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Tarski’s Undefinability of Truth Theorem comes in two versions: that no consistent
theory which interprets Robinson’s Arithmetic (Q) can prove all instances of the
T-Scheme

(T) Tr(pφq)↔ φ,

and hence define truth; and that no such theory, if sound, can even express truth.1

In this note, I prove corresponding limitative results for validity. While Peano
Arithmetic already has the resources to define a predicate expressing logical validity,
as Jeff Ketland (2012) has recently pointed out, no theory which interprets Q closed
under the standard structural rules can define nor express validity, on pain of
triviality. The results put pressure on the widespread view that there is an asymmetry
between truth and validity, viz. that while the former cannot be defined within the
language, the latter can.2 I argue that Vann McGee’s and Hartry Field’s arguments
for the asymmetry view are problematic.
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1Definitions of definability and expressibility will be provided in due course. For the time being,
suffices to say that a theory defines truth iff it proves every instance of T, and that it expresses truth
iff every such instance is true.

2See McGee (1991, pp. 44-5) and Field (2008). Field writes that while “[t]ruth can’t possibly be
given an extensionally correct definition within the language, ... validity presumably can” (Field,
2008, p. 127). What he means by that is that one can define the set of validities, without necessarily
thereby defining the concept of validity. Kreisel’s Squeezing Argument may then reassure us that
standard model-theoretic definitions of first-order logical validity are extensionally adequate (Kreisel,
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1 Logical validity and validity

We’re all familiar with the standard Tarskian definition of logical validity:

(Tarski) φ is logically valid iff φ is true under all reinterpretations of its
non-logical constituents.

Now let PA be an axiomatisation of Peano Arithmetic, with language LA. Idealising
quite a bit, we may take PA to be a (simplified) model of our maximal theory at a
certain time, i.e. a model of the closure of the set of sentences we (at least) implicitly
accept at a certain time under the rules we (at least) implicitly accept at that time
(Field, 1994, p. 401-5). We can then put our model to work, and ask: what can it say
about logical validity?

Jeff Ketland (2012) has recently pointed out that PA already has the resources
to derive the following principles about a predicate Val(x) intuitively reading ‘x is
logically valid’ (so that Val(n) is true iff n is the code of a valid LA-sentence):

(V-Intro) Given a logical derivation of φ, infer Val(pφq);3

(V-Out) Val(pφq)→ φ;

(V-Imp) Val(pφ→ ψq)→ (Val(pφq)→ Val(pψq)).4

The above principles can be easily generalised by means of a two-place predicate
Val(x, y) expressing argument-validity, where x is to be replaced by (the code of) the
conjunction of the premises of a given argument. Not only can PA, and hence our
maximal theory, talk about numbers (and its own syntax): it can also talk, and prove
intuitive principles, about logical validity.

To be sure, the extension of ‘logically valid’ will depend on one’s view about
what counts as logical. While arguably ∧,∨,→,¬, ∃, ∀ and = are logical and terms
such as ‘water’ aren’t, the status of semantic predicates such as ‘true’ and ‘valid’
is less clear. According to Graham Priest (2007, p. 193), the T-Scheme (T) “ought
... to be considered part of logic”, essentially on the grounds that its instances are
analytic of ‘true’. The view is controversial, however. As Roy Cook (2012, p. 235)

1967); see also Field (2008, Ch. 2.2). McGee’s and Field’s view express current logical orthodoxy,
although the unorthodox view defended here, viz. that truth and validity are both paradox-prone
semantic notions, is by no means new. For a representative sample of the literature, see e.g. Priest
and Routley (1982), Read (1979), Read (2001) and, more recently, Shapiro (2011) and Beall and Murzi
(2013).

3‘Logical derivation’ here means ‘derivable in the logic of PA’, viz. classical first-order logic.
4Here and throughout, pφq indicates the numerical code of φ, relative to some fixed coding

scheme.

2



has recently observed, if “logical truth requires that uniform substitution instances
of logical truths [be] logical truths”, some instances of (T) are not logically valid.

The issue, though, is largely terminological. Thus, McGee recommends that we
use a broader notion of logical validity, while acknowledging that the notion doesn’t
coincide with pure logical validity:

we must employ a richer notion of logical necessity, according to which
there are certain sentences whose truth is so basic to our way of thinking
and talking that they have the same epistemic status as logical validities,
even though they are not actually logically valid. (McGee, 1991, p. 43)

In a similar spirit, Field suggests that we use “the term ‘valid’ ... in a very broad
sense, one which counts ... a large amount of set theory and the basic principles of
truth and satisfaction as valid” (Field, 2007, p. 99). I’ll distinguish, then, between
logical validity and validity (tout court). I mention two reasons why the distinction
must be made.

First, it might be argued that there are clear examples of arguments that are
valid, albeit not logically so. A first (admittedly controversial) example is given by
the ω-rule:

0 has property F

1 has property F,

2 has property F,

...

Every number has property F.

Many would think that the rule is intuitively valid.5 Yet, the rule is invalid in
first-order logic.6,7 Less controversially, other examples of valid but not logically
valid arguments include analytic validities such as the following:

5Examples include Tarski (1983, p. 411), Etchemendy (1990) and McGee (2011, p. 33).
6First-order logic is compact: an argument is valid in first-order logic if and only if some finite

sub-argument is valid.
7There at least two ways of validating the ω-rule. First, one could allow infinitary quantifiers, such

as “there are infinitely many x such that ...”. Then, {F(0), F(1), F(2), ...} would imply that there
are infinitely many Fs. The resulting system would be semantically incomplete, but it might be
thought that this is not a problem. Relatedly, one could simply point out that the ω-rule is valid in
second-order logic (with standard semantics). Here I don’t have space to discuss either option, and
simply observe that both are themselves controversial. For a criticism of infinitary quantifiers, see
Hanson (1997, pp. 391-2).
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x is a brother
x is male

Φ(0) ∀n(Φ(n)→ Φ(S(n))) ,
∀n(Φ(n))

where S(x) expresses the successor function. To be sure, one might point out that
such rules would be logically valid if we held fixed the interpretation of ‘brother’,
‘male’, ‘successor’ and numerals. However, the dialectic here is a familiar one:
intuitively invalid inferences such as 〈Leslie was a US president ∴ Leslie was a
man〉, and intuitively invalid sentences such as ‘There are at least two numbers’,
would thereby be declared logically valid (Etchemendy, 1990).8 Whether rules such
as

x is water
x is H2O

are valid is perhaps less clear, but the examples, I hope, suffice to establish my point:
logical validity is one kind of validity (see also Priest, 2006a).9

Second, as hinted in the above McGee quote, validity arguably has a role to play
in our epistemic lives. Gil Harman (1986, p. 18) suggests that ordinary reasoning is
partly governed by the following principles:

Recognised Implication Principle. One has a reason to believe φ if one
recognises that φ is implied by one’s view.

Recognised Inconsistency Principle. One has a reason to avoid believing
things one recognises to be inconsistent.

Similarly Field advocates the existence of a connection between validity and correct
reasoning, this time framed in terms of degrees of belief. Where P(φ) refers to one’s
degrees of belief in φ, Field’s principle reads:

(F) If it’s obvious that φ1, ..., φn together entail ψ, then one ought to
impose the constraint that P(ψ) is to be at least P(φ1)+ ...+ P(φn)−
(n− 1), in any circumstance where φ1, ...., φn are in question. (Field,
2009, p. 259)

8Again, I don’t have space here to fully defend the claim that Tarski’s account of validity cannot
handle analytic validities. This is a large issue related to the even larger issue whether, as forcefully
argued by John Etchemendy (1990, 2008), Tarski’s account undergenerates. For more discussion on
analytic validity and the issue of under generation, see e.g. Priest (1995, p. 288) and Etchemendy
(2008, p. 278 and ff).

9For more on the slide between the foregoing examples and clear cases of logical validity, see e.g.
Lycan (1989) and Sagi (2013).
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Roughly: if φ entails ψ, then one’s degree of belief in ψ should be no lower than
one’s degree of belief in φ.

Both Harman’s and Field’s principles are, I think, plausible. But neither principle
is especially concerned with logical validity. Plainly, ordinary speakers typically don’t
distinguish between valid sentences and logically valid sentences (Harman, 1986,
p. 17). Hence, if the principles apply at all, they apply to validity. As Harman
puts it, “since there seems to be nothing special about logical implications and
inconsistencies, ... there seems to be no significant way in which logic might be
specially relevant to reasoning” (Harman, 2009, p. 334). Logical validity is not
specially relevant to reasoning. But validity arguably is.

What, then, is validity? One standard view sees consequence as a kind of
modality. For some understanding of ‘possible’, a set of premises entails a given
conclusion iff it is impossible that all the premises are true and the conclusion false:

Truth-preservation view. An argument 〈Γ ∴ β〉 is valid iff it is impossible
that every member of Γ is true but β is false.

The view accommodates the examples of pp. 3-4, but has recently come under
attack, chiefly on the grounds that the very claim that valid arguments preserve
truth (i) entails Curry-driven triviality and (ii) is inconsistent with Gödel’s Second
Incompleteness Theorem (Priest, 2006a,b; Field, 2008, 2009; Beall, 2009).10 However,
the results to be presented below don’t require that valid arguments be truth-
preserving—they are indeed compatible with views that reject this assumption.
One such view is endorsed by Field (2008, 2009). According to Field, validity is a
primitive notion whose role is to constrain belief, and degrees of belief, via principles
such as (F):

Normative view. validity normatively constrains our degrees of belief.

Now for some well-known, and less well-known, theorems.

2 Validity Curry

While V-Intro is adequate for a predicate expressing logical validity, it doesn’t seem
adequate for a predicate expressing validity. Suppose φ has been derived by means

10For a critical discussion of Field’s and Beall’s arguments, see Shapiro (2011) and Murzi and
Shapiro (forthcoming).
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of rules that are themselves valid. Then, we would like to be able to say that φ is
itself valid. That is, the following rule should be in place:

(V-Intro∗) Given a valid derivation of φ, infer Val(pφq).11

The rule is intuitively valid. On the truth-preservation view, it states that sentences
proved only by means of necessarily truth-preserving rules are themselves necessary.
On the normative view, it effectively says that, if we have proved φ by means of valid
rules, then, if we have thereby come to believe φ to degree 1, then we should also
believe Val(pφq) to degree 1. Unlike V-Intro and V-Out, however, V-Intro∗ and V-Out
(with ‘Val(x)’ now taken to express validity) spell trouble.

Theorem 1 (Myhill 1960, Kaplan and Montague 1960). Let T be a theory which (i)
interprets Q, (ii) proves all instances of V-Out and (iii) is closed under V-Intro∗. Then, T is
inconsistent.

Proof. We reason in T. The Diagonal Lemma yields a sentence κ such that κ ↔
¬Val(pκq). We assume Val(pκq), and derive ¬Val(pκq) by applications of V-Out and
↔-E. Hence, ¬Val(pκq). But, then, κ follows on no assumptions, and must therefore
be valid. Contradiction.12

In effect, the above reasoning—the Knower Paradox—is but a stronger Liar: it is
the same paradox, except that the left-to-right direction of (T) is replaced by the
weaker V-Intro∗.13 Standard treatments of the Liar paradox still apply, however. On
paracomplete treatments, one may not validly infer ¬Val(pκq) from a derivation of
absurdity from Val(pκq), i.e. the rule of negation introduction is rejected as (logically)
invalid (see e.g. Kripke, 1975; Brady, 2006; Field, 2008; Horsten, 2009). On paracon-
sistent treatments, the above argument shows the existence of a true contradiction,
viz. Val(pκq) ∧ ¬Val(pκq) (see e.g. Priest, 2006b; Beall, 2009).

11This is, in effect, a notational variant of the unrestricted Rule of Necessitation: given a derivation
of φ, infer Tr(pφq).

12The reasoning displayed in this proof is sometimes referred to as the Pseudo-Scotus Paradox. It
might be objected that Q’s axioms and V-Intro∗ are logically invalid. See e.g. Field (2008, p. 304 and
p. 306), Ketland (2012) and Cook (2013). However, the assumption that they are valid is plausible
on any interesting weakening of the notion of logical validity. For more discussion, see Murzi and
Shapiro (forthcoming).

13To see this, note that both paradoxes have the same general form: from some φ such that
` φ↔ ¬�(pφq), one proves ¬�(pφq), and hence φ, on the assumption that �(pφq). Then, �pφq)
follows on no assumptions via either the T-Scheme or Necessitation, depending on whether � is
interpreted as, respectively, ‘true’ or ‘valid’.
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Now suppose we’d like to attribute validity not only to sentences, but also
to arguments. We’d then introduce in the language (at least) a two-place validity
predicate Val(x, y) governed by the following rules:

(VP) Given a valid derivation of ψ from φ, infer Val(pφq, pψq).

(VD) From φ and Val(pφq, pψq), infer ψ.

More formally:

φ ` ψ
(VP) ` Val(pφq, pψq)

Γ ` Val(pφq, pψq) ∆ ` φ
(VD) .

Γ, ∆ ` ψ

VP is, again, intuitively valid. On the truth-preservation view, it states that, if ψ has
been derived from φ by means of truth-preserving rules, then the argument 〈φ ∴ ψ〉
is necessarily truth-preserving. On the normative view, it effectively says that, if ψ

has been derived from φ by means of valid rules, then the argument 〈φ ∴ ψ〉 is
valid, and hence P(φ) ≤ P(ψ). VD is also compelling on both views. On the truth-
preservation view, it implies that, if we’re in a position to assert that the argument
〈φ ∴ ψ〉 is truth-preserving, then we may infer ψ given φ. On the normative view,
it tells us that, if we’re in a position to assert that the argument 〈φ ∴ ψ〉 is validity,
then P(φ) ≤ P(ψ).

Note that VP and VD are generalisations of, respectively, V-Intro∗ and V-Out. To
see this, it is sufficient to instantiate VP and VD using a constant T expressing valid
truth. Instantiating VP yields a notational variant of V-Intro∗, rewritten using our
two place predicate Val(x, y) in place of a one-place validity predicate Val(x):

T ` ψ
(V-Intro∗∗) .

` Val(pTq, pψq)

Likewise, instantiating VD thus

Γ ` Val(pTq, pψq) T ` T

Γ,T ` ψ

yields a notational variant of a rule corresponding to the T axiom for a necessity
operator, i.e. V-Out∗:

( V-Out∗) Val(pTq, pψq),T `T ψ.

It is therefore no surprise that VP and VD also spell trouble. What is surprising is
the minimal logical resources required to show this: one only needs to assume the
validity of the standardly accepted structural rules, viz. Identity, Contraction and
Cut:
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(Id)
φ ` φ

Γ, φ, φ ` ψ
(SContr)

Γ, φ ` ψ

Γ ` φ ∆, φ ` ψ
Cut .

Γ, ∆ ` ψ

The proof is a validity-involving version of Curry’s Paradox: Validity Curry, or
v-Curry, for short.14

Theorem 2. Let T be any theory which interprets Q and is closed under VP, VD, Id and
SContr. Then, T is trivial.15

Proof. The Diagonal Lemma yields a sentence π, which intuitively says of itself, up
to equivalence, that it validly entails that you will win the lottery:

`T π ↔ Val(pπq, p⊥q).

Let Σ now be the following derivation of the further theorem Val(pπq, p⊥q):
π `T π `T π ↔ Val(pπq, p⊥q)

→-E
π `T Val(pπq, p⊥q) π `T π

VD
π, π `T ⊥

SContr
π `T ⊥

VP`T Val(pπq, p⊥q)
Using Σ, we can then ‘prove’ that you will win the lottery:

Σ
`T Val(pπq, p⊥q)

`T π ↔ Val(pπq, p⊥q)
Σ

`T Val(pπq, p⊥q)
→-E`T π

VD`T ⊥

In short: validity, just like truth, is plagued by paradox. More precisely, since VD

and VD are generalisations of the validity rules that yield the Knower Paradox, the
v-Curry Paradox is a generalisation of the Knower Paradox, which, recall, is but a
stronger Liar.

?? Parenthetical note. Theorem 2 can be strengthened. While the theorem assumes
that Q be valid in the target sense, this assumption is not strictly needed, as Cook
(2013) has recently pointed out.

14To the best of my knowledge, the first known occurrence of v-Curry paradox is in the 16th-
century author Jean de Celaya. See Read (2001, fn. 11-12) and references therein. Albert of Saxony
discusses a contrapositive version of the paradox in his Insolubles (Read, 2010, p. 211). More recent
versions surface in Whittle (2004, fn. 3), Clark (2007, pp. 234-5) and Shapiro (2011, fn. 29). For a first
comprehensive discussion of the v-Curry Paradox, see Beall and Murzi (2013).

15It is worth noting that Cut is effectively built in our formulation of VD. Hence, should the
latter rule be formulated differently, Cut may need to be mentioned alongside Id and SContr in the
statement of Theorem 2 below.
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Theorem 3 (Cook). If VP and VD are valid, Q is trivial.

Proof. Let Q∗ be the conjunction of Q’s axioms. Using the Diagonal Lemma, we can
derive

Q∗ ` κ ↔ Val(pκ ∧Q∗ → ⊥q)

We then ‘prove’ Val(pκ ∧Q∗ → ⊥q) and, from this, conclude Q∗ ` ⊥

Beyond Id, SContr and Cut,16 all is needed for deriving the Validity Curry is that
VP and VD be valid. It immediately follows from Theorem 2 and 3 that theories
of semantic paradox which retain the standard structural rules—including the
standard paracomplete and paraconsistent ones—still validate the v-Curry Paradox.
Such theories can in general express sentence validity, but they’re unable to express
argument validity. For more discussion, see Zardini (2011), Beall and Murzi (2013)
and Murzi (2012). End note. ??

3 Validity and expressibility

The results of §2 suggest natural generalisations of Tarski’s undefinability and
inexpressibility of truth theorems. I’ll closely follow, mutatis mutandis, Peter Smith’s
presentation of Tarski’s original results (Smith, 2007, pp. 180-2). As above, we’ll
take some (possibly not recursively axiomatisable) theory T which interprets PA to
represent our maximal theory at a certain time, and hence the consequence relation
of our language at that time. That is, ignoring for simplicity’s sake the relativisation
to time, we’ll effectively assume that T’s consequence relation is the consequence
relation of our maximal theory, so that T is, so to speak, validity sound and complete.
In short: φ `T ψ iff φ entails ψ.

We can now show that T can neither define, nor express, validity. To this end,
we make use of the two following (standard) definitions:

Definition 4 (Definability). Φ(x, y) defines a binary relation R in T iff: mRn iff
`T Φ(m, n), where m and n are names of, respectively, m and m.17

Definition 5 (Expressibility). Φ(x, y) expresses a binary relation R iff: mRn iff Φ(m, n)
is true.

16This last rule is in effect built into VD. See infra fn. 15.
17Definability, as defined in Definition 4, is sometimes also referred to as weak representability.
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Now let Valid be a numerical relation such that Valid(m, n) is true iff m and n
are the Gödel numbers of formulae φ, ψ of LA such that φ entails ψ. Suppose
an open wff Val(x, y) belonging to an arithmetical language L′A including LA ex-
presses this numerical relation Valid. Then, for any LA sentences φ, ψ, φ entails ψ iff
Valid(pφq, pψq) iff Val(pφq, pψq) is true. That is, for any LA sentences φ, ψ, φ entails
ψ iff Val(pφq, pψq) is true. In turn, this motivates the following definitions.

Definition 6 (Formal validity predicate). An open L′A-wff Val(x, y) is a formal
validity-predicate for LA iff Val(x, y) expresses validity, i.e. iff for every LA- sen-
tence φ, ψ, φ entails ψ iff Val(pφq, pψq) is true.

Definition 7 (Validity theory). A theory T (with language L′A which includes LA) is
a validity theory for LA iff, for some L′A-wff Val(x, y), φ entails ψ iff `T Val(pφq, pψq).
A validity theory for LA is also a validity definition for LA.

Note that, given our idealising assumption that T is validity sound and complete,
it follows from Definitions 5 and 6 that Val(x, y) is a formal validity predicate
iff Val(x, y) expresses T’s consequence relation. More formally, Val(x, y) is a for-
mal validity predicate iff: Val(pφq, pψq) is true iff φ `T ψ. Furthermore, on the
foregoing assumption, T is a validity theory iff the following holds: φ `T ψ iff
`T Val(pφq, pψq). That is, if T is validity sound and complete, T is a validity theory
iff it is closed under the naïve validity rules:

φ `T ψ
(VP) `T Val(pφq, pψq)

Γ `T Val(pφq, pψq) ∆ `T φ
(VD) .

Γ, ∆ `T ψ

We’re now ready to introduce our main results.
Can T define its own consequence relation, i.e. can T contain its own validity

definition? This question is answered in the negative by the following theorem.

Theorem 8 (Indefinability of `T in T). Let T be any non-trivial theory which interprets
Q with language LV including a fresh predicate Val(x, y). Then, T cannot define its own
consequence relation.

Proof. Since T is at least as strong as Q, the Diagonal Lemma applies, and gives us a
sentence π—a v-Curry sentence!—such that

`T π ↔ Val(pπq, p⊥q).

However, since T defines its own consequence relation, T validates VP and VD.
Hence, we can run the v-Curry reasoning in T, and conclude `T ⊥, which contra-
dicts our assumption that T isn’t trivial.
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It immediately follows that, if T is validity sound and complete, then T cannot
define validity.

Corollary 9 (Indefinability of validity). Let T be as above. Then, if T is validity sound
and complete, T cannot define validity.

Proof. This follows at once from Theorem 8 and the observation that, if T is validity
sound and complete, T defines validity iff it validates VP and VD.

Can at least T express validity? This question must also receive a negative answer,
provided Q is sound. The proof makes use in the metalanguage of disquotational
truth-predicate, i.e. we assume that, for all φ ∈ LV , φ is true iff φ, where ‘true’
6∈ LV .18 It also assumes that our meta-theory validates the standard structural rules,
and that the metalanguage entailment connective we’ve been using so far satisfies
(a version of) conditional proof and modus ponens, i.e. that, for all φ ∈ LV , if there is a
derivation of ψ from φ in the metatheory, then φ entails ψ, and if φ and φ entails ψ,
then ψ, where ‘entails’ 6∈ LV .

Theorem 10 (Inexpressibility of validity). Let T be any non-trivial theory which inter-
prets Q, with language LV . Then, if Q is sound, T cannot contain a predicate expressing
validity.

Proof. Let T be a theory that interprets Q, and suppose there is a LV predicate
Val(x, y) expressing validity. We then have:

1. `T π ↔ Val(pπq, p⊥q).

However, (the subtheory of T which interprets) Q is ex hypothesi sound. So

2. π ↔ Val(pπq, p⊥q).

Since Val(x, y) expresses validity, the following holds:

3. π entails ⊥ iff Val(pπq, p⊥q) is true.

We can now reason the standard Curry way. We assume π, and derive that π entails
⊥ from 2. and 3. Assuming again π, we derive ⊥ and, discharging both occurrences
of π, we deduce that π entails ⊥. From 2. and 3., we conclude ⊥.

18While I’m assuming the metalanguage to be classical, and hence take the truth-predicate to
be typed, the proof would also go through using a type-free truth-predicate in a non-classical
metalanguage.
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Notice that the multiple discharge of π is effectively equivalent to assuming that
SContr holds (see e.g. Negri and von Plato, 2001, Ch. 8).

We’re now confronted with a familiar dilemma: either we invalidate one of the
naïve validity principles at work in the foregoing proofs, or, if T is to either define
or express validity, T’s logic must be (radically) weakened: one among Id, SContr
and Cut must go.

4 Incompleteness and classical validity

It might be objected that the foregoing results are inconsistent with both Gödel’s
Second Incompleteness Theorem and Löb’s Theorem and that, for this reasons,
our definitions of a formal validity predicate and of a validity theory must be
incorrect. The Second Incompleteness Theorem states that no consistent recursively
axiomatised theory T which interprets Q and is strong enough to prove the Hilbert-
Bernays conditions for a predicate ProvT expressing provability-in-T can prove
its own consistency.19 Löb’s Theorem is a formalised version of Curry’s Paradox,
which, as it turns out, entails the Second Incompleteness Theorem. Where T is as
above, Löb’s Theorem states that, if `T ProvT(pφq)→ φ, then `T φ.

In a nutshell, one might use Gödel’s and Löb’s results to argue against VD thus.
Consider the following version of the Second Incompleteness Theorem.

Theorem 11. Let T be any recursively axiomatised theory that interprets Q, and let
ProvT(x) be a provability predicate for T. Suppose T asserts that theorems of T are valid
and that validity is factive:

1. ProvT(pφq)→ Val(pφq);

2. Val(pφq)→ φ.

It follows by Löb’s Theorem that T is trivial.

Proof. Suppose T derives both 1. and 2. Then, since ProvT(pφq)→ φ follows from 1.
and 2. by the transitivity of→, T also derives ProvT(pφq)→ φ. By Löb’s Theorem,
T derives φ.

That this is in effect the Second Incompleteness Theorem can be seen by contraposing
the proof while setting φ := 0 6= 1. We can now derive the following corollary.

19The derivability-conditions are the predicate-analogues of the Rule of Necessitation (see infra, fn.
11) and of the K and 4 axioms of modal logic.
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Corollary 12. Let T be as above and suppose T is closed under VD. Then, T is trivial.

Proof. One need only notice that VD entails V-Out (see §2). Then, the result immedi-
ately follows from Theorem 10.

Have we shown that VD must be rejected? I think not, but let’s first examine the
main assumption on which the arguments depends.

The argument assumes that our theory of validity T is recursively axiomatisable.
McGee defends the assumption thus:

[i]f ... we identify the [validities] as those statements from whose denials
one can derive a contradiction, and if we take derivability to be provabil-
ity is some explicitly describable system of rules, it will follow that the
set of necessary truths is a recursively enumerable set. (McGee, 1991, pp.
44-5)

In short: if Val(pφq) is true iff ¬φ `T ⊥, for some recursively axiomatisable T, then
the set of validities is recursively enumerable. It then follows from Corollary 12 that
VD must fail. Moreover, as McGee observes, “if the set [of validities] is recursively
enumerable ... [then we can] explicitly define it” (McGee, 1991, p. 45). That is,
there is, in McGee’s view, a fundamental asymmetry between truth and validity:
unlike truth, validity is definable in the language, and “[w]e must confront the
paradox [the Knower Paradox] directly; there is no escaping in the metalanguage”
(McGee, 1991, p. 45). Yet, it is doubtful that the claim that validity is recursively
axiomatisable can be made plausible in the present context. For one thing, the claim
is not available to someone who accepts the validity of arguments with infinitely
many premises, such as the example of §2.20 For another, McGee’s argument for the
recursive axiomatisability of validity fails to convince. The argument assumes that,
if φ is valid, then we can derive a contradiction from ¬φ. But since to derive ⊥ from
¬φ is to (classically) prove φ, this is tantamount to assuming a form of verificationism,
to the effect that validities must have proofs of a certain kind. This is implausible,
however.

To begin with, Goldbach’s Conjecture could be true but (absolutely) unprovable.
It would then follow that, since one wouldn’t be able to derive ⊥ from the negation
of Goldbach’s Conjecture, Goldbach’s Conjecture, unlike, say, Fermat’s Theorem, or
some other provable arithmetical theorem, would be invalid in the target sense. This

20Incidentally, McGee concedes that instances of the omega-rule are at least informally valid
(McGee, 2011, p. 33).
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seems counterintuitive, though. Since both Goldbach’s Conjecture and Fermat’s
Theorem are arithmetical sentences, it would seem that either they are both valid,
or neither is.21 Second, even if all mathematical truths are absolutely provable, the
set of absolutely provable sentences would still not be guaranteed to be recursively
enumerable. For example, perhaps every mathematical truth is absolutely provable
by some possible finite being or other, even if no possible finite being can give
absolute proofs of all mathematical truths.22

In any event, the claim that validity is recursively axiomatisable is itself prob-
lematic. The claim implies that Val(x) can be interpreted as ProvT(x), which in
turn implies, because of Löb’s Theorem, that our theory of validity cannot assert
that valid sentences are true, on pain of triviality. Yet we would seem to know that
validity is a mode of truth. As William Reinhardt puts it in the case of knowledge,
“we know that what is known is true, but the reason for this is that if it were not so
we would not call it known” (Reinhardt, 1986, pp. 468-9). The point, I take it, carries
over to validity.

McGee (1991, pp. 45-9) confronts this second issue directly. While discussing
what he calls logical necessity, i.e. what we are simply calling validity, he concedes
that the principles which generate the Knower Paradox are “intuitively obvious” .
In particular, he acknowledges that it is natural to think, of someone who denies the
necessity of all instances of the schema ‘If φ is necessary, then φ’ (i.e. V-Out), that
he “would not know what he was talking about[:] even though he uses the word
‘necessary’, he could not be talking about necessity; he must be using the word in a
deviant way” (p. 48). Still, McGee’s recommendation is that we substitute V-Out
with the weaker, but consistent

(L) Val(pVal(pφq)→ φq)→ Val(pφq)),

which, he claims, “our dogmatic insistence upon V-Out has obscured to view” (p.
49). Validity can be seen to be non-paradoxical, McGee suggests, provided we give
up some “intuitively obvious” principles about validity, such as the truism that
valid sentences are true.

This reasoning also fails to convince. In effect, McGee is here merging together
two different issues: the question whether validity is paradoxical, and the problem
how the validity paradoxes should be solved. While it may be that V-Out has

21Admittedly, this objection is more plausible when validity is equated with necessary preservation
of truth. Thanks to Jack Woods for helping me appreciate this point.

22Thanks to an anonymous referee for suggesting this point.

14



obscured (L) to view, the point remains that V-Out is intuitively obvious: more
obvious, I submit, than the assumption that validity is recursively axiomatisable.
We may eventually revert to a recursively axiomatisable theory of validity, as McGee
suggests, and invalidate V-Out. But this would be a reaction to the validity paradoxes:
the recursive axiomatisability of the set of validities, and the subsequent invalidation
of V-Out, would not be one of our initial assumptions.

It might be insisted that validity cannot be paradoxical on the grounds that “the
notion of validity is to be ... defined in set-theory” (Field, 2008, p. 298) and that, since
set-theory is consistent, so must be validity. This argument clearly would not work,
however. For if it were legitimate to assume that validity is model-theoretically
definable in order to show that there are no paradoxes of validity, then it would also
be legitimate to assume that truth is model-theoretically definable in order to show
that there are no paradoxes of truth. That truth-in-L and validityL can be defined in
set-theory by no means imply that there are no paradoxes of truth and validity.

Still, it might be thought that there are independent reasons to assume that
validity is classical, which again would imply that validity cannot be a paradoxical
notion. To see this, notice that, if validity is classical, then the following disjunction
would hold:

(D) π ∧ Val(pπq, p⊥q) ∨ ¬π ∧ ¬Val(pπq, p⊥q).

It is now easy to check that both disjuncts are incompatible with VD. The second
entails

(D∗) ¬Val(pVal(pπq, p⊥q) ∧ πq, p⊥q),

which effectively says that an instance of VD is invalid. As for the first, given VD, it
immediately entails ⊥. Field (2008, p. 307) mentions two reasons why we should
think that validity is classical:

(a) that assuming excluded middle for validity claims leads to simpler reasoning
about validity;

and

(b) that it would seem to be somewhat detrimental to the role of logic as regulator
of reasoning if we were unable to say that any given piece of reasoning is
either valid or not valid.
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He concludes that “these considerations together seem to ... make the assumption
that validity claims obey excluded middle a reasonable working hypothesis” (Field,
2008, p. 307). Both (a) and (b), though, validate parallel arguments against the claim
that truth is paradoxical. Ad (i), if logic is a guide for correct reasoning and if, as Field
supposes, only a simple logic can serve such a purpose, then reasoning in classical
or intuitionistic logic is arguably simpler than reasoning in any weakening of these
logics. But it would be too quick to conclude that one direction of the T-Scheme
should fail on the grounds that assuming excluded middle for truth claims leads to
simpler reasoning about truth. Certainly this argument would not be available to
Field, who has long been advocating a non-classical, paracomplete logic of paradox
(Field, 2003, 2007, 2008). Ad (ii), a parallel argument would conclude that it would
be detrimental to the role of truth as a regulator of assertion if we were unable to say
that any given sentence is either true or not true. Either way, it would then follow
that truth must be a classical notion and that, for this reason, at least one direction
of the T-Scheme must fail. But this would hardly be a reason for thinking that the
Liar reasoning isn’t paradoxical.

5 Concluding remarks

I’ve argued that we have reasons—largely epistemic ones—for countenancing a
broader notion of validity, alongside logical validity. Such a notion is no more, and
no less, paradoxical than truth. As John Myhill puts it, commenting on the notion of
absolute provability (a kind of validity):

the situation is completely analogous to that Epimendes paradox which
arises when we try to formalize the notion of truth, and does not show
the notion of [absolute] provability to be any more paradoxical than the
notion of truth. (Myhill, 1960, p. 470)

The paradoxes of validity are generalisations of the truth-theoretic paradoxes. The
Knower Paradox is but a stronger Liar, and v-Curry is, in turn, a generalisation
of the Knower, one that employs stronger, though equally compelling, validity
principles, as well as weaker logical resources. Consequently, validity gives rise
to stronger indefinability and inexpressibility results: the standardly assumed
structure of the validity relation suffices to make validity indefinable and, if Q is
sound, inexpressible.
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