), a ∈ ATOM,
M, g,m � ¬ϕ iff M, g,m �� ϕ,

M, g,m � ϕ ∧ ψ iff M, g,m � ϕ & M, g,m � ψ,

M, g,m � �ϕ iff for some n ∈ M : m Rn & M, g, n � ϕ,

M, g,m � ↓ x .ϕ iff M, gx
m,m � ϕ,

M, g,m � ∃x .ϕ iff for some n ∈ M : M, gx
n ,m � ϕ,

M, g,m � @tϕ iff M, g, n � ϕ, where [V, g](t) = {n},
M, g,m � Eϕ iff for some n ∈ M : M, g, n � ϕ.

A formula ϕ is satisfiable if there exist a model M = (M, R, V ), an assignment g for
M, and a state m ∈ M , such that M, g,m � ϕ.

The operators ↓ and ∃ are called binders; @ and E are sometimes informally called
jumping operators. There are certain dependencies between these four operators; most
of them have been observed in Blackburn and Seligman (1995, 1998). First, ↓ can be
expressed using ∃: ↓ x .ϕ is equivalent to ∃x .(x ∧ϕ). Second, ∃ can be expressed using
↓ and E: ∃x .ϕ is equivalent to ↓ y.E↓ x .E(y ∧ ϕ). Third, E can be expressed using ∃
and @: Eϕ is equivalent to ∃x .(@xϕ). Fourth, @ can be expressed using E: @xϕ is
equivalent to E(x ∧ ϕ). In these formulae, x and y are state variables. Only in the last
case can x stand for a nominal, too.
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Because of these dependencies, arbitrary combinations of the operators ↓, ∃,@,E
result in seven different hybrid languages: HL, HL(@), HL(E), HL(↓), HL(↓,@),
HL(∃), and HL(↓,E). The inclusion hierarchy of these languages is given in Fig. 1a.
All other combinations coincide with one of these languages. The pure fragment of
HL(X) is denoted by PHL(X).

Frame Classes; Satisfiability and Model Checking Problems Let M = (M, R, V )
be a hybrid model with the underlying frame F = (M, R). If we require the accessi-
bility relation to have certain properties, we restrict the class of relevant frames. Two
frame classes are important for this paper. The class of complete frames is determined
by the restriction R = M × M , and the class of ER frames is the class of all frames
with equivalence relations. In the latter case, call each equivalence class of F a cluster.
A complete frame is an ER frame with one cluster only; obviously the E operator is
not more expressive than � in this case.

For any hybrid language HL(·) and any frame class F, the satisfiability problem
HL(·)-F-SAT is defined as follows: Given a formula ϕ ∈ HL(·), do there exist a
hybrid model M based on a frame from F, an assignment g for M, and a state m ∈ M
such that M, g,m � ϕ ? The model checking problem HL(·)-F-MC is defined as
follows: Given a formula ϕ ∈ HL(·), a hybrid model M based on a frame from F,
and an assignment g for M, does M, g,m � ϕ hold for some state m from M? (If
no binder is in the considered language, the assignment g can be left out of either
formulation.)

For example, the satisfiability problem over complete frames for the ↓ language is
HL(↓)-compl-SAT, while the model checking problem over ER frames for the ∃,@
language is denoted by HL(∃,@)-ER-MC.

It is straightforward to reduce HL(X)-compl-SAT to HL(X)-ER-SAT resp.
HL(X)-compl-MC to HL(X)-ER-MC for arbitrary hybrid operator sets X . The reduc-
tion function defined by f (ϕ) = ϕ∧∧

i∈NOM(ϕ) �i maps ϕ to a formula that enforces
that a satisfying ER model can be restricted to one cluster.

Bounded Model Properties A logic HL(·) is said to have the f (n)-size model prop-
erty with respect to some class F of frames, for some computable function f : N → N,
iff each formula ϕ ∈ HL(·)-F-SAT is satisfiable in a model from F that has at most
f (|ϕ|) states. This property is important for proving upper complexity bounds of
certain logics.

2.2 Further Basic Concepts

Complexity We refer to Papadimitriou (1994) for an introduction into complexity
theory. In our classification, we use the complexity classes P and NP ((nondeter-
ministic) polynomial time), PSpace (polynomial space), NExpTime and N2ExpTime
(nondeterministic time 2poly(n) and 22poly(n)

, respectively). It is known that PSpace
is closed under nondeterminism, that is, PSpace = NPSpace. QSAT is a classi-
cal PSpace-complete problem. It consists in determining whether a given Quan-
tified Boolean Formula (QBF) is valid. QBF are first-order formulae of the form
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Q1x1 . . .Qn xnα(x1, . . . , xn), where each Qi is either ∃ or ∀, and α(x1, . . . , xn) is a
Boolean formula with only the xi as free variables.

Domino tiling problems are a helpful tool to establish lower complexity bounds for
logics. A tile is a unit square, divided into four triangles by its diagonals. A tile type
is a colouring of these four triangles and cannot be rotated. More formally, a tile type
t is a quadruple t = (left(t), right(t), top(t), bot(t)) of colours. Given a set T of tile
types, a T -tiling of the square with side length n is a complete covering of that square
with tiles having types from T , such that each point (x, y) is covered by exactly one
tile, adjacent tiles have the same colour at their common edges, and the outer border
of the square is coloured white. Formally, a T -tiling of the n × n square is a function
τ : {0, 1, . . . , n − 1} × {0, 1, . . . , n − 1} → T satisfying the following condition for
all (x, y) ∈ {0, 1, . . . , n − 1} × {0, 1, . . . , n − 1}.

right(τ (x, y)) = left(τ (x + 1, y)) & top(τ (x, y)) = bot(τ (x, y + 1)) (1)

bot(τ (x, 0)) = top(τ (x, n − 1)) = left(τ (0, y))

= right(τ (n − 1, y)) = white (2)

The square tiling problem denotes the following question. Given a finite set T of
tile types and a string 1n of n consecutive 1s, is there a T -tiling of the square with
side length n? This problem is NP-complete as was shown in Savelsbergh and van
Emde Boas (1984). The proof technique used in Savelsbergh and van Emde Boas
(1984) translates Turing machine computations into tilings and is very robust, such
that simple variants of the square tiling problem can straightforwardly be shown to be
complete for larger complexity classes. We will consider the following variant, which
we call the 22n

-Tiling problem. Given a finite set T of tile types and a string 1n , is
there a T -tiling of the 22n × 22n

square? This problem is N2ExpTime-complete.

3 Model Checking

Franceschet and de Rijke Franceschet and de Rijke (2005) investigated model check-
ing for hybrid logics with the ↓ and ∃ binders. Their hardness results hold for the pure
nominal-free fragments of these languages. With a slight modification of their proof
technique, it is possible to establish the same lower bound over complete frames.

Lemma 1 PHL(↓)-compl-MC is PSpace-hard.

Proof We give a polynomial-time reduction from the standard PSpace-complete prob-
lem QSAT. Consider an arbitrary instanceψ = Q1x1 . . .Qn xnα(x1, . . . , xn) of QSAT.
Let M = (M, R, V ) consist of two states that form a complete frame, namely
M = {1, 2} and R = M × M .2 From ψ we construct a formula h(ψ) = ↓ t.�(↓
f.(¬t ∧ τ(ψ))) as follows. The first part ensures that t is bound to one state of M and

2 Notice that the size of M is independent of the size of the QSAT instance. Therefore, our proof even shows
PSpace-hardness of the expression complexity of PHL(↓)-compl-MC, i.e., this problem is PSpace-hard
even if the size of the model is considered fixed and only the size of the formula may vary.
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f to the other. The formula τ(ψ) is obtained from ψ by replacing all occurrences of
variables xi by �(xi ∧ t), all occurrences of ∃xi by �↓ xi , and all occurrences of ∀xi

by �↓ xi . For example, the formulaψ = ∃x1∀x2¬(x1 ∨ (x2 ∧¬x1)) is transformed to

h(ψ) = ↓ t.� (↓ f.¬t ∧ � (↓ x1.� (↓ x2.¬ [�(x1 ∧ t) ∨ (�(x2 ∧ t)

∧¬�(x1 ∧ t))]))) .

Then ψ is true if and only if M, w � h(ψ) for an arbitrary w ∈ M .

A PSpace upper bound for HL(↓,E)-ER-MC follows from Franceschet and de
Rijke (2005, Theorem 4.5). Together with Lemma 1 it combines to PSpace-complete-
ness of model-checking for hybrid languages as follows.

Theorem 1 Let X be {↓}, {↓,@}, {∃}, or {↓,E}. Then PHL(X)-compl-MC,
HL(X)-compl-MC, PHL(X)-ER-MC and HL(X)-ER-MC are PSpace-complete.

Proof Containment in PSpace follows from Franceschet and de Rijke (2005, Theorem
4.5), and hardness follows from Lemma 1.

4 Satisfiability

4.1 The languages without binders

We show NP-completeness of satisfiability for all pure and non-pure languages with-
out binders, which is the same complexity as for modal logic over ER frames (Ladner
1977). The lower bound is almost trivial, and the upper bound is due to the O(n2)-size
model property, which is established by a generalisation of the selection procedure
given in Ladner (1977).

Lemma 2 PHL-compl-SAT is NP-hard.

Proof We reduce from the satisfiability problem SAT for propositional logic to
PHL-compl-SAT. Let ϕ be a propositional formula with atomic propositions p1, . . . ,

pn . The reduction function simply replaces each pk by a nominal ik . Call the resulting
hybrid formula ϕ′. Clearly, if ϕ is satisfiable, then there exists a satisfying assign-
ment β of all atomic propositions. A satisfying hybrid model for ϕ′ consists of
states M = {0, 1}, the relation R = M × M , and the valuation function defined
by V (ik) = {β(pk)}. (M, R) is a complete frame. Conversely, if ϕ′ is satisfiable in a
state m of some hybrid model M = (M, R, V ), then a satisfying assignment β for ϕ
is obtained by setting β(pk) = 1 iff V (ik) = {m}.
Lemma 3 HL(E) has the O(n2)-size model property with respect to ER frames.

Proof Let ϕ ∈ HL(E)-ER-SAT. Then there exists a hybrid model M = (M, R, V )
and a state m0,0 ∈ M such that M,m0,0 � ϕ. Let Eψ1, . . . ,Eψk and �ϑ1, . . . ,�ϑ�
be all E- and �-subformulae of ϕ. Now, for each Eψi that is satisfied at m0,0, there is
a state mi,0 satisfying ψi . For every other Eψi choose mi,0 = m0,0. Furthermore, for
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each of these mi,0 and each �ϑ j that is satisfied at mi,0, there is a state mi, j in the
cluster of mi,0 satisfying ϑ j . For every other �ϑ j , choose mi, j = mi,0.

Now let M′ be the restriction of M to all mi, j with i, j = 0, . . . , n. This model
clearly has at most (n + 1)2 states and contains m0,0. The crucial fact M′,m0,0 � ϕ

follows from the claim that for each subformula ψ of ϕ and each mi, j : M,mi, j � ψ

iff M′,mi, j � ψ . This claim can be proven by a straightforward induction on ψ .
Let ϕ be a formula from HL(E) of length n. Due to the O(n2)-size model property,

it suffices to guess a model of size O(n2) and verify whether it satisfies ϕ. The last
step can be done in time polynomial in n, due to Franceschet and de Rijke (2005,
Theorem 4.3).

Both the Lemmas combine to NP-completeness of the satisfiability problem for all
hybrid languages with E as strongest operator over complete frames and ER frames.

Theorem 2 Let X be∅, {@}, or {E}. ThenPHL(X)-compl-SAT,HL(X)-compl-SAT,
PHL(X)-ER-SAT and HL(X)-ER-SAT are NP-complete.

Proof NP-hardness follows from Lemma 2. It remains to show containment in NP
of HL(E)-ER-SAT. Let ϕ be a formula from HL(E) of length n. Due to the O(n2)-
size model property (Lemma 3), it suffices to guess a model of size O(n2) and verify
whether it satisfies ϕ. The last step can be done in time polynomial in n, due to
Franceschet and de Rijke (2005, Theorem 4.3).

4.2 The languages with binders and without E

For the remaining languages, the complexity of model checking for pure languages
is lower than for the non-pure languages. We will deal with the pure languages in
Sect. 4.4.

Next, we consider the languages HL(↓), HL(↓,@), and HL(∃) and show that
satisfiability over complete frames and over ER frames is NExpTime-complete (The-
orem 3). Using the hierarchy of the languages, it suffices to use that HL(↓)-compl-SAT
is NExpTime-hard (Mundhenk et al., 2005, Theorem 4), and that HL(↓,@)-ER-SAT
and HL(∃)-ER-SAT are in NExpTime (Lemmas 4 and 5).

Lemma 4 HL(↓,@)-ER-SAT is in NExpTime.

Proof It suffices to reduce HL(↓,@)-ER-SAT to HL(↓)-compl-SAT, which is in
NExpTime (Mundhenk et al. 2005). This reduction will rely on two basic observa-
tions. First, it suffices to consider sentences only, because free state variables can be
replaced by nominals without affecting satisfiability. Second, a satisfying ER model
for an HL(↓,@) sentence ϕ consists w.l.o.g. of not more clusters than there are
nominals in ϕ plus one.

To put the last observation more formally, let ϕ be an HL(↓,@) sentence with
nominals i1, . . . , in . If ϕ is satisfied in a state m of a model M, then ϕ is satisfied in
the restriction of M to the clusters that contain m and all V (ik). This is so because
other clusters are not accessible by means of � or @.
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Hence we can assume w.l.o.g. that a satisfying model for ϕ consists of at most n +1
clusters. Clearly n � |ϕ|. Such a model can be transformed into a model consisting of
one “new” cluster that is the union of all these “old” clusters. The old clusters can be
distinguished by fresh atomic propositions c0, . . . , cn , which help simulate � and @
using only �. This simulation is captured by the following translation from HL(↓,@)
to HL(↓) using a fresh state variable x .

at = a, for a ∈ ATOM (�ϕ)t = ↓ x .�
(∧n

k=0 (ck ↔ �(x → ck)) ∧ ϕt
)

(¬ϕ)t = ¬ϕt (@vϕ)
t = �(v ∧ ϕt )

(ϕ ∧ ψ)t = ϕt ∧ ψ t (↓v.ϕ)t = ↓v.ϕt

With the help of the translation (·)t , we define the reduction function f : HL(↓,
@) → HL(↓) by

f (ϕ) = ϕt ∧ c0 ∧ �
∨n

k=0 ck ∧ �(ik → ck) ∧ ∧
k,�=0,...,n

k �=�
((ck ↔ c�)

∨� ((ck → ¬c�) ∧ (c� → ¬ck))) ,

where the conjuncts after ϕt express that ϕ is satisfied in cluster 0; each state of the
new cluster belongs to some old cluster; nominal ik is true in cluster k; and two clusters
k, � are either equal or disjoint. It remains to prove that ϕ ∈ HL(↓,@)-ER-SAT if
and only if f (ϕ) ∈ HL(↓)-compl-SAT.

“⇒”. Supposeϕ ∈ HL(↓,@)-ER-SAT. Then there exist a model M = (M, R, V ),
a state m0 ∈ M , and an assignment g0 for M such that M, g0,m0 � ϕ. Without loss
of generality, M has only those clusters that are determined by m and all V (ik). Let
V (ik) = mk , for k = 1, . . . , n. We construct a model M� = (M�, R�, V �), where
M� = M , R = M� × M�, and define V � by V �(a) = V (a) for a ∈ PROP ∪ NOM,
and V �(ck) = {m ∈ M | m Rmk} for k = 0, . . . , n. Furthermore, for each assign-
ment g for M, define the assignment g� for M� by g�(y) = y for each y �= x , and
g�(x) = m0.

We have to show that M�, g�
0 ,m0 � f (ϕ). It is immediately clear from the con-

struction that the conjuncts following ϕt in f (ϕ) are satisfied in m0 of M� under g�
0 .

The fact that M�, g�
0 ,m0 � ϕt is a consequence of the following claim.

Claim For each subformula ψ of ϕ, for each state m ∈ M , and for each assignment
g for M:

M, g,m � ψ if and only if M�, g�,m � ψ t .

Proof of Claim We proceed by induction on the structure of ψ . The atomic and Bool-
ean cases follow immediately from the construction. The cases for @ and↓ are straight-
forward. It remains to discuss the only interesting case ψ = �ϑ , which is done via
the following chain of equivalent statements.
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M, g,m � �ϑ

⇔ ∃� ∈ M[m R� & M, g, � � ϑ] (satisfaction rules)
⇔ ∃� ∈ M[m R� & M�, g�, � � ϑ t ] (induction hypothesis)
⇔ ∃� ∈ M[m R� & M�, (g�)xm, � � ϑ t ] (since x is bound in ϑ t )
⇔ ∃� ∈ M� [∀k � n (� ∈ V �(ck) ⇔ m ∈ V �(ck))

& M�, (g�)xm, � � ϑ t
]

(construction of M�,V �)
⇔ ∃� ∈ M� [M�, (g�)xm, � �

∧n
k=0 (ck ↔ �(x → ck))

& M�, (g�)xm, � � ϑ t
]

(satisfaction rules)
⇔ M�, (g�)xm,m � �

(∧n
k=0 (ck ↔ �(x → ck)) ∧ ϑ t

)
(satisfaction rules)

⇔ M�, g�,m � ↓ x .�
(∧n

k=0 (ck ↔ �(x → ck)) ∧ ϑ t
)

(satisfaction rules)
⇔ M�, g�,m � (�ϑ)t

“⇐”. Suppose ϕ ∈ HL(↓)-compl-SAT. Then there exist a model M = (M, R, V ),
a state m0 ∈ M , and an assignment g0 for M such that M, g0,m0 � f (ϕ). Due to
the conjuncts after ϕt in f (ϕ), the variables ck “almost partition” M in the following
sense. Let Clk = V (ck). Then m0 ∈ Cl0; for each state m ∈ M there is some k � n
with m ∈ Clk ; V (ik) ⊆ Clk ; and for two disjoint k, � � n, either Clk = Cl� or
Clk ∩ Cl� = ∅.

Hence the following construction of a model M� = (M�, R�, V �) is correct. Let
M� = M , R� = {(m,m′) | ∀k � n(m ∈ Clk ⇔ m′ ∈ Clk)}, and V � be the restriction
of V to (NOM ∪ PROP) − ⋃{ck}. Furthermore, for each assignment g for M, let
g� = g, which is an assignment for M�.

It remains to show that M�, g�
0 ,m0 � ϕ, which is a consequence of M, g0,m0 �

ϕt and the following claim.

Claim For each subformula ψ of ϕ, for each state m ∈ M , and for each assignment
g for M:

M, g,m � ψ t if and only if M�, g�,m � ψ.

Proof of Claim We proceed by induction on the structure ofψ . Again, the atomic and
Boolean cases follow immediately from the construction, and the cases for @ and ↓
are straightforward. It remains to discuss the only interesting case ψ = �ϑ , which is
done via the following chain of equivalent statements.

M, g,m � (�ϑ)t

⇔ M, g,m � ↓ x .�
(∧n

k=0 (ck ↔ �(x → ck)) ∧ ϑ t
)

⇔ M, gx
m,m � �

(∧n
k=0 (ck ↔ �(x → ck)) ∧ ϑ t

)
(satisfaction rules)

⇔ ∃� ∈ M
[M, gx

m, � �
∧n

k=0 (ck ↔ �(x → ck))

& M, gx
m, � � ϑ t

]
(satisfaction rules)

⇔ ∃� ∈ M [∀k � n (� ∈ Clk ⇔ m ∈ Clk)
& M, gx

m, � � ϑ t
]

(satisfaction rules)
⇔ ∃� ∈ M�[m R�� & M, gx

m, � � ϑ t ] (construction of M�, R�)
⇔ ∃� ∈ M�[m R�� & M, g, � � ϑ t ] (since x is bound in ϑ t )
⇔ ∃� ∈ M�[m R�� & M�, g�, � � ϑ] (induction hypothesis)
⇔ M�, g�,m � �ϑ (satisfaction rules)

This ends the proof.
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Lemma 5 HL(∃)-ER-SAT is in NExpTime.

Proof The ∃ binder can bind state variables to states that are not accessible using �.
In this case, the bound variable evaluates to false. Therefore, if ϕ ∈ HL(∃)-ER-SAT
and M, g0,m0 � ϕ, we can modify M = (M, R, V ) to a model M′ = (M ′, R′, V ′),
where M ′ consists of the states of the cluster C with m0 ∈ C plus one additional
state s �∈ C . R′ is the restriction of R to M ′, and V ′(p) = V (p) ∩ M ′, for atomic
propositions p. For nominals i , define V ′(i) = V (i) if V (i) ⊆ M ′, and V ′(i) = {s},
otherwise. For each assignment g for M, the corresponding assignment g′ for M is
obtained from g by binding all variables to s that are bound to states outside of C by
g. It is straightforward that M, g,m � ψ if and only if M′, g′,m � ψ , for any state
m ∈ C , any assignment g for M, and any subformula ψ of ϕ (proof by induction).
This implies M′, (g0)

′,m0 � ϕ.
Now, M′ is a model with two clusters only. Transforming M′ into an appropriate

complete model as in the proof of Lemma 4 reduces HL(∃)-ER-SAT to
HL(↓)-compl-SAT, which is in NExpTime (Mundhenk et al. 2005). From (Mundhenk
et al., 2005, Theorem 4), Lemma 4 and Lemma 5 we obtain the complete character-
isation of the satisfiability problems for hybrid logics with ↓ and without E.

Theorem 3 Let X be {↓}, {∃}, or {↓,@}. Then HL(X)-compl-SAT and
HL(X)-ER-SAT are NExpTime-complete.

4.3 The full language

For complete frames, theE-operator does not add any expressive power to the language,
since Eϕ is equivalent to �ϕ. Therefore, the complexity of HL(↓,E)-compl-SAT is
the same as for HL(↓)-compl-SAT (see Theorem 3).

Theorem 4 HL(↓,E)-compl-SAT is NExpTime-complete.

In contrast, the complexity of HL(↓,E)-ER-SAT is one exponential level higher.
Our results for the satisfiability of HL(↓,@) and HL(∃) over ER frames rely on
the fact that satisfying models with at most two clusters can be found for satisfiable
formulas. This is not the case for HL(↓,E). We present a satisfiable formula that
has no model below doubly exponential size. We will show that it is possible, but
not quite straightforward, to enforce a tiling in such big models, which establishes
N2ExpTime-hardness. On the other hand, we will prove that each satisfying model
for an HL(↓,E)-formula ϕ can be restricted to a submodel of doubly exponential
size that still satisfies ϕ. This will allow for a guess-and-check procedure running in
N2ExpTime.

Lemma 6 For each n ∈ N there is a formula ϕn ∈ HL(↓,E) with the following
properties.

123



504 M. Mundhenk, T. Schneider

Fig. 2 The behaviour of the counters C and D in an ER model

(i) |ϕn| ∈ O(n)
(ii) ϕn ∈ HL(↓,E)-ER-SAT
(iii) Each satisfying ER model for ϕn has at least 22n

clusters with 2n states each.

Proof In order to enforce a model of the required size, we will proceed in two steps. In
the first step, we will implement a counter C that ranges over the values 0, . . . , 2n − 1
within each cluster. This will make it possible, for each cluster, to distinguish 2n states.
The counter C is realised by atomic propositions cn−1, . . . , c0 whose truth values, in
this order, constitute the binary representation of the value of C at the respective state.
(The “truth value” of ci at the state m is 1 if m ∈ V (ci ), and 0 otherwise, as usual.)

In the second step we will implement a counter D that ranges over the values
0, . . . , 22n − 1 and distinguishes 22n

clusters (not states). It will be realised by one
atomic proposition d. Given a cluster X , the binary representation of the value of D at
X is determined by the truth values of d at the states in X , in the order given by their
C-values. Similar doubly exponential counters have been used, for instance, in Vardi
and Stockmeyer (1985); Lange (2005) to establish lower bounds for propositional
dynamic logics.

The required behaviour of C and D in a satisfying model for ϕn is visualised in
Fig. 2, where points and “sausages” represent states and clusters, respectively. The
values of C /D in each state/cluster are displayed next to it. In the case of C , the shown
number determines the truth values of all ci as described above, and in case of D the
given number is the truth value of d. The respective value of the whole counter D
becomes readable after turning the D column counterclockwise by 90 degrees. The
state with C = 0 in the cluster with D = 0 shall be the state that satisfies ϕn . It is
marked by a larger point.

All these enforcements, of course, will make heavy use of the ↓ operator combined
with E. We will now show how to achieve the required behaviour of C and D. This
will be via several formulae whose conjunction results in ϕn . We start with the con-
juncts enforcing that each cluster has exactly 2n states among which every value of C
between 0 and 2n − 1 occurs once. In order to keep notation short, we will introduce
some abbreviations. First, we would like to refer to specific C-values directly and
abbreviate

zero(C) = ¬c0 ∧ · · · ∧ ¬cn−1 and notmax(C) = ¬c0 ∨ · · · ∨ ¬cn−1.

Second, it will be necessary to express that, for some x ∈ SVAR, the C-value at the
current state

(i) equals,
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(ii) equals one plus,
(iii) is less than,
(iv) is greater than

the C-value of the state to which x is bound. We show how to express (ii) and (iii);
the other two are easy or analogous. Recall that @xψ abbreviates E(x ∧ ψ).

inc(Cx ) = (c0 ↔ @x¬c0) ∧
n−1∧

k=1

[[
(¬ck−1 ∧ @x ck−1) → (ck ↔ @x¬ck)

]

∧ [¬(¬ck−1 ∧ @x ck−1) → (ck ↔ @x ck)
]]

less(Cx ) = (cn−1 ∧ @x¬cn−1) ∨ [
(cn−1 ↔ @x cn−1) ∧ [

(cn−2

∧@x¬cn−2) ∨ [
(cn−2 ↔ @x cn−2) ∧ [. . . ]

]]]

The first macro says: “when going from the bits at x to the bits at the current state,
the least bit is flipped, and for every other bit it holds that: if the previous bit has
changed from 1 to 0, then this bit is flipped, otherwise it remains.” The second macro
says: “when going from the bits at x to the bits at the current state, the highest bit
has changed from 0 to 1 or [the highest bit remains and [the second highest bit has
changed from 0 to 1 or [the second highest bit remains and […]]]].” This formulation
ensures that all macros are of linear size. The following conjuncts enforce the required
behaviour of each cluster with respect to C .

• At the state satisfying ϕn , C = 0 holds. zero(C)
• In each cluster there is a state with C = 0. CZERO = A�(zero(C))
• Each cluster has at most one state of each C-value. CUNIQUE = A ↓ x .�
(equal(Cx ) → x)

• For each state of C-value c < 2n − 1, there is a state of C-value c + 1 in the same
cluster.

CSUCC = A
[
notmax(C) → ↓ x .�inc(Cx )

]

We will now construct the part of ϕn that implements the counter D. This requires
expressing that the value of D in the cluster of the current state equals one plus the
value of D in the cluster of the state assigned to some state variable x . The appropriate
macro is described and illustrated in Fig. 3.

inc(Dx ) = ↓ y.@x� ↓ z.
[
(¬d ∧ �(less(Cz) → d)) →

[
@y� (equal(Cz) → (d ∧ � (less(Cz) → ¬d)

∧ � (greater(Cz) → ↓v.@x�(equal(Cv) → (d ↔ @vd)) )))
]]

We easily obtain the two remaining conjuncts for ϕn .

• The state satisfying ϕn belongs to a cluster with D = 0. DZERO = �¬d
• For each cluster X of D-value d < 22n − 1, there is a cluster Y of D-value d + 1.

DSUCC = A↓ x . (�¬d → E (inc(Dx )))
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Fig. 3 Incrementation of the D counter. Name the current state y. Name the state in the x-Cluster with ¬d
and lowest possible C-value z. For the state in the y-Cluster with the same C-value as z (which we call w
only in this description and in the picture), require three things: (a) d has to hold at w; (b) ¬d has to hold
at all states of the y-Cluster with C-value less than the C-value of w; (c) every state v of the y-Cluster with
C-value greater than the C-value of w has to agree in d with the states of the x-Cluster that have the same
C-value as v.

Now let ϕn = zero(C) ∧ CZERO ∧ CUNIQUE ∧ CSUCC ∧ DZERO ∧ DSUCC.
Since each of the above abbreviations is of linear size and they do not occur nested in
ϕn , Part (i) of the theorem is satisfied. For (ii), it is easy to see that the following ER
model satisfies ϕn at the state 〈0, 0〉 under any assignment. Use bini (n) to denote the
i-th bit in the binary representation of n ∈ N, and let Mn = (Mn, Rn, V n) as follows.

Mn = {〈x, y〉 | x, y ∈ N;
0 � x < 22n ; 0 � y < 2n} V n(ci ) = {〈x, y〉 | bini (y) = 1}
Rn = {(〈x1, y1〉, 〈x2, y2〉) | x1 = x2} V n(d) = {〈x, y〉 | biny(x) = 1}

(3)

In order to show (iii), let M = (M, R, V ) be an ER model with m0,0 ∈ M and g be
an assignment for M such that M, g,m0,0 � ϕn . Now the four C-conjuncts enforce
that C = 0 at m0,0, and that each cluster of M contains exactly one state of C-value
c for each c = 0, . . . , 2n − 1. Due to DZERO, the D-value of m0,0’s cluster equals
0, and DSUCC successively enforces the existence of a cluster of D-value d for each
d = 0, . . . , 22n − 1. (Note that the value of D in each cluster is uniquely determined
by V (d) and the order of the cluster’s states determined by their C-values.) Hence M
has at least 22n

clusters with 2n states each.

Corollary 1 For any function f ∈ o(n),3 HL(↓,E) does not have the 22 f (n)
-size

model property with respect to ER frames.

Theorem 5 HL(↓,E)-ER-SAT is N2ExpTime-hard.

Proof We will reduce the 22n
-tiling problem to HL(↓,E)-ER-SAT. The reduction

will use the techniques enforcing doubly exponentially large satisfying models from

3 The term f ∈ o(n)means that the function f is dominated by the identity function asymptotically (little-o
notation).
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Fig. 4 Enforcing a tiling in an ER model of doubly exponential size

the proof of Lemma 6. In order to encode a tiling for the 22n × 22n
-square in an ER

model M, we will first enforce that M has 22n+1
clusters with 2n+1 states each, using

the same construction of counters C and D, but with parameter n +1. The tiled square
itself will be encoded in the states of C-value 0 of all clusters. Hence row 0 of the
square will be in the clusters of D-value 0, . . . , 22n −1; row 1 will be in the clusters of
D-value 22n

, . . . , 2 ·22n −1; etc.; see Fig. 4. The horizontal adjacencies in the original
square can be expressed referring to pairs of clusters with successive D-values. In
contrast, for the vertical adjacencies, pairs of clusters whose D-values differ by 22n

will have to be compared.4

For the required reduction, we will show how to transform an instance 〈T, n〉 of the
tiling problem into a formulaψT,n such that there is a T -tiling of the 22n ×22n

-square if
and only ifψT,n is satisfiable. As in the proof of Lemma 6, this formula will consist of
several conjuncts. The first of them will be the formula ϕn+1 from that proof, enforcing
the required structure of the model. In order to keep the remaining conjuncts short,
we will use the same abbreviations again, but with n + 1 instead of n. Furthermore,
inc(Dx , 22n

) denotes that the D-value of the current state’s cluster equals 22n
plus the

D-value of the cluster containing the state to which x is bound. This abbreviation is
defined analogously to the shortcut inc(Dx ).

Now we are ready to give the conjuncts that enforce the tiling. Let T be a set of tile
types. For each tile type t we will use an atomic proposition t to denote that a tile of
type t lies at the respective position.

• At each state with C-value 0 lies exactly one tile.

TILE = A

⎛

⎜
⎜
⎝zero(C) →

∨

t∈T

⎛

⎜
⎜
⎝t ∧

∧

t ′∈T
t ′ �=t

¬t

⎞

⎟
⎟
⎠

⎞

⎟
⎟
⎠

• Tiles match horizontally and vertically. (The �-subformulae require that corre-
sponding position of the current state does not belong to the last column (or row,

4 Note that this is not the standard way to encode tilings in models, insofar as not every state of the model
corresponds to a position in the grid. However, this modification of the standard way is not new, since
it relies on ideas developed by Chlebus (1986) to encode the rectangle tiling problem with exponential
parameter into a more intricate version of a bounded tiling problem that he called “High Tiling”.
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respectively) of the square.)

HOR = A

[

(zero(C) ∧ �(¬cn ∧ d)) → ↓ x .

(
∧

t∈T

t → A ((zero(C)

∧ inc(Dx )) →
∨

t ′∈RI(t)

t ′
⎞

⎠

⎞

⎠

⎤

⎦

VER = A

[

(zero(C) ∧ �(cn ∧ ¬d)) → ↓ x .

(
∧

t∈T

t → A ((zero(C)

∧ inc(Dx , 22n
)) →

∨

t ′∈UP(t)

t ′
⎞

⎠

⎞

⎠

⎤

⎦

• The borders of the square are white.

WHITE = A

⎡

⎢
⎢
⎣

⎛

⎜
⎜
⎝�(cn → ¬d) →

∨

t∈T
bot(t)=white

t

⎞

⎟
⎟
⎠ ∧

⎛

⎜
⎜
⎝�(cn → d) →

∨

t∈T
top(t)=white

t

⎞

⎟
⎟
⎠

∧

⎛

⎜
⎜
⎝�(¬cn → ¬d) →

∨

t∈T
left(t)=white

t

⎞

⎟
⎟
⎠ ∧

⎛

⎜
⎜
⎝�(¬cn → d) →

∨

t∈T
right(t)=white

t

⎞

⎟
⎟
⎠

⎤

⎥
⎥
⎦

Now let ψT,n = ϕn+1 ∧ TILE ∧ HOR ∧ VER ∧ WHITE. Each conjunct is of size at
most O(n2 +|T |2). From their definitions it is clear thatψT,n can be computed in time
polynomial in n+|T |. It remains to show that there is a T -tiling of the 22n ×22n

-square
if and only if ψT,n ∈ HL(↓,E)-ER-SAT.

“⇒”. Suppose there is a tiling τ for the 22n × 22n
square. We use this tiling to

construct a model Mn+1 = (Mn+1, Rn+1, V
n+1

) for ψT,n , where Mn+1 and Rn+1

are given as in the proof of Lemma 6 (ii), and V
n+1

is V n+1 from (3) plus

V (t) = {〈22n· i + j, 0〉 | τ(i, j) = t}, for t ∈ T .

Now it is easy to see that M, g, 〈0, 0〉 � ψT,n for any assignment g: The first conjunct,
ϕn+1, is treated in the proof of Lemma 6 (ii). The remaining conjuncts hold at 〈0, 0〉
due to the definition of V , the fact that τ is a function, and the tiling conditions.

“⇐”. Suppose ψT,n ∈ HL(↓,E)-ER-SAT. Then there exist a model M = (M, R,
V ), an assignment g for M, and a state m0,0 ∈ M such that M, g,m0,0 � ψT,n .
Because of the conjunct ϕn+1 of ψT,n , consulting the proof of Lemma 6 (iii) shows
that for every x < 22n+1

and every y < 2n+1, there are clusters Clx with states
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mx,y ∈ Clx such that C has value y in each mx,y , and D has value x in each Clx . This
allows for constructing a tiling τ from the states mx,0 via

τ(i, j) = t ⇔ mx,0 ∈ V (t) (for x = 22n · i + j).

The correctness of this definition is ensured by the conjunct TILE. Due to the remaining
conjuncts, τ defines a permissible tiling.

We will now establish the corresponding upper bound, showing that the full hybrid
language has a doubly exponential size model property over ER frames. This will make
it possible to decide satisfiability using a straightforward check-and-guess procedure
and involving results for model checking.

Lemma 7 HL(↓,E) has the 222n+2
-size model property with respect to ER frames.

Proof Intuitively, the proof relies on the following considerations: Call the set of prop-
ositional variables and nominals that hold at a given state of a model the type of this
state. Let the C-type of a cluster be the set of types of all points of this cluster. If we had
no ↓ in our language, then two states of the same type that belong to the same cluster
would not be distinguishable, that is, they would satisfy the same formulae. Even two
states of the same type that belong to two different clusters of the same C-type would
not be distinguishable. This would enable us to restrict clusters to at most one state per
possible type and to restrict a whole satisfying model for some formula ϕ to at most
one cluster per possible C-type without affecting satisfiability of ϕ. In the presence
of ↓, this argumentation must be refined and requires a certain amount of technical
details. Let ϕ be a formula of size n and M = (M, R, V ) be a satisfying model for ϕ.
First, there are at most 2n possible types of states. Since an assignment for M might
bind all state variables occurring in ϕ to different states of the same type, only up to
n +1 states of the same type belonging to the same cluster are distinguishable. Hence,
it is legitimate to restrict each cluster of M to at most n + 1 states of each type in the
first step, which leads to an exponential bound in the size of clusters.

In the second step, we modify the notion of a C-type of a cluster X to be the
multiset containing as many copies of each type as there are states of this type in
X , but not more than n + 1. It is legitimate, too, to restrict the whole model to at
most n + 1 clusters of each C-type. Since there are at most (n + 2)2

n
many differ-

ent C-types, the number of clusters — and, hence, states — of the restricted model
is bounded by 22O(n)

. The formal proof of the 222n+2
-size model property requires

quite some notation. Let ϕ ∈ HL(↓,E)-ER-SAT be of size n. Then there exist an
ER model M = (M, R, V ), an assignment g0 for M, and a state m0 ∈ M such
that M, g0,m0 � ϕ. Let Ci ⊆ M , i ∈ I , be all clusters of M, for an appro-
priate index set I that contains 0, such that m0 ∈ C0. Let x1, . . . , xs be all state
variables occurring in ϕ. Analogously, let a1, . . . , at be all other atoms in ϕ. Clearly
s, t � n. A ϕ-type is a subset of {a1, . . . , at }. Let A1, . . . , A2t be an enumeration of all
ϕ-types, such that m0 is of type A1. (A state m is of type A� iff for each j = 1, . . . , t :
(m ∈ V (a j ) ⇔ a j ∈ A�). Furthermore, we will deliberately speak of “(C-)types”
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Fig. 5 Dividing a cluster into
“type layers”

instead of “ϕ-(C-)types” whenever no confusion may arise.) Given a cluster C , we
divide it into 2t “type layers” C�

i = {m ∈ Ci | m is of type A�} , as shown in Fig. 5.
We define a function f : I × {1, . . . , 2t } → P(M) that assigns a set of states to

each pair 〈i, �〉 of a cluster number i and a type number �, such that f (i, �) is a subset
of Ci . The union of all possible f (i, �) will constitute the first restriction of M. The
function f is defined as follows, where #C�

i denotes the number of states in C�
i . If

#C�
i � s + 1, then f (i, �) = C�

i . Otherwise, f (i, �) is some subset of C�
i of size at

most s + 1 that satisfies the following conditions.

(i) For each j = 1, . . . , s: if g0(x j ) ∈ C�
i , then g0(x j ) ∈ f (i, �).

(ii) m0 ∈ f (0, 1).

Such a subset always exists. For any cluster Ci , let f (Ci ) denote the union of all
f (i, �). Due to the definition of f , f (Ci ) ⊆ Ci , and f (Ci ) has at most (s + 1) · 2t

states. We denote the union of all f (Ci ) by M ′.
After restricting the cluster size, we will restrict the number of the clusters. Let

A be the multiset containing s + 1 copies of each type A�. Call each subset of A a
ϕ-C-type. The power set P(A) contains (s + 2)2

t
elements. Let A1, . . . ,A(s+2)2t be

an enumeration of all ϕ-C-types, such that f (C0) is of C-type A1. (The C-type of a
cluster Ci is determined by the number of states of each type in its restriction f (Ci ).)
We divide M ′ into (s + 2)2

t
“C-type layers” C� being the union of f (Ci ) for all Ci of

C-type A�.
Now define a second choice function f ′ : {1, . . . , (s +2)2

t } → P(M ′) that assigns
a set of states to each C-type number such that f ′(�) is a union of (restricted) clus-
ters. The union of all possible f ′(�) will constitute the second restriction of M. The
function f ′ is defined as follows. If there are not more than s + 1 clusters of C-type
A�, then f ′(�) = C�. Otherwise, f ′(�) is the union of s + 1 restricted clusters of type
A� satisfying

(iii) ∀ j = 1, . . . , s: if g0(x j ) ∈ f (Ci ) for some Ci of type A�, then f (Ci ) ⊆ f ′(�);
(iv) f (C0) ⊆ f ′(1).
Such a subset always exists. Due to the definition of f ′, each f ′(�) contains at most
s +1 restricted clusters and, hence, (s +1)2 ·2t states. We now construct a new model
M′′ = (M ′′, R′′, V ′′) from M, where M ′′ is the union of f ′(�) for all C-types A�, and
R′′ and V ′′ are the restrictions of R and V to M ′′. Now the following facts about M′′
are obvious. It is still an ER model, whose clusters are restrictions of clusters of M.
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It contains m0, because m0 ∈ f (C0) ⊆ f ′(1). The assignment g0 is an assignment
for M′′. Since there are (s + 2)2

t
C-types, M ′′ contains (s + 2)2

t · (s + 1)2 · 2t states.
This number is limited by 222n+2

because s, t � n.
It remains to show that M′′, g0,m0 � ϕ. For this purpose, we make use of an auxil-

iary statement. This statement uses the concept of agreement in a pair of assignments.
We say that two states m and m′ from M agree in two assignments g/g′ for M iff
{xk | g(xk) = m} = {xk | g′(xk) = m′}. Two clusters Ci and Ci ′ agree in g/g′ iff
they are of the same C-type, and for each A�, each m ∈ C�

i , there is some m′ ∈ C�
i ′

that agrees with m in g/g′.
Claim For each subformula ψ of ϕ; for each two assignments g, g′ for M; for each
C-type A�; for each two clusters Ci and Ci ′ that agree in g/g′; for each type A�;
and for each m ∈ C�

i and m′ ∈ C�
i ′ that agree in g/g′; it holds that M, g,m � ψ

iff M, g′,m′ � ψ .

Proof of Claim By induction on ψ . Direction “⇒” suffices because of the symmetry
of the conditions on m and m′. The atomic and Boolean cases of the induction are
immediate and easy, respectively. The E case is trivial, and the ↓ case is straightfor-
ward if one considers the fact that, since m and m′ agree in g/g′, they also agree in
gx

m/(g
′)xm′ , for any state variable x . The only interesting case is the � case, with the

following argumentation. Suppose M, g,m � �ϑ . Then there exists some m ∈ Ci

with M, g,m � ϑ . Let A�′ be the ϕ-type of m. Then C�′
i and, hence, C�′

i ′ is not empty.

Because Ci and Ci ′ agree in g/g′, there is some m′ ∈ C�′
i ′ that agrees with m in g′/g.

Due to the induction hypothesis, M, g′,m′ � ϑ . Hence, M, g′,m′ � �ϑ .

Now the required fact M′′, g0,m0 � ϕ is a consequence of the following claim.

Claim For each subformulaψ of ϕ, for each m ∈ M ′′, for each assignment g for M”,
it holds that M, g,m � ψ iff M′′, g,m � ψ .

Proof of Claim Since m ∈ M ′′, there is some i ∈ I such that m ∈ f (Ci ) ⊆ M ′′. Let
A� be the C-type of Ci . We prove the claim by induction. The atomic cases follow
from the facts that M′′ is a restriction of M and that g is an assignment for both M
and M′′. The boolean cases are straightforward. So is the ↓ case if one considers the
fact that gx

m is still an assignment for M′′. For the remaining cases for � and E, the
“⇐” direction is trivial. We will only prove the “⇒” direction.

Case ψ = �ϑ . Suppose M, g,m � �ϑ . Then there exists some m′ ∈ Ci with
M, g,m′ � ϑ . Let the type of m′ be Ak . There are three cases to distinguish.

(1) #Ck
i � s + 1. Then m′ belongs to f (i, k) and, hence, to f (Ci ). Hence m′ ∈ M ′′

and m R′′m′. Together with the induction hypothesis, this immediately yields
M′′, g,m � �ϑ .

(2) #Ck
i > s + 1 and, for some j = 1, . . . , s, g(x j ) = m′. Since g is for M′′, we

obtain m′ ∈ M ′′ and m R′′m′, which yields M′′, g,m � �ϑ as in case (1).
(3) #Ck

i > s + 1 and, for no j = 1, . . . , s, g(x j ) = m′. Due to the size of Ck
i and

the construction of f , there is some m′′ ∈ f (i, k) not affected by g either. Since
m′ and m′′ are of the same type and agree in g/g, the previous claim implies that
M, g,m′′ � ϑ . The remaining argumentation is the same as in case (1), with m′′
instead of m′.
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Case ψ = Eϑ . Suppose M, g,m � Eϑ . Then there exists some m′ ∈ M with
M, g,m′ � ϑ . Let the type of m′ be Ak , and let m′ be from Ci ′ , the latter being of
C-type A�. As in the � case, there are three sub-cases to distinguish.

(1) There are at most s + 1 clusters of C-type A�. Then Ci and, hence, m′ belong to
M′′. Together with the induction hypothesis, this immediately yieldsM′′, g,m �
Eϑ .

(2) There are more than s + 1 clusters of C-type A� and, for some j = 1, . . . , s,
g(x j ) ∈ f (Ci ′). Since g is for M′′, we obtain f (Ci ′) ⊆ M ′′, which yields
M′′, g,m � Eϑ as in case (1).

(3) There are more than s + 1 clusters of C-type A� and, for no j = 1, . . . , s,
g(x j ) ∈ f (Ci ′). Due to the “large enough” number of clusters of C-type A�

and the construction of f ′, there is some cluster Ci ′′ ⊆ f ′(�) not affected by
g either. Since Ci ′ and Ci ′′ agree in g/g, there is some m′′ ∈ f (Ci ′′), having
the same type as m′ and agreeing with m′ in g/g. Hence, due to the previous
claim, M, g,m′′ � ϑ . Here we have to distinguish the same three sub-cases as
in the � case. The argumentation is analogous and leads to the required result
M′′, g,m � Eϑ .

Theorem 6 HL(↓,E)-ER-SAT is N2ExpTime-complete.

Proof The lower bound follows from Theorem 5. For the upper bound, let ϕ be an arbi-
trary instance of HL(↓,E)-ER-SAT. In order to determine whether
ϕ ∈ HL(↓,E)-ER-SAT, we guess a model M = (M, R, V ), an assignment g, and a
state m ∈ M , and check whetherM, g, w � ϕ. Let n = |ϕ|. Ifϕ ∈ HL(↓,E)-ER-SAT,
then, due to Lemma 7, it has a satisfying model with state space M of size at most
222n+2

. Hence, in time O(222n+2
) we can guess a model M = (M, R, V ) of size

at most 222n+2
and check whether R is an equivalence relation. An assignment g

can be guessed in time O(23n+2). All the guesses together take time O(22k′ ·n
) for a

constant k′.

Finally, checking whether M, g � ϕ can be done using procedure MCFULL from
Franceschet and de Rijke (2005). By (Franceschet and de Rijke, 2005, Theorem 4.5)
this takes time O(|ϕ| · (|M | + |R|) · |M |k) = O(n · (222n+2 + (222n+2

)2) · (222n+2
)k) =

O(22k′′ ·n
) for an appropriate constant k′′. Altogether, we have a nondeterministic algo-

rithm that runs in doubly exponential time.

4.4 Pure languages with binders

Satisfiability for all pure languages with binders is PSPACE-complete. The lower
bound follows almost immediately from Lemma 1. The upper bound uses a polyno-
mial-size model property that is obtained in a similar manner as the 222n+2

-size model
property for HL(↓,E) in Lemma 7. Note the following subtle difference in argumen-
tation. While the 222n+2

-size model property of HL(↓,E) implies an N2ExpTime
upper bound for satisfiability, the polynomial-size model property of a binder lan-
guage does not imply an NP upper bound for satisfiability. The reason becomes clear
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if we recall the general complexity results for model checking over arbitrary frames
from Franceschet and de Rijke (2005): In the presence of binders, this problem is
PSpace-complete, but an upper time bound is O(|ϕ| · |M |2|ϕ|). If the model is large
compared to the formula, as in the case of HL(↓,E), then the factor |ϕ| in the exponent
is unimportant. In the case of a polynomial-size model property, however, the upper
time bound for model checking only yields an exponential time bound for the whole
guess-and-check algorithm deciding satisfiability.

Theorem 7 Let X be {↓}, {↓,@}, {∃}, or {↓,E}. Then PHL(X)-compl-SAT and
PHL(X)-ER-SAT are PSpace-complete.

Proof PSpace-hardness follows from Lemma 1 and the fact that the model M used
in that proof can be axiomatised using �(t ∨ f ). This allows to extend the reduction
from QSAT to PHL(↓)-compl-SAT.

Containment in PSpace follows from the fact that PHL(↓,E) has the O(n2)-size
model property with respect to ER frames. The proof of this property is analogous
to the proof of Lemma 7, but with one fundamental difference. Since our language is
pure, the number of types decreases to one. Hence, in each cluster, at most n+1 differ-
ent states can be distinguished by means of state variables. This means that there are
only n +1 C-types (representing clusters with 1, 2, . . . , n +1 states), and, again, only
n +1 clusters of each C-type can be distinguished. This leads to a (n +1)2-size model
property. The technical details are essentially the same as in the proof of Lemma 7.

Now a model can be guessed and checked in polynomial space (Theorem 1). Since
PSpace is closed under nondeterminism, the upper bound follows.

5 Conclusion

We have completely classified the computational complexity of model checking and
satisfiability over ER frames and complete frames for all hybrid languages shown in
Fig. 1a. In detail, we have established the following results.

Model checking over both frame classes is in polynomial time for each binder-free
language, and PSpace-complete in the cases with binders. In all seven cases, the pure
fragment has the same complexity.

Satisfiability over both frame classes is NP-complete for all binder-free cases,
whether pure or with propositional variables. This is the same complexity as for
modal logic over equivalence relations (Ladner 1977). For the four languages with
binders, there is a significant gap in complexity between the pure and non-pure cases.
The former are PSpace-complete, while the latter are NExpTime-complete with one
exception: The full language with E and ↓ is N2ExpTime-complete, but only over ER
frames. For this case, we have established a 222n+2

-size model property for HL(↓,E)
with respect to ER frames, and we have disproven a 22o(n)

-size model property.
The scope of our results is slightly larger than stated in Theorems 1, 3, 6, and 7, in

the sense that all these statements hold as well for the nominal-free fragments of all
sentences of the respective languages HL(·) and PHL(·). This is due to the fact that
neither nominals nor free state variables occur in the particular reductions used for the
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lower bounds. (Except for the case of the use of (Mundhenk et al., 2005, Theorem 4),
to be precise. However, the lower NExpTime bound for HL(↓)-compl-SAT does hold
for nominal-free sentences as well, because nominals and free state variables can be
simulated in complete frames using bound state variables.) The only case in which
the lower bound does not carry over to the pure fragment is that of satisfiability for
binder-free languages (see Theorem 2).

Acknowledgements The authors thank the referee and Ulrike Sattler for helpful comments and sugges-
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