Skip to main content

After Turing: Mathematical Modelling in the Biomedical and Social Sciences

From Animal Coat Patterns to Brain Tumours to Saving Marriages

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7318))

Abstract

Turing’s 1952 paper on reaction diffusion models for spatial pattern formation was important in the early development of the application of mathematical modelling in biology and medicine. We describe here three very different problems which have been studied in depth and which have proved informative and useful in understanding specific phenomena. We describe an early study of a reaction diffusion model which helped explain the diverse coat patterns observed on animal coats. We then describe a basic, but surprisingly informative and accurate model, currently used medically, for quantifying the growth of gliomablastoma brain tumours. It enhances imaging techniques beyond any brain scanning procedure currently available and is used to estimate patient life expectancy and explain some current patient brain tumour anomalies. Finally we describe a modelling example from the social sciences, which quantifies marital interaction which was used to predict divorce with surprising accuracy and has helped design a new scientific marital therapy which is currently used.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Burgess, P., Kulesa, P., Murray, J., Alvord, E.: The interaction of growth rates and diffusion coefficients in a three-dimensional mathematical model of gliomas. J. Neuropathol. Exp. Neurol. 56, 704–713 (1997)

    Google Scholar 

  2. Coan, J., Gottman, J.: The Specific Affect (SPAFF) coding system. In: Coan, J., Allen, J. (eds.) Handbook of Emotion Elicitation and Assessment, pp. 106–123. Oxford University Press, New York (2007)

    Google Scholar 

  3. Cocosco, C., Kollokian, V., Kwan, R.K.-S., Evans, A.: Brain Web: Online Interface to a 3D MRI Simulated Brain Database. In: Proceedings of 3rd International Conference on Functional Mapping of the Human Brain, vol. 5 (1997)

    Google Scholar 

  4. Cook, J., Tyson, R., White, K., Rushe, R., Gottman, J., Murray, J.: Mathematics of marital conflict: Qualitative dynamic mathematical modeling of marital interaction. J. Family Psychology 9, 110–130 (1995)

    Article  Google Scholar 

  5. Cruywagen, G., Woodward, D., Tracqui, P., Bartoo, G., Murray, J., Alvord, E.: The modelling of diffusive tumors. J. Biol. Systems 3, 937–945 (1995)

    Article  Google Scholar 

  6. Gottman, J., Guralnick, M., Wilson, B., Swanson, C., Swanson, K., Murray, J.: What should be the focus of emotion regulation in children? A nonlinear dynamic mathematical model of children’s peer interaction in groups. Development & Psychopathology 9(2), 421–452 (1997)

    Article  Google Scholar 

  7. Gottman, J., Murray, J., Swanson, C., Tyson, R., Swanson, K.: The Mathematics of Marriage: Dynamic Nonlinear Models. MIT Press, Cambridge (2002)

    MATH  Google Scholar 

  8. Gottman, J., Swanson, K., Murray, J.: The mathematics of marital conflict: dynamic mathematical nonlinear modeling of newlywed marital interaction. J. Family Psychol. 13, 1–17 (1999)

    Article  Google Scholar 

  9. Kondo, S., Iwashita, M., Yamaguchi, M.: How animals get their skin patterns: fish pigment pattern as a live Turing wave. Inst. J. Dev. Biol. 53, 851–856 (2009)

    Article  Google Scholar 

  10. Maini, P.: How the mouse got its stripes. Proc. Nat. Acad. Sci. 100, 9656–9657 (2003)

    Article  Google Scholar 

  11. Maini, P.: Using mathematical models to help understand biological pattern formation. C. R. Biologies 327, 225–234 (2004)

    Article  Google Scholar 

  12. Murray, J.: A pre-pattern formation mechanism for animal coat markings. J. Theor. Biol. 88, 161–199 (1981)

    Article  Google Scholar 

  13. Murray, J.: On pattern formation mechanisms for lepidopteran wing patterns and mammalian coat markings. Phil. Trans. Roy. Soc. (Lond.) B 295, 473–496 (1981)

    Article  Google Scholar 

  14. Murray, J.: Mammalian coat patterns: How the leopard gets its spots. Scientific American 256, 80–87 (1988)

    Article  Google Scholar 

  15. Murray, J.: Mathematical Biology. Springer, Heidelberg (1989)

    MATH  Google Scholar 

  16. Murray, J.: Mathematical Biology: II. Spatial Models and Biomedical Applications, 3rd edn., vol. 2. Springer, New York (2003)

    Google Scholar 

  17. Murray, J.: On the Growth of Brain Tumours: enhancing imaging techniques, highlighting limitations of current imaging, quantifying therapy efficacy and estimating patient life expectancy. In: Lenaerts, T., Giacobini, M., Bersini, H., Bourgigne, P., Dorigo, M., Doursat, R. (eds.) Proceedings of the Eleventh European Conference on the Synthesis and Simulation of Living Systems, Advances in Artificial Life, ECAL 2011, pp. 23–26. MIT Press (2011)

    Google Scholar 

  18. Murray, J.: Glioblastoma brain tumours: Estimating the time from brain tumour initiation and resolution of a patient survival anomaly after similar treatment protocols. J. Biol. Dyn. (in press, 2012)

    Google Scholar 

  19. Nijhout, N., Maini, P., Madzvamuse, A., Wathen, A., Sekimura, T.: Pigmentation pattern formation in butterflies: experiments and models. C. R. Biologies 326, 717–727 (2003)

    Article  Google Scholar 

  20. Oster, G., Murray, J., Harris, A.: Mechanical aspects of mesenchymal morphogenesis. J. Embryol. Exp. Morph. 78, 83–125 (1983)

    Google Scholar 

  21. Painter, K., Maini, P., Othmer, H.: Stripe formation in juvenile Pomacanthus explained by a generalized Turing mechanism with chemotaxis. Proc. Nat. Acad. Sci. 96, 5549–5554 (1999)

    Article  Google Scholar 

  22. Ramakrishna, R., Barber, J., Kennedy, G., Win, R.R., Ojemann, G., Berger, M., Spence, A., Rostomily, R.: Imaging features of invasion and preoperative and postoperative tumor burden in previously untreated gliomablastomas: Correlation with survival. Surg. Neurol. Int. 1, 40–51 (2010)

    Article  Google Scholar 

  23. Rockne, R., Rockhill, J., Mrugala, M., Spence, A., Kalet, I.K., Hendrickson, K., Cloughesy, A.L., Alvord, E., Swanson, K.: Prediciitng the efficacy of radiotherapy in individual glioblastoma patients in viv: a mathematical modelling approach. Phys. Med. Biol. 55, 3271–3285 (2010)

    Article  Google Scholar 

  24. Silbergeld, D., Rostomily, R., Alvord, E.: The cause of death in patients with glioblastomas is multifocal: Clinical factors and autopsy findings in 117 cases of supratentorial glioblastomas in adults. J. Neuro-Oncol. 10, 179–185 (1991)

    Article  Google Scholar 

  25. Suzuki, N., Hirata, M., Kondo, S.: Traveling stripes on the skin of a mutant mouse. Proc. Nat. Acad. Sci. USA 100, 9680–9685 (2003)

    Article  Google Scholar 

  26. Swanson, K., Alvord, E., Murray, J.: Quantifying efficacy of chemotherapy of brain tumors (gliomas) with homogeneous and heterogeneous drug delivery therapy. Acta Biotheoretica 50(6), 223–237 (2002)

    Article  Google Scholar 

  27. Swanson, K., Alvord, E., Murray, J.: Virtual brain tumours (gliomas) enhance the reality of medical imaging and highlight inadequacies of current therapy. British J. Cancer 86, 14–18 (2002); Abstracted and featured in the Year Book of the Institute of Oncology Elsevier Science (2003)

    Article  Google Scholar 

  28. Swanson, K., Alvord, E., Murray, J.: Virtual and real brain tumors: using mathematical modelling to quantify glioma growth and invasion. J. Neurological Sciences 216(3), 1–10 (2003)

    Article  Google Scholar 

  29. Swanson, K., Alvord, E., Murray, J.: Virtual resection of gliomas: effect of extent of resection on recurrence. Mathematical and Computer Modelling 37(11), 1177–1190 (2003)

    Article  MATH  Google Scholar 

  30. Thomas, D.: Artificial enzyme membranes, transport, memory, and oscillatory phenomena. In: Thomas, D., Kernevez, J.P. (eds.) Analysis and Control of Immobilized Enzyme Systems, pp. 115–150. Springer, Heidelberg (1975)

    Google Scholar 

  31. Tracqui, P., Cruywagen, G., Woodward, D., Bartoo, G., Murray, J., Alvord, E.: A mathematical model of glioma growth: the effect of chemotherapy on spatial-temporal growth. Cell Prolif. 28, 17–31 (1995)

    Article  Google Scholar 

  32. Turing, A.: The chemical basis of morphogenesis. Phil. Trans. Roy. Soc. B 237, 37–72 (1952)

    Google Scholar 

  33. Woodward, D., Cook, J., Tracqui, P., Cruywagen, G., Murray, J., Alvord, E.: A mathematical model of glioma growth: the effect of extent of surgical resection. Cell Prolif. 29, 269–288 (1996)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Murray, J.D. (2012). After Turing: Mathematical Modelling in the Biomedical and Social Sciences. In: Cooper, S.B., Dawar, A., Löwe, B. (eds) How the World Computes. CiE 2012. Lecture Notes in Computer Science, vol 7318. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30870-3_52

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-30870-3_52

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-30869-7

  • Online ISBN: 978-3-642-30870-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics