
An Analytic Tableau System for Natural Logic?

Reinhard Muskens

Tilburg Center for Logic and Philosophy of Science
r.a.muskens@uvt.nl

http://let.uvt.nl/general/people/rmuskens/

Abstract. In this paper we develop the beginnings of a tableau system
for natural logic, the logic that is present in ordinary language and that
us used in ordinary reasoning. The system is based on certain terms of
the typed lambda calculus that can go proxy for linguistic forms and
which we call Lambda Logical Forms. It is argued that proof-theoretic
methods like the present one should complement the more traditional
model-theoretic methods used in the computational study of natural lan-
guage meaning.

1 Introduction

Logic has its roots in the study of valid argument, but while traditional logicians
worked with natural language directly, modern approaches first translate natural
arguments into an artificial language. The reason for this step is that some
artificial languages now have very well developed inferential systems. There is
no doubt that this is a great advantage in general, but for the study of natural
reasoning it is a drawback that the original linguistic forms get lost in translation.
An alternative approach would be to develop a general theory of the natural logic
behind human reasoning and human information processing by studying formal
logics that operate directly on linguistic representations. That this is possible
we will try to make plausible in this paper. It will turn out that one level of
representation, that of Logical Form, can meaningfully be identified with the
language of an existing and well-understood logic, a restricted form of the theory
of types. It is not difficult to devise inference systems for this language, and it
is thus possible to study reasoning systems that are based directly on language.

We will define a tableau system and will place in focus tableau rules that
are connected with certain properties of operators that seem important from a
linguistic point of view. Our aim will not so much be to provide a proof system
that is complete with respect to the semantics of our representations, but to
provide rules that can be argued to be natural. The paper’s purpose, therefore,
is to contribute to the field of natural logic.1

? From: M. Aloni, H. Bastiaanse, T. de Jager, and K. Schulz, editors, Logic, Language
and Meaning, volume 6042 of Lecture Notes in Artificial Intelligence, pages 104-113.
Springer, 2010.

1 Early contributions to natural logic are [16] and [22]. The research line we base
ourselves upon is exemplified in [10, 11, 3, 4, 21, 9, 5, 12, 24, 17, 18].



2

2 Lambda Logical Forms

For our purpose it will be of help to have representations of natural language
expressions that are adequate both from a linguistic and from a logical point of
view. At first blush, this may seem problematic, as it may be felt that linguis-
tics and logic require completely different and competing properties from the
representations they use, but in fact the typed lambda calculus provides what
we need, or at least a good approximation to it. In order to obtain a class of
terms with linguistic relevance we will restrict attention to those (simply typed)
lambda terms that are built up from variables and non-logical constants, with
the help of application and lambda abstraction and will delimit this class further
by the restriction that only variables of individual type are abstracted over. The
resulting terms, which will be called Lambda Logical Forms (LLFs), are often
very close to linguistic expressions, as the following examples illustrate.

(1) a. ((a woman)walk)
b. ((if((a woman)walk))((no man)talk))
c. (mary(think((if((a woman)walk))((no man)talk))))
d. ((a woman)(λx(mary(think((if(walk x))((no man)talk))))))
e. (few man)λx.(most woman)λy.like xy

The terms in (1) were built up in the usual way, but no logical constants, such as
=, ∀, ∃,→, ∧, ∨, ¬ and the like, were used in their composition. The next section
will make a connection between some of the non-logical constants used in (1)
and logical ones, but this connection will take us from natural representations
of linguistic expressions to rather artificial ones. Lambda terms containing no
logical constants will therefore continue to have a special status.

Lambda Logical Forms come close to the Logical Forms that are studied in
generative grammar. For example, in [13] trees such as the one in (2a) are found,
strikingly similar to the λ-term in (2c).

(2) a. [S[DP every linguist][1[S John[VP offended t1]]]]
b. ((every linguist)(λx1(john(offend x1))))

3 A Natural Logic Tableau System

In this section we will discuss a series of rules for a tableau system directly
based on LLFs. While tableau systems usually only have a handful of rules
(roughly two for each logical operator under consideration), this system will be
an exception. There will be many rules, many of them connected with special
classes of expressions. Defining a system that comes even close to adequately
describing what goes on in ordinary language will be a task far greater than what
can be accomplished in a single paper and we must therefore contend ourselves
with giving examples of rules that seem interesting. Further work should lead to
less incomplete descriptions. Since the rules we consider typically are connected



3

to some algebraic property or other (such as monotonicity or anti-additivity—
see below), it will also be necessary to specify to which class of expressions each
rule applies. Describing exactly, for example, which expressions are monotone
increasing in any given language requires a lot of careful linguistic work and for
the moment we will be satisfied with providing examples (here: some, some N,
every N, many N, and most N).

Familiarity with the method of tableaus will be assumed.

3.1 Tableau Entries

We will work with signed tableaus in which entries are formed by the rule that
if A is an LLF of type2 〈~α〉 and ~C is a sequence of constants or LLFs of types
~α, then T ~C : A and F ~C : A are tableau entries.

An entry T ~C : A (F ~C : A) intuitively states that A~C is true (false).

3.2 Closure

It will be assumed that the lexicon provides us with certain primitive entailment
relations, such as lark ≤ bird and no ≤ few. A tableau branch is closed if it
either contains both T ~C : A and F ~C : A or contains T ~C : A and F ~C : B, where
A ≤ B is lexical knowledge in this way.

A tableau is closed if all its branches are closed.

3.3 Rules Deriving from the Format

The format we have chosen itself validates some rules. First, we are only inter-
ested in LLFs up to βη equivalence and lambda conversions can be performed
at will. Second, the X ~C : A format (where X is T or F ) validates the following
rules.

(3) X ~C : AB

XB ~C : A

XB ~C : A

X ~C : AB

So we can shift arguments to the front and shift them back again.

3.4 Boolean Rules

We can now give rules for the operators and, or and not, the first two of which
we write between their arguments, that are much like the rules for ∧, ∨ and
¬ in signed tableau calculi. What is different here is that these rules are given
for conjunction, disjunction and complementation in all categories, not just the
category of sentences.
2 Types will be relational, as in [20]. A relational type 〈α1 . . . αn〉 is equivalent to the

functional type α1 → · · · → αn → t and 〈〉 is equivalent to t.



4

(4) a. T ~C : A and B

T ~C : A
T ~C : B

F ~C : A and B

F ~C : A F ~C : B

b. F ~C : A or B

F ~C : A
F ~C : B

T ~C : A or B

T ~C : A T ~C : B

c. T ~C : notA

F ~C : A

F ~C : notA

T ~C : A

Here is a tableau showing that not(man or woman) entails (not man) and (not
woman).

(5) Tci : not(man or woman)
Fci : (not man) and (not woman)

Fci : man or woman
Fci : man
Fci : woman

Fci : not man
Tci : man
×

Fci : not woman
Tci : woman

×

In order to refute the possibility that some object c and some world i satisfy
not(man or woman) but do not satisfy (not man) and (not woman) a tableau
was developed which starts from the counterexample set

{Tci : not(man or woman), F ci : (not man) and (not woman)} .

Since the tableau closes (× signals branch closure) the possibility is indeed re-
futed.

While and, or and not seem to be operative in all categories, if is sentential.
We formulate its rules as follows. Note that sentences still need a parameter
(here: i) since their type is 〈s〉, not just 〈〉.

(6) Ti : ifAB

Fi : A Ti : B

Fi : ifAB

Ti : A
Fi : B

3.5 Rules for Monotonic Operators

The rules we have discussed until now were either completely general or operated
on specific words (constants), but it has been observed that natural reasoning



5

T i : (no bird) moved

Fi : (no lark) flew

Tci : flew
Fci : moved

×

TPi : no bird

FPi : no lark

Tci : lark
Fci : bird
×

TP ′Pi : no
FP ′Pi : no

×
Table 1. Tableau for no bird moved; therefore no lark flew

hinges on properties that attach to certain groups of expressions. Let us write
⊂i for the relation that obtains between relations M and M ′ of the same type
〈~γs〉 if (λ~x.M~xi) ⊂ (λ~x.M ′~xi). A relation G of type 〈〈~αs〉~βs〉 is called upward
monotone if ∀XY ∀i(X ⊂i Y → GX ⊂i GY ) (where X and Y are of type 〈~αs〉).
Examples of upward monotone expressions (already mentioned above) are some,
some N, every N, many N, most N (where N varies over expressions of type 〈es〉),
but also Mary. Here is a tableau rule for upward monotone (mon↑) expressions.

(7) T ~Ci : GA
F ~Ci : HB

T~ci : A
F~ci : B

Tb~Ci : G
Fb~Ci : H

where ~c and b are fresh, provided G or H is mon↑

And here is a dual rule for expressions that are downward monotone, i.e. that
satisfy the property ∀XY ∀i(X ⊂i Y → GY ⊂i GX). Examples are no, no N,
every, few, and few N.

(8) T ~Ci : GA
F ~Ci : HB

T~ci : B
F~ci : A

Tb~Ci : G
Fb~Ci : H

where ~c and b are fresh, provided G or H is mon↓

Using the second of these rules, the tableau in Table 1 shows, by way of exam-
ple, that no bird moved entails no lark flew. Table 2 gives a more complex
example, showing that each person who Mary touched ran entails most students
who Mary kissed moved. Here the rules employed for who are essentially those
for and.

3.6 Other Rules Connected to Algebraic Properties

Upward and downward monotonicity are not the only algebraic properties that
seem to play a pivotal role in language. There is a literature starting with [25]



6

T i : each(who(λx.Mary(touched x))person)ran
Fi : most(who(λx.Mary(kissed x))student)moved

Tci : ran
Fci : moved

×

TPi : each(who(λx.Mary(touched x))person)
FPi : most(who(λx.Mary(kissed x))student)

Tci : who(λx.Mary(kissed x))student
Fci : who(λx.Mary(touched x))person

Tci : λx.Mary(kissed x)
Tci : student

T i : Mary(kissed c)

Fci : λx.Mary(touched x)
Fi : Mary(touched c)

Tbi : kissed c
Fbi : touched c
Tcbi : kissed
Fcbi : touched

×

TP ′i : Mary
FP ′i : Mary

×

Fci : person
×

TP ′Pi : each
FP ′Pi : most

×

Table 2. Tableau for each person who Mary touched ran; therefore most students who
Mary kissed moved

singling out anti-additivity as linguistically important. An operator A is anti-
additive if it is downward monotone and satisfies the additional property that
∀XY ((AX ∩AY ) ⊂ A(X ∪ Y )). A rule for anti-additive operators, examples of
which are no-one and without, but also not, is easily given:

(9) If A is anti-additive: F ~D : A(B or C)

F ~D : AB F ~D : AC

We can continue in this vein, isolating rules connected to semantic properties
that have been shown to be linguistically important. For example, [8] mentions
splittingness, ∀XY (A(X ∪ Y ) ⊂ (AX ∪ AY )), and having meet, ∀XY ((AX ∩
AY ) ⊂ A(X ∩ Y )), which we can provide with rules as follows.



7

(10) If A has meet: F ~D : A(B and C)

F ~D : AB F ~D : AC

(11) If A is splitting: T ~D : A(B or C)

T ~D : AB T ~D : AC

no N and every N have meet, while some N is splitting.

3.7 Getting Rid of Boolean Operators

Many of the rules we have seen thus far allow one to get rid of Boolean op-
erators, even if the operator in question is not the main operator in the LLF
under consideration. Here are a few more. If a Boolean is the main connective
in the functor of a functor-argument expression it is of course always possible
to distribute it over the argument and Booleans can likewise be pulled out of
lambda-abstractions.

(12) X ~C : (A and A′)B

X ~C : AB and A′B

X ~C : (λx.A and B)

X ~C : (λx.A) and (λx.B)

These rules were given for and, but similar rules for or and not are also obviously
correct.

Other rules that help removing Booleans from argument positions are the
following.

(13) If A is mon↑: T ~Ci : A(B and B′)

T ~Ci : AB
T ~Ci : AB′

F ~Ci : A(B or B′)

F ~Ci : AB
F ~Ci : AB′

(14) If A is mon↓: T ~Ci : A(B or B′)

T ~Ci : AB
T ~Ci : AB′

F ~Ci : A(B and B′)

F ~Ci : AB
F ~Ci : AB′

It is clear that not all cases are covered, but the rules allow us to get rid of and
and or at least in some cases.

3.8 Rules for Determiners

Let us look at rules for determiners, terms of type 〈〈es〉〈es〉s〉. It has often been
claimed that determiners in natural language all are conservative, i.e. have the
property ∀XY (DXY ≡ DX(X ∩ Y )) ([2]). Leaving the question whether really
all determiners satisfy this property aside, we can establish that for those which
do we can use the following tableau rule.



8

(15) If D is conservative: Xi : DA(A and B)

Xi : DAB

This again is a rule that removes a Boolean operator from an argument position.
Here is another. If determiners D and D′ are duals (the pair some and every are
prime examples), the following rule can be invoked. (We let T = F and F = T .)

(16) If D and D′ are duals: Xi : DA(notB)

Xi : D′AB

The following rule applies to contradictory determiners, such as some and no.

(17) If D and D′ are contradictories: Xi : DAB

Xi : D′AB

There must also be rules for the logical determiners every and some. Here are
some.

(18) a. Ti : everyAB

Fci : A Tci : B

Fi : someAB

Fci : A Fci : B

c must be old.

b. Fi : everyAB

Tci : A
Fci : B

Ti : someAB

Tci : A
Tci : B

c must be fresh.

We have now entered dangerous territory, as these are complete rules for some
and every that will certainly lead to undecidability when adopted. It may be
hypothesized that the human reasoner will prefer rules such as the ones discussed
before, or the obvious rule for the symmetry of some:

(19) Xi : someAB

Xi : someBA

How exactly the linguistic system avoids the ‘bleeding and feeding’ loops that
can result from the availability of rules such as those in (18) seems an important
question that may partly be open to empirical investigation. Logic may provide
a space of possibilities here, but only experiment can show which possibilities
were nature’s choice.

3.9 Further Rules

In a full paper we will add rules for the modal operators may and must, think
and know. We will also consider rules that are connected to comparatives and
other expressions.



9

4 Conclusion

One way to describe the semantics of ordinary language is by means of transla-
tion into a well-understood logical language. If the logical language comes with
a model theory and a proof theory, the translation will then induce these on
the fragment of language that is translated as well. A disadvantage of this pro-
cedure is that precise translation of expressions, taking heed of all their logical
properties, often is difficult. Whole books have been devoted to the semantics
of a few related words, but while this often was done with good reason and in
some cases has led to enlightening results, describing language word by word
hardly seems a good way to make progress. Tableau systems such as the one
developed here provide an interesting alternative. They interface with the usual
model theory, as developing a tableau can be viewed as a systematic attempt to
find a model refuting the argument, but on the other hand they seem to give
us a better chance in obtaining large coverage systems approximating natural
logic. The format allows us to concentrate on rules that really seem linguistically
important and squares well with using representations that are close to the Log-
ical Forms in generative syntax. Tableau rules, moreover, do not only allow us
to model the classical mode of reasoning, but are equally relevant for modelling
alternative forms, such as abduction [1, 7] or the reasoning discussed in Johnson-
Laird [14, 15], where a model of the premises is sought and the conclusion is then
evaluated with respect to that model. In future work I will investigate such al-
ternative forms of reasoning, using the natural language representations and the
tableau systems presented here.

References

1. A. Aliseda-Llera. Seeking Explanations: Abduction in Logic, Philosophy of Science
and Artificial Intelligence. PhD thesis, ILLC, 1997.

2. J.F.A.K. van Benthem. Questions about Quantifiers. Journal of Symbolic Logic,
49:447–478, 1984.

3. J.F.A.K. van Benthem. Essays in Logical Semantics. Reidel, Dordrecht, 1986.
4. J.F.A.K. van Benthem. Language in Action. North-Holland, Amsterdam, 1991.
5. R. Bernardi. Reasoning with Polarity in Categorial Type Logic. PhD thesis, Utrecht

University, 2002.
6. Patrick Blackburn and Johan Bos. Representation and Inference for Natural Lan-

guage. A First Course in Computational Semantics. CSLI, 2005.
7. M. D’Agostino, M. Finger, and D. Gabbay. Cut-Based Abduction. Logic Journal

of the IGPL, 16(6):537–560, 2008.
8. Jaap van der Does. Applied Quantifier Logics. PhD thesis, University of Amster-

dam, 1992.
9. D. Dowty. The Role of Negative Polarity and Concord Marking in Natural Lan-

guage Reasoning. In Mandy Harvey and Lynn Santelmann, editors, Proceedings
from SALT IV, pages 114–144. Cornell University, Ithaca, 1994.

10. J. van Eijck. Generalized Quantifiers and Traditional Logic. In J. van Benthem
and A. ter Meulen, editors, Generalized Quantifiers in Natural Language. Foris,
Dordrecht, 1985.



10

11. J. van Eijck. Natural Logic for Natural Language. In B. ten Cate and H. Zeevat,
editors, TbiLLC 2005, LNAI 4363, pages 216–230. Springer-Verlag, Berlin Heidel-
berg, 2007.

12. F. Fyodorov, Y. Winter, and N. Francez. Order-Based Inference in Natural Logic.
Logic Journal of the IGPL, 11(4):385–416, 2003.

13. I. Heim and A. Kratzer. Semantics in Generative Grammar. Blackwell, Oxford,
1998.

14. P.N. Johnson-Laird. Mental Models: Towards a Cognitive Science of Language,
Inference, and Conciousness. Harvard University Press, Cambridge, MA, 1983.

15. P.N. Johnson-Laird. How We Reason. Oxford University Press, 2006.
16. G. Lakoff. Linguistics and Natural Logic. In D. Davidson and G. Harman, editors,

Semantics of Natural Language, pages 545–665. Reidel, Dordrecht, 1972.
17. B MacCartney and C. Manning. Natural Logic for Textual Inference. In ACL 2007

Workshop on Textual Entailment and Paraphrasing, 2007.
18. B MacCartney and C. Manning. An Extended Model of Natural Logic. In H. Bunt,

V. Petukhova, and S. Wubben, editors, Proceedings of the 8th IWCS, pages 140–
156, Tilburg, 2009.

19. R. Montague. The Proper Treatment of Quantification in Ordinary English. In
J. Hintikka, J. Moravcsik, and P. Suppes, editors, Approaches to Natural Language,
pages 221–242. Reidel, Dordrecht, 1973. Reprinted in [23].

20. R.A. Muskens. Meaning and Partiality. CSLI, Stanford, 1995.
21. Vı́ctor Sánchez. Studies on Natural Logic and Categorial Grammar. PhD thesis,

University of Amsterdam, 1991.
22. F. Sommers. The Logic of Natural Language. The Clarendon Press, Oxford, 1982.
23. R. Thomason, editor. Formal Philosophy, Selected Papers of Richard Montague.

Yale University Press, 1974.
24. Anna Zamansky, Nissim Francez, and Yoad Winter. A ‘Natural Logic’ Inference

System Using the Lambek Calculus. Journal of Logic, Language and Information,
15:273–295, 2006.

25. F. Zwarts. Negatief-polaire Uitdrukkingen I. Glot, 6:35–132, 1981.


