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Abstract

This paper is a contribution to the development of model theory of fuzzy logic in narrow sense.
We consider a formal system Ev L of fuzzy logic that has evaluated syntax, i.e. axioms need not be
fully convincing and so, they form a fuzzy set only. Consequently, formulas are provable in some
general degree. A generalization of Gödel’s completeness theorem does hold in Ev L. The truth values
form an MV-algebra that is either finite or  Lukasiewicz algebra on [0, 1].

The classical omitting types theorem states that given a formal theory T and a set Σ(x1, . . . , xn)
of formulas with the same free variables, we can construct a model of T which omits Σ, i.e. there
is always a formula from Σ not true in it. In this paper, we generalize this theorem for Ev L, that
is, we prove that if T is a fuzzy theory and Σ(x1, . . . , xn) forms a fuzzy set then a model omitting Σ
also exists. We will prove this theorem for two essential cases of Ev L: either Ev L has logical (truth)
constants for all truth values, or it has these constants for truth values from [0, 1] ∩Q only.

1 Introduction

In this paper, we continue to study model theory of fuzzy logic with evaluated syntax (Ev L). This logic
belongs to the class of fuzzy logics in narrow sense where, however, it has a special position. Most of the
known fuzzy logics, such as BL, MTL,  Lukasiewicz and others have traditional syntax and many-valued
semantics. The former means that the concept of a formula remains unchanged and in comparison with
classical logic it is extended only by some additional connectives, such as that of strong conjunction &&&.
Thus, these fuzzy logics deal with ordinary sets of axioms, i.e. each axiom is taken classically as hereditary
true. Ev L, on the other hand, enables to consider axioms that may be true only in some general degree
(i.e. a degree smaller than 1). Formally, this means that each formula is assigned a syntactic evaluation
degree so that we deal with a fuzzy theory determined by a fuzzy set of axioms instead of ordinary theory.

A typical example is axiomatic characterization of the sorites paradox1 that was formally elaborated
in [5, 11]. The solution within Ev L stems from the assumption that the axiom “if n is not a heap then
n + 1 is also not a heap” is true in a degree that is close, but smaller than 1, since we cannot take it
as fully convincing. We thus obtain a sorites fuzzy theory which is consistent and provides a reasonable
model solving the sorites paradox.

Other outcome of evaluated syntax is, that it enables us to reason about specific degrees also on the
level of syntax. It is notable that Ev L was historically the first precisely elaborated formal system of fuzzy
logic initiated in the seminal paper of J. Pavelka [12]. Surprisingly, now it is very little known though its
explication power is very high.

A detailed presentation of Ev L is contained in the book [11]. It is specific for Ev Lthat the set of truth
values must be the  Lukasiewicz MV-algebra whose support set is either a finite set or the interval [0, 1]
of real numbers since otherwise, the completeness theorem cannot hold. Other specific feature of Ev L is
presence of logical (truth) constants in its language (note that this is a direct generalization of presence
of ⊥ and ⊤ in the language of classical logic). In case that the set of truth values is [0, 1], we have two
possibilities: either we consider logical constants for all a ∈ [0, 1] or we confine ourselves only to rational
ones (a ∈ [0, 1] ∩ Q). Unfortunately, the language in the former case is uncountable which is undesirable
for many considerations.

Interesting task is to develop a model theory of Ev L. The first steps have been done in [11], further
continuation is presented in [9]. In this paper, we turn to important theorem of classical model theory
that is the Omitting types theorem (see, e.g. [1, 2, 6]). Let us remark that the first version of this
theorem in fuzzy logic has been proved in the book [3], namely for finitely-valued  Lukasiewicz logic. We
will further extend it, first for Ev L with rational logical constants only and then, for Ev L with logical
constants for all the truth values from [0, 1]. A detailed presentation of Ev L with rational logical constants
is contained in [10].

The paper is organized as follows: We start with preliminaries where the notation, basic concepts and
properties of Ev L are summarized. The main contribution of the paper is contained in Section 3 where
basic notions of the omitting types theory are introduced and three theorems are proved: the Omitting
types theorem for Ev L with countable number of logical constants, its slight generalization to countable

1One grain does not form a heap. Adding one grain to what is not yet a heap does not make a heap. Consequently,

there are no heaps.
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number of fuzzy sets of formulas and finally, its generalization for Ev L with logical constants for all truth
values.

2 Preliminaries

This section contains a brief overview of the main concepts and notation of Ev L. As mentioned, the set
of truth values forms either a finite MV-algebra, or  Lukasiewicz MV-algebra

L L = 〈[0, 1],⊗,⊕,¬,0,1〉

where

a ⊗ b = 0 ∨ (a + b − 1), a ⊕ b = 1 ∧ (a + b),

¬a = 1 − a.

We may introduce also other operations as follows:

a ∨ b = (a ⊗ ¬b) ⊕ b, a ∧ b = (a ⊕ ¬b) ⊗ b,

a → b = 1 ∧ (1 − a + b), a ↔ b = (a → b) ∧ (b → a).

By L we denote a set of truth values being either a finite set or the interval of reals [0, 1]. By Q we
denote the set of all rational numbers and by [0, 1]Q the set [0, 1] ∩ Q (to have unified notation, we will
usually write LQ for the latter). The zero of L is denoted by 0 and its unit by 1.

By a fuzzy set we mean a function D : U −→ L where U is some set (a universe of discourse). We
will often write D ⊂

∼
U to express that D is a fuzzy set in U . The element D(x) ∈ L for x ∈ U is called

the membership degree of x in D. A fuzzy singleton is a one-element set {a
/

x} where a ∈ L and x ∈ U .
If D ⊂

∼
U then its support is the (ordinary) set

Supp(D) = {x | D(x) > 0}.

A usual principle considered in fuzzy set theory is the maximality principle: the set {a
/

x | a ∈ K ⊆ L}

is taken as a singleton
{

(
∨

a∈K a)
/

x
}

. With this principle, each set of singletons is at the same time a

fuzzy set.
The language of Ev L, denoted by J , consists of a set of object variables x, y, . . ., a set of object

constants u,v . . ., a set of functional symbols f, g . . ., a set of predicate symbols P,Q . . . where, of course,
each functional as well as predicate symbol has a nonzero arity. We denote by Func(J) the set of all
functional symbols, by Pred(J) the set of all predicate symbols and by OC(J) the set of all object
constants of J .

Furthermore, J contains implication connective ⇒⇒⇒ and the general quantifier ∀. Terms and formulas
are defined in the same way as in classical logic. Other connectives than above, as well as the existential
quantifier are taken as the following abbreviations of formulas:

¬¬¬A := A ⇒⇒⇒ ⊥, (negation)

A∧∧∧ B := ¬¬¬((B ⇒⇒⇒ A) ⇒⇒⇒¬¬¬B), (conjunction)

A∨∨∨ B := (B ⇒⇒⇒ A) ⇒⇒⇒ A, (disjunction)

A&&& B := ¬¬¬(A ⇒⇒⇒¬¬¬B), ( Lukasiewicz conjunction)

A∇∇∇B := ¬¬¬(¬¬¬A&&&¬¬¬B), ( Lukasiewicz disjunction)

A ⇔⇔⇔ B := (A ⇒⇒⇒ B)∧∧∧ (B ⇒⇒⇒ A), (equivalence)

(∃x)A := ¬¬¬(∀x)¬¬¬A).

Important feature of Ev L is presence of logical (truth) constants in the language J which are names
of the truth values a ∈ L. The original presentation of Ev L by J. Pavelka in [12], continued also in
most parts of [11] assumes logical constants for all the truth values. This assumption, in the case that
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L = [0, 1], causes a lot of problems and so, it is desirable to get rid of all logical constants for irrational
truth values. This has been done by V. Novák in [8] and by P. Hájek in [4] who proved that the generalized
completeness theorem still does hold. Hence, in case that L = [0, 1] we will in the sequel consider two
possibilities: either we take logical constants for all the truth values a ∈ L, or we consider them only
for a ∈ LQ. If necessary, we will more precisely write JL instead of J if the language contains logical
constants for all truth values a ∈ L and JLQ

if the language contains logical constants only for a ∈ LQ.
If the set of logical constants is unimportant or clear from the context, we will simply write J . By LC(J)
we denote the set of all logical constants of the language J . The top and bottom logical constants will be
written as ⊤,⊥, instead of 111,000, respectively. Note that logical constants aaa ∈ LC(J) are atomic formulas.

The set of all the well-formed formulas for the language J is denoted by FJ (we will also speak about
J-formulas). A couple a

/

A, where a ∈ L and A is some J-formula, is called the evaluated formula. If the

language is JLQ
then the evaluated formulas are only those couples a

/

A for which a ∈ LQ. Note that the
evaluation a does not belong to the language J .

The notions of free and bound variables, the substitutable term, closed and open formula, are the
same as in classical logic. As usual, A(x1, . . . , xn) denotes a formula whose all free variables are among
x1, . . . , xn. If t1, . . . , tn are terms substitutable in A for x1, . . . , xn, respectively then Ax1,...,xn

[t1, . . . , tn]
denotes instance of A in which all free occurrences of x1, . . . , xn are replaced by t1, . . . , tn, respectively.
If x1, . . . , xn are clear from the context then we will write simply A[t1, . . . , tn].

By Σ(x1, . . . , xn) we denote a fuzzy set of J-formulas such that each formula A(x1, . . . , xn) has all
its free variables among x1, . . . , xn. We will often write Σ(x̄) instead of Σ(x1, . . . , xn). If J = JLQ

then
all the membership degrees in Σ are supposed to be rational. If x1, . . . , xn are known from the context
then we will write Σ instead of Σ(x1, . . . , xn). Analogously to notation for substitution of terms into one
formula, Σx1,...,xn

[t1, . . . , tn] denotes a fuzzy set of formulas obtained from Σ(x1, . . . , xn) by replacing
all formulas A ∈ Supp(Σ(x1, . . . , xn)) by the instances Ax1,...,xn

[t1, . . . , tn]. We will often simply write
Σ[t1, . . . , tn].

Remark 1 Fuzzy sets of formulas will be dealt with in the sequel. Quite often, however, it is useful to
take them as sets of evaluated formulas. Hence, if Σ ⊂

∼
FJ is such a fuzzy set then we may alternatively

write A ∈ Supp(Σ), or a
/

A ∈ Σ and Σ(A) for the evaluation a.

Logical axioms of Ev L are the following schemes of evaluated formulas:

• 1
/

A ⇒⇒⇒ (B ⇒⇒⇒ A), 1
/

(A ⇒⇒⇒ B) ⇒⇒⇒ ((B ⇒⇒⇒ C) ⇒⇒⇒ (A ⇒⇒⇒ C)),

• 1
/

(¬¬¬B ⇒⇒⇒¬¬¬A) ⇒⇒⇒ (A ⇒⇒⇒ B), 1
/

((A ⇒⇒⇒ B) ⇒⇒⇒ B) ⇒⇒⇒ ((B ⇒⇒⇒ A) ⇒⇒⇒ A),

• 1
/

(aaa ⇒⇒⇒ bbb) ⇔⇔⇔ (aaa →→→ bbb)

where aaa →→→ bbb denotes a logical constant for the truth value a → b when a and b are given (bookkeeping
axiom).

• 1
/

(∀x)A ⇒⇒⇒ Ax[t]
for any substitutable term t,

• 1
/

(∀x)(A ⇒⇒⇒ B) ⇒⇒⇒ (A ⇒⇒⇒ (∀x)B),
provided that x is not free in A,

• a
/

aaa for all logical constants aaa ∈ LC(J),

• 0
/

A if A is a formula different from the formulas considered above.

Inference rules manipulate with evaluated formulas:

rMP :
a
/

A, b
/

A ⇒⇒⇒ B

(a ⊗ b)
/

B
, (modus ponens)

rG :
a
/

A

a
/

(∀x)A
, (generalization)

rLC :
a
/

A

(a → a)
/

aaa ⇒⇒⇒ A
. (logical constant introduction)
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A fuzzy theory T is a fuzzy set of formulas T ⊂
∼

FJ given by the triple

T = 〈LAx, SAx, R〉,

where LAx ⊂
∼

FJ is the above defined set of evaluated logical axioms, SAx ⊂
∼

FJ is a fuzzy set of formulas

(set of evaluated formulas) taken as special axioms, and R is a set of sound inference rules containing the
rules rMP , rG, rLC .

Let T be a fuzzy theory. By J(T ) (alternatively JL(T ), JLQ
(T )), we denote its language and by FJ(T )

the set of all the well formed formulas of J(T ). An evaluated proof wA of a formula A in a fuzzy theory T

is a finite sequence of evaluated formulas which are either axioms, or they are derived using the inference
rules. The evaluation of the last formula in the proof wA is its value and we denote it by ValT (wA).

A formula A ∈ FJ(T ) is provable (a theorem) in the fuzzy theory T in the degree a, in symbols T ⊢a A,
if

a =
∨

{ValT (wA) | wA is a proof of A in T} .

If there exists a proof wA such that ValT (wA) = a then we say that A is effectively provable in T in the
degree a (note that this may not always be the case).

A fuzzy theory T is contradictory (inconsistent) if there are a formula A, the proof wA of A with the
value ValT (wA) and the proof w¬A of ¬¬¬A with the value ValT (w¬A) such that

ValT (wA) ⊗ ValT (w¬A) > 0.

It is consistent otherwise. Surprisingly, a contradictory fuzzy theory collapses into a degenerated theory
just as in classical logic.

Theorem 1 A fuzzy theory T is contradictory iff T ⊢ A holds for every formula A ∈ FJ(T ).

A fuzzy theory T is Henkin if to every formula A ∈ FJ(T ) there is a constant r ∈ OC(J(T )) such that

T ⊢ Ax[r] ⇒⇒⇒ (∀x)A(x). (1)

The formula (1) is called Henkin and the object constant r is called special, or also witness constant.
A fuzzy theory is complete if it is consistent and for every closed formula A,

T ⊢a A

implies that there is a set HA ⊆ LC(J(T )) such that
∧

{b | bbb ∈ HA} = a and

T ⊢ A ⇒⇒⇒ bbb

for every bbb ∈ HA. If the language J(T ) contains logical constants for all truth values then complete
theories can be characterized using the following theorem.

Theorem 2 A consistent fuzzy theory T in the language JL(T ) is complete iff the following holds for
every closed formula A ∈ FJL(T ):

T ⊢a A iff T ⊢ A ⇒⇒⇒ aaa.

The following lemma (see [11]) will be used below.

Lemma 1 Let T be a consistent fuzzy theory and T ⊢a A as well as T ⊢b ¬¬¬A. Then b ≤ ¬a.

We will also need the following lemma.

Lemma 2 Let T be a consistent fuzzy theory, A ∈ FJ(T ) and a ∈ L.

(a) Let T ⊢ aaa
′ ⇒⇒⇒ A hold for all aaa

′ ∈ LC(J) such that a′ ≤ a and T ⊢ A ⇒⇒⇒ aaa
′′ hold for all aaa

′′ ∈ LC(J)
such that a ≤ a′′. Then T ⊢a A.

(b) Let T ⊢ aaa
′ ⇒⇒⇒ A hold for all aaa

′ ∈ LC(J) such that a′ ≤ a and T ⊢ aaa
′′ ⇒⇒⇒¬¬¬A hold for all aaa

′′ ∈ LC(J)
such that a′′ ≤ ¬a. Then T ⊢a A.
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Semantics of Ev L is defined by generalization of the classical (Tarskian) semantics of predicate logic:
a model (structure)2 for the language J is

V = 〈V, {PV | P ∈ Pred(J)}, {fV | f ∈ Func(J)}, {u | u ∈ OC(J)}〉,

where V is a set, each PV ⊂
∼

V n is an n-ary fuzzy relation assigned to the n-ary predicate symbol

P ∈ Pred(J) (n depends on P ), each fV is an ordinary n-ary function on V assigned to the n-ary
functional symbol f ∈ Func(J), and each u ∈ V is a designated element assigned to the object constant
u ∈ OC(J).

The connectives ¬¬¬,∧∧∧,∨∨∨,&&&,∇∇∇,⇒⇒⇒,⇔⇔⇔ are interpreted by ¬,∧,∨,⊗,⊕,→,↔, respectively. Terms are
interpreted in the same way as in classical logic. If t is a term interpreted by an element v ∈ V then we
will write

V(t) = v.

Logical constants are interpreted by the truth value they represent, i.e.

V(aaa) = a, a ∈ L

for all aaa ∈ LC(J).
Let XJ be a set of all variables of the language J and V be a model for J . A V-evaluation of object

variables is a mapping e : XJ −→ V . Let A(x1, . . . , xn) ∈ FJ and e(x1) = v1, . . . , e(xn) = vn.
The degree of satisfaction of A under the evaluation e is a truth value a ∈ L obtained after assigning

the elements v1, . . . , vn to the corresponding free occurrences of variables x1, . . . , xn in A and interpreting
all the functional and predicate symbols and connectives in an appropriate way usual in logic (for the
details see [4, 11]). We will write

V(A(v1
/

x1, . . . , vn
/

xn)) = a, (2)

or simply V(A)(v1, . . . , vn) = a. If the variables x1, . . . , xn are not present or unimportant for the
explanation then we will simply write V(A). To simplify the notation, we will often write v̄ ∈ V n for the
n-tuple of elements v1, . . . , vn ∈ V and A(v̄

/

x̄) instead of A(v1
/

x1, . . . , vn
/

xn), or simply A(v̄). Similarly

when dealing with the fuzzy set Σ(x1, . . . , xn), we will write Σ(v1
/

x1, . . . , vn
/

xn), or Σ(v1, . . . , vn), or
only Σ(v̄).

Equivalent, more pedantic way how interpretation of formulas can be defined is to expand J by new
object constants v being names for all the elements v ∈ V and then put

V(Ax1,...,xn
[v1, . . . ,vn]) = a

where v1, . . . ,vn are names of the elements v1, . . . , vn ∈ V , respectively. In this paper, however, we will
prefer (2).

Let us recall that the general quantifier is interpreted by

V((∀x)A(x)) =
∧

{A(v
/

x) | e(x) = v, e is a V-evaluation}.

The same definition is introduced also for a formula A(x) with a free variable x.
Let T be a fuzzy theory and V be a model (structure) for J(T ). We say that V is a model of T ,

V |= T , if SAx(A) ≤ V(A) holds for all formulas A ∈ Supp(SAx). A formula A ∈ FJ(T ) is true in T in
the degree a, T |=a A, if

a =
∧

{V(A) | V |= T}.

In general, let Σ ⊂
∼

FJ be a fuzzy set of formulas. By V |= Σ we understand a model (structure) V

for the language J such that
V(A) ≥ Σ(A)

holds for all A ∈ FJ .

Theorem 3 (Completeness)
T ⊢a A iff T |=a A

holds for every formula A ∈ FJ .

The proof can be found in [10, 11].

2We will follow the way common in model theory and do not distinguish between the terms “structure” and “model”

for the language J .
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3 Omitting types theory in Ev L

3.1 Basic definitions

Let J be a predicate language, Σ(x̄) be a fuzzy set of J-formulas and let V be a model for J . We say
that Σ(x̄) is realized in V if there is v̄ ∈ V n such that

V(A(v̄)) ≥ Σ(A)

(or more precisely V(A(v̄
/

x̄)) ≥ Σ(A)) holds for all A ∈ Supp(Σ(x̄)). Equivalently, we will also say that
V is a v̄-model of Σ(x̄) and write V |= Σ(v1, . . . , vn) (or briefly, V |= Σ(v̄)).

We say that Σ(x̄) is omitted by V if to each v̄ ∈ V n there is a formula A ∈ Supp(Σ) such that

V(A(v̄)) < Σ(A). (3)

The following is obvious.

Lemma 3 Let V be a model for J and Σ be a fuzzy set of J-formulas realized in V. Then there is v̄ ∈ V n

such that V is a v̄-model of Σ.

Let T be a fuzzy theory. A fuzzy set Σ ⊂
∼

FJ(T ) is T -consistent if there is V |= T and v̄ ∈ V n such that

V is a v̄-model of Σ. More precisely, we may say that Σ is T -consistent on v̄ ∈ V n and write V |= T ∪Σ(v̄).
The following lemma is again obvious.

Lemma 4 Let J be a predicate language and T a fuzzy theory in J . Let V |= T and Σ ⊂
∼

FJ be a fuzzy

set of formulas. If Σ is realized in V then Σ is T -consistent.

We say that a fuzzy set Γ(x̄) ⊂
∼

FJ(T ) is a fuzzy n-type over fuzzy theory T if it is maximal T -

consistent fuzzy set of formulas where maximality means that no membership degree Γ(A), A ∈ FJ(T ),
can be increased without harming the consistency of Γ.

3.2 Isolation and non-isolation of a fuzzy set of formulas

The concept of isolation of a set of formulas Σ in classical model theory enables to formulate necessary
and sufficient condition on T to have a model which omits Σ. Note that in the literature, we can also
find the term “local realization” instead of isolation (cf. [2, 3]).

In this paper, we will generalize this concept to fuzzy set of formulas. Our definition, moreover, stems
from a slight generalization introduced, e.g. in [2] which considers a set of formulas instead of only one
with respect to which is isolation considered. The reason is that we have to deal with fuzzy sets of
formulas taken at the same time as sets of evaluated formulas and cannot assure their finiteness.

Definition 1 Let J be a predicate language, T be a fuzzy theory in J and Σ ∈ FJ be a fuzzy set of
formulas. We say that Σ is isolated in T if there is a fuzzy set of formulas Φ(x̄) ⊂

∼
FJ such that

(i) Φ(x̄) is T -consistent,

(ii) for every v̄ ∈ V n and a model V for the language J , if V |= T ∪ Φ(v̄) then V |= Σ(v̄).

We say that Σ is non-isolated in T otherwise.

(in some classical literature, e.g. [2], non-isolated set is also called “locally omitting”).
Note that Σ is non isolated in T if for every fuzzy set Φ(x̄) ⊂

∼
FJ(T ) and every model V |= T such

that V |= T ∪ Φ(v̄) (i.e. Φ is T -consistent on v̄ ∈ V n) there is B ∈ Supp(Σ) such that

V(¬B(v̄)) > ¬Σ(B). (4)

From the definition of isolation of Σ in T we immediately get the following lemma.

Lemma 5 If Σ is isolated in the fuzzy theory T then Σ is T -consistent.
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3.3 Omitting types theorem in Ev Lwith countable number of logical con-

stants

The main theorem of this paper is formulated and proved in this subsection. It generalizes the Omitting
types theorem of classical model theory.

Theorem 4 Let T be a consistent fuzzy theory in a language J such that LC(J) is at most countable.
Let Σ(x̄) ⊂

∼
FJ be a fuzzy set of formulas non-isolated in T . Then there exists a countable model V |= T

which omits Σ(x̄).

Proof. Without lack of generality, we will consider a fuzzy set Σ(x) with one free variable only. Let
K = {c0, c1, . . .} 6⊂ J be a countable set of new constants and put JK = J ∪ K. Let A0, A1, . . . , Am, . . .

be a sequence of closed formulas of the language JK . By induction we will construct an increasing
sequence of consistent fuzzy theories T = T0 ⊂ T1 ⊂ · · · ⊂ Tm ⊂ · · · in the language JK such that for
each m, the following is fulfilled:

(i) Tm is consistent and it is obtained from T = T0 by extending it by a fuzzy set of special axioms
which contain finite number of new variables (free or bound).

(ii) If Am ∈ FJ(Tm) and Tm ⊢a Am for some a ∈ L then Tm+1 ⊢ Am ⇒⇒⇒ aaa
′ holds for all aaa

′ ∈ LC(J) such
that a ≤ a′.

(iii) If Am := (∀y)C(y) then Tm+1 ⊢ C[cp] ⇒⇒⇒ (∀y)C(y) where cp ∈ K and cp 6∈ J(Tm).

(iv) There exists a formula D ∈ Supp(Σ(x)) such that Tm+1 ⊢e ¬D[cm] and ¬e < Σ(D) for some
cm ∈ K.

Assume that we already have the theory Tm being a consistent extension of T and let Φ′ be a fuzzy
set of new special axioms of Tm. We construct Tm+1 as follows: Let c, c1, . . . , cn ∈ K be all the new
constants occurring in all B ∈ Supp(Φ′) (our construction below assures a finite number of them). We
replace these constants by new variables x, y1, . . . , yn, respectively and obtain new evaluated formulas
b
/

B′ for all b
/

B ∈ Φ′. Now we form a fuzzy set

Φ(x) =
{

b
/

(∃y1) · · · (∃yn)B′
∣

∣ b
/

B ∈ Φ′
}

.

Because Tm is consistent, there is V |= Tm such that

V((∃y1) · · · (∃yn)B′) ≥ V(B) ≥ b

holds for all b
/

B ∈ Φ′. Consequently, Φ(x) is Tm-consistent and also T -consistent.
Since Σ(x) is non-isolated in T , for every model V |= T there is a formula D(x) ∈ Supp(Σ) such that

V(¬D(v)) > ¬Σ(D)

(cf. (4)) where v ∈ V is an element such that V |= T ∪ Φ(v) (i.e. Φ(x) is T -consistent on it). Let us
choose a constant cm ∈ K and define its interpretation by

V(cm) = v iff V |= T ∪ Φ(v)

where v ∈ V is the corresponding element in every model V such that V |= T ∪ Φ(v). Put

e′ =
∧

{V(¬D[cm] | V |= T ∪ Φ[cm]}

and take e ∈ L such that V ′(¬D(v)) ≥ e > e′ for some model V ′ considered above (if there is no such V ′

then we take e = e′). Note that e > ¬Σ(D). Now we can put

T ′

m+1 = Tm ∪
{

e
/

¬D[cm]
}

.
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Since Tm is consistent (by the assumption), our construction of e ensures that T ′

m+1 is consistent as well
(it has the model V ′, at least) and, moreover, item (iv) is also guaranteed.

Let Am ∈ FJ(Tm) and T ′

m+1 ⊢a Am. Then we construct a fuzzy theory

T ′′

m+1 = T ′

m+1 ∪ {1
/

Am ⇒⇒⇒ aaa
′′ | aaa′′ ∈ LC(J), a ≤ a′′}.

Using properties of Ev L (see [11], pp. 124–142) we can prove that the theory T ′′

m+1 is a consistent extension
of T ′

m+1 and T ′

m+1 ⊢ aaa
′ ⇒⇒⇒ Am for all a′ ≤ a. Then by Lemma 2(a), T ′′

m+1 ⊢a Am and T ′′

m+1 ⊢ Am ⇒⇒⇒ aaa
′′

holds for all aaa
′′ ∈ LC(J) such that a ≤ a′′. This makes item (ii). Clearly,

∧

{a′′ | a ≤ a′′} = a.
If Am := (∀y)C(y) is T ′′

m+1-consistent then we put

Tm+1 = T ′′

m+1 ∪ {1
/

C[cp] ⇒⇒⇒ (∀y)C(y)}

where cp is the first constant from K that has not yet been used. Analogously as in [11], Theorem 4.16,
we can show that Tm+1 is a consistent extension of T ′′

m+1. This assures item (iii). Let us remark that we
have added to special axioms of Tm evaluated formulas with only finite number of new constants despite
the possibly infinite number of the former.

Let us now put T+ =
⋃

m∈N Tm. Then according to items (i),(ii), (iii), T+ is consistent complete
Henkin theory with the language JK . Let W+ be a countable model of T+ and let V+ be a submodel of
W+ generated by the constants. We can show by induction on the complexity of a formula A ∈ FJK(T+)

that
V+(A) = W+(A).

Thus, V+ is a countable model of T+ and since T+ is extension of T , we have

V+(¬D([cm]) ≥ e > ¬Σ(D)

which gives
V+(D[cm]) < Σ(D). (5)

By restriction of V+ to J we obtain a model V0 |= T which omits Σ(x) because to every element v0 ∈ V 0

which realizes the constant cp we can find B ∈ Supp(Σ(x)) which fulfills the omitting condition (3). �

The omitting types theorem can be also generalized to countably many fuzzy sets of J-formulas.

Theorem 5 (Extended Omitting Types Theorem) Let T be a consistent fuzzy theory in a count-
able language J . Let for each q < ω, Σq(x1, . . . , xnq

) be a fuzzy set of J-formulas. If each Σq is
non-isolated in T then there exists a countable model V of T which omits each Σq.

3.4 Omitting types theorem in Ev Lwith all logical constants

When considering Ev L with the full language JL and L = [0, 1] (our considerations would hardly have
sense for finite L), we face the problem that the set FJL

of all formulas is uncountable. Therefore, in the
proof of omitting types theorem we cannot simply consider a countable sequence of formulas to construct
the complete Henkin fuzzy theory as is done in the proof of Theorem 4. A clue for solution of this
problem comes from the fact that logical constants are closed formulas without variables. Therefore, we
can gather formulas differing only in logical constants into sets so that we will have again only countable
number of these sets.

We say that a formula A ∈ FJL
is pure if it is does not contain logical constants (as subformulas). It

is general otherwise. Clearly, that there is only countable number of pure formulas.
For each pure formula A we can construct a set Q(A) of all formulas obtained from A by adding

logical constants to it as its new subformulas.

Definition 2 Let A be a pure formula. Then a set Q(A) is obtained by iterated application of the
following items:

(i) A ∈ Q(A).
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(ii) Let B ∈ Q(A), C be a subformula of B and aaa be a logical constant. Let B̄ be a formula obtained
from B when replacing C by (aaa ⇒⇒⇒ C). Then B̄ ∈ Q(A).

(iii) Let B,C,aaa be as in item (ii) and B̄ be a formula obtained from B when replacing C by (C ⇒⇒⇒ aaa).
Then B̄ ∈ Q(A).

For example, let A(y) = (∀x)(P (x) ⇒⇒⇒ Q(y)) be a pure formula. Then, e.g. a formula (∀x)((P (x) ⇒⇒⇒
aaa) ⇒⇒⇒ (bbb ⇒⇒⇒ Q(y)) ⇒⇒⇒ ccc) belongs to Q(A(y)).

Of course, each Q(A) is an uncountable set of formulas. However, all B ∈ Q(A) have the same
variables (bound or free). This is ground for proving the omitting-types theorem in a way analogous to
the proof of Theorem 4.

We will also need to consider a set QQ(A) which is Q(A) when confining only to rational logical
constants from LC(JLQ

). Clearly, QQ(A) is countable.

Lemma 6 Let T be a fuzzy theory in the language J . Then to every general formula A ∈ FJ with
irrational logical constants there are general formulas A1, A2 ∈ FJ obtained from A by replacing irrational
logical constants by rational ones such that

T ⊢ A1 ⇒⇒⇒ A and T ⊢ A ⇒⇒⇒ A2.

Proof. Note that if A := B ⇒⇒⇒ aaa where a is irrational then we can put A1 := B ⇒⇒⇒ aaa1 and A2 := B ⇒⇒⇒ aaa2

where a1 ≤ a2 and a1, a2 are rational. The proposition then follows from the properties of implication (see
[11], p. 123). Similarly for A := aaa ⇒⇒⇒ B. The rest follows immediately by induction on the complexity of
the formula A. �

Now we are ready to prove the theorem on omitting types in Ev L with all logical constants.

Theorem 6 Let T be a consistent fuzzy theory in a language JL. Let Σ(x̄) ⊂
∼

FJL
be a fuzzy set of

formulas non-isolated in T . Then there exists a model V |= T which omits Σ(x̄).

Proof. We will proceed similarly as in the proof of Theorem 4 but modify some of its points as follows.
Let A0, A1, . . . , Am, . . . be a countable sequence of a pure formulas from the language JL,K and

Q(A0), Q(A1), . . . , Q(Am), . . . be a sequence of sets due to Definition 2. We will now rearrange the first
sequence as follows: for each i, if Ai has the form Ai := (∀x)B(x) then we replace Ai by a sequence of
all formulas from QQ(Ai). For simplicity, the resulting sequence of formulas will again be denoted by
A0, A1, . . . , Am, . . ..

Now, we will again construct an increasing sequence of consistent fuzzy theories T = T0 ⊂ T1 ⊂ · · · ⊂
Tm ⊂ · · · in the language JL,K such that for each m the following items are fulfilled:

(i) Tm is consistent and it is obtained from T = T0 by extending it by a fuzzy set of special axioms
which contain finite number of new variables (free or bound).

(ii) If Ām ∈ Q(Am) ⊂ FJ(Tm) and Tm ⊢a Ām for some a ∈ L then Tm+1 ⊢a Ām and Tm+1 ⊢ Ām ⇒⇒⇒ aaa.

(iii) If Ām ∈ Q(Am) ⊂ FJ(Tm) and Ām := (∀y)C(y) then Tm+1 ⊢ C[cp] ⇒⇒⇒ (∀y)C(y) where cp 6∈ J(Tm).

(iv) There exists a formula D ∈ Supp(Σ(x)) such that Tm+1 ⊢e ¬D[cm] and ¬e < Σ(D).

Assume that we already have the theory Tm being a consistent extension of T and let Φ′ be a fuzzy
set of new special axioms of Tm. We will construct Tm+1 in three steps as in Theorem 4.

(a) item (iv) is analogous as in the proof of Theorem 4.
(b) Let Q(Am) ⊂ FJ(Tm) and T ′

m+1 ⊢a Am for Am ∈ Q(Am). Then we construct a fuzzy theory

T ′′

m+1 = T ′

m+1 ∪ {1
/

Am ⇒⇒⇒ aaa | Am ∈ Q(Am)}.

By properties of Ev L, the theory T ′′

m+1 is a consistent extension of T ′

m+1, T ′′

m+1 ⊢a Am and T ′′

m+1 ⊢ Am ⇒⇒⇒
aaa. This makes item (ii). Moreover, notice that we have used at most finite number of object constants
because all Am ∈ Q(Am) have the same variables and object constants.
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(c) Let Am ∈ QQ((∀y)C(y)). If Am is T ′′

m+1-consistent then we put

Tm+1 = T ′′

m+1 ∪ {1
/

C[cp] ⇒⇒⇒ (∀y)C(y)}

where cp is the first constant from K. Analogously as in [11], Theorem 4.16, we can show that Tm+1 is
a consistent extension of T ′′

m+1.
Now put T+ =

⋃

m∈N Tm. First, we must check item (iii). Let C(x) ⇒⇒⇒ (∀y)C(y) contain irrational
logical constants. By Lemma 6, there is a formula of the form C1(x) ⇒⇒⇒ (∀y)C1(y) containing rational
logical constants such that

T+ ⊢ (C1(x) ⇒⇒⇒ (∀y)C1(y)) ⇒⇒⇒ (C(x) ⇒⇒⇒ (∀y)C(y)).

When replacing x by cp, we obtain T+ ⊢ C[cp] ⇒⇒⇒ (∀y)C(y) because the Henkin formula C1[cp] ⇒⇒⇒
(∀y)C1(y) has been added in step (c). Therefore, item (iii) is also assured. Consequently, according to
items (i),(ii), (iii), T+ is a consistent complete Henkin theory with the language JL,K . The rest is the
same as in the proof of Theorem 4. �

4 Conclusion

This paper is a continuation of the development of model theory of fuzzy logic with evaluated syntax
that belongs among fuzzy logics in narrow sense. We focused on the theory of omitting types. The latter
are special fuzzy sets of formulas Σ(x̄) that can be either realized by some model of a given fuzzy theory
T , or omitted, i.e. no model of T can be at the same time a model of Σ(x̄). In classical logic, this
enables (besides others) to construct non-standard models of the theory of natural numbers. Whether
such construction is possible also in Ev L and how it should be formulated is an open question for further
research.

The main result of this paper is a non-trivial generalization of three omitting types theorems of
classical model theory. Let us mention that we have proved in [7] analogous omitting types theorem also
for BL-fuzzy logic (the fuzzy logic with traditional syntax introduced by P. Hájek in [4]).

To conclude, let us remark that our definitions are not graded, i.e. we speak about fuzzy set of
formulas that is omitted without specifying a degree of omitting. It is questionable whether such a
generalization is possible and whether it may have reasonable substantiation. This problem is left to
some of the subsequent papers.
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