
Categorial Grammar and Discourse
Representation Theory∗

Reinhard Muskens

Abstract

In this paper it is shown how simple texts that can be parsed in a
Lambek Categorial Grammar can also automatically be provided with
a semantics in the form of a Discourse Representation Structure in the
sense of Kamp [1981]. The assignment of meanings to texts uses the
Curry-Howard-Van Benthem correspondence.

1 Introduction

In Van Benthem [1986] it was observed that the Curry-Howard correspon-
dence between proofs and lambda terms can be used to obtain a very elegant
and principled match between Lambek Categorial Grammar and Montague
Semantics. Each proof in the Lambek calculus is matched with a lambda
term in this approach, and Van Benthem shows how this lambda term can
be interpreted as a recipe for obtaining the meaning of the expression that
corresponds to the conclusion of the Lambek proof from the meanings of its
constituent parts.

Usually the semantics that is obtained in this way is an extensional variant
of the semantics given in Montague [1973] (Hendriks [1993] sketches how the
method can be generalized for the full intensional fragment). However, it
is generally acknowledged nowadays that the empirical coverage of classical
Montague Grammar falls short in some important respects. Research in
semantics in the last fifteen years or so has increasingly been concerned with a
set of puzzles for which Montague’s original system does not seem to provide

∗From: Proceedings of COLING 94, Kyoto, Japan, 1994, pp. 508–514.

1

us with adequate answers. The puzzles I am referring to have to do with
the intricacies of anaphoric linking. What is the mechanism behind ordinary
cross-sentential anaphora, as in ‘Harry has a cat. He feeds it’? Is it essentially
the same mechanism as the one that is at work in the case of temporal
anaphora? How is it possible that in Geach’s notorious ‘donkey’ sentences,
such as ‘If a farmer owns a donkey, he beats it’, the noun phrase ‘a farmer’
is linked to the anaphoric pronoun ‘it’ without its having scope over the
conditional and why is it that the noun phrase is interpreted as a universal
quantifier, not as an existential one?

While it has turned out rather fruitless to study these and similar ques-
tions within classical Montague Grammar (MG), they can be studied prof-
itably within the framework of Discourse Representation Theory (DRT, see
Heim [1982, 1983], Kamp [1981], Kamp & Reyle [1993]). This semantic the-
ory offers interesting analyses of the phenomena that were mentioned above
and many researchers in the field now adopt some form of DRT as the for-
malism underlying their semantical investigations.

But the shift of paradigm seems to have its drawbacks too. Barwise
[1987] and Rooth [1987], for example, observe that the new theory does not
give us the nice unified account of noun phrases as generalized quantifiers
that Montague’s approach had to offer and it is also clear from Kamp &
Reyle [1993] that the standard DRT treatment of coordination in arbitrary
categories cannot claim the elegance of the Montagovian treatment. For the
purposes of this paper a third consequence of the paradigm shift is important.
The Curry-Howard-Van Benthem method of providing Lambek proofs with
meanings requires that meanings be expressed as typed lambda terms. Since
this is not the case in standard DRT, the latter has no natural interface with
Lambek Categorial Grammar.

It seems then that the niceties of MG and DRT have a complementary
distribution and that considerable advantages could be gained from merging
the two, provided that the best of both worlds can be retained in the merge.
In fact the last eight years have witnessed a growing convergence between
the two semantic frameworks. The articles by Barwise and Rooth that were
mentioned above are early examples of this trend. Other important examples
are Zeevat [1989] and Groenendijk & Stokhof [1990, 1991].

None of these papers gives the combination of DRT and type logic that
is needed for attaching the first to Lambek’s calculus, but in Muskens [forth-
coming] it was shown how the necessary fusion can be obtained. The es-
sential observation is that the meanings of DRT’s discourse representation

2

structures (boxes) are first order definable relations. They can thus be ex-
pressed within first order logic and within the first order part of ordinary
type logic (i.e. the logic that was described in Church [1940], Gallin [1975]
and Andrews [1986]). This allows us to treat noun phrases as expressions
of a single type (a generalized kind of generalized quantifiers) and to have a
simple rule for coordination in arbitrary categories (see Muskens [forthcom-
ing] for a discussion of the latter). In this paper we build on the result and
show how the system can also be attached to Lambek Categorial Grammar.

The rest of the paper consists of five main sections. The first takes us from
English to Lambek proofs and the second takes us from Lambek proofs to
semantical recipes. After the third section has described how we can emulate
boxes in type logic, the fourth will take us from semantical recipes to boxes
and the fifth from boxes to truth conditions.

2 From English to Lambek Proofs

I shall assume familiarity with Lambek’s calculus and rehearse only its most
elementary features. Starting with a set of basic categories, which for the
purposes of this paper will be {txt, s, n, cn} (for texts, sentences, names and
common nouns), we define a category to be either a basic category or anything
of one of the forms a / b or b \ a, where a and b are categories. A sequent
is an expression T ` c, where T is a non-empty finite sequence of categories
(the antecedent) and c (the succedent) is a category. A sequent is provable if
it can be proved with the help of the following Gentzen rules.

[AX]
c ` c

T, b ` a
[/R]

T ` a/b

T ` b U, a, V ` c
[/L]

U, a/b, T, V ` c
b, T ` a

[\R]
T ` b\a

T ` b U, a, V ` c
[\L]

U, T, b\a, V ` c

An example of a proof in this calculus is given in Fig. 1, where it is shown
that (s/(n\s))/cn, cn, (n\s)/n, ((s/n)\s)/cn, cn ` s is a provable sequent. If
the categories in the antecedent of this sequent are assigned to the words ‘a’,
‘man’, ‘adores’, ‘a’ and ‘woman’ respectively, we can interpret the derivability
of the given sequent as saying that these words, in this order, belong to the
category s.

3

cn ` cn

cn ` cn

n ` n

n ` n s ` s
[\L]

n, n\n ` s
[/L]

n, (n\s)/n, n ` s
[/R]

n, (n\s)/n ` s/n s ` s
[\L]

n, (n\s)/n, (s/n)\s ` s
[\R]

(n\s)/n, (s/n)\s ` n\s s ` s
[/L]

s/(n\s), (n\s)/n, (s/n)\s ` s
[/L]

(s/(n\s))/cn, cn, (n\s)/n, (s/n)\s ` s
[/L]

(s/(n\s))/cn, cn, (n\s)/n, ((s/n)\s)/cn, cn ` s

Figure 1: Proof for ‘a man adores a woman’

3 From Lambek Proofs to Semantical Recipes

Proof theory teaches us that there is a close correspondence between proofs
and lambda terms. The lambda term which corresponds to a given proof can
be obtained with the help of the so-called Curry-Howard correspondence. Van
Benthem [1986] observed that the lambda term that we get in this way also
gives us a correspondence between Lambek proofs on the one hand and the
intended meanings of the resulting expressions on the other. In the present
exposition of the Curry-Howard-Van Benthem correspondence I shall follow
the set-up and also the notational conventions of Hendriks [1993]. For more
explanation, the reader is referred to this work, to Van Benthem [1986, 1988,
1991] and to Moortgat [1988].

The idea behind the correspondence is that we match each rule in the
Lambek calculus with a corresponding semantic rule and that, for each proof,
we build an isomorphic tree of semantic sequents, which we define as expres-
sions T ′ ` γ, where T ′ is a sequence of variables and γ is a lambda term with
exactly the variables in T ′ free. The semantic rules that are to match the
rules of the Lambek calculus above are as follows. (The term γ[u := w(β)]
is meant to denote the result of substituting w(β) for u in γ.)

4

[AX]
x ` x

T ′, v ` α
[/R]

T ′ ` λv.α

T ′ ` β U ′, u, V ′ ` γ
[/L]

U ′, w, T ′, V ′ ` γ[u := w(β)]

v, T ′ ` α
[\R]

T ′ ` λv.α

T ′ ` β U ′, u, V ′ ` γ
[\L]

U ′, T ′, w, V ′ ` γ[u := w(β)]

Note that axioms and the rules [/L] and [\L] introduce new free variables.
With respect to these some conditions hold. The first of these is that only
variables that do not already occur elsewhere in the tree may be introduced.
To state the second condition, we assume that some fixed function type
from categories to semantic types is given, such that type(a / b) = type(b
\ a) = (type(b), type(a)). The condition requires that the variable x in
an axiom x ` x must be of type(c) if x ` x corresponds to c ` c in the
Lambek proof. Also, the variable w that is introduced in [/L] ([\L]) must
be of (type(b), type(a)), where a / b (b \ a) is the active category in the
corresponding sequent.

With the help of these rules we can now build a tree of semantic sequents
that is isomorphic to the Lambek proof in Fig. 1; it is shown in Fig. 2.
The semantic sequent at the root of this tree gives us a recipe to compute
the meaning of ‘a man adores a woman’ once we are given the meanings
of its constituting words. Let us suppose momentarily that the translation
of the determiner ‘a’ is given as the term λP ′λP∃x (P ′(x) ∧ P(x)) of type
(et)((et)t) and that the remaining words are translated as the terms man,
adores and woman of types et, e(et) and et respectively, then substituting
λP ′λP∃x (P ′(x) ∧ P(x)) for D and for D ′ in the succedent and substituting
man, adores and woman for P, R and P ′ gives us a lambda term that readily
reduces to the sentence ∃x (man(x) ∧ ∃y(woman(y) ∧ adores(y)(x))).

The same recipe will assign a meaning to any sentence that consists of a
determiner followed by a noun, a transitive verb, a determiner and a noun (in
that order), provided that meanings for these words are given. For example,
if we translate the word ‘no’ as λP ′λP¬∃x (P ′(x) ∧ P(x)) and ‘every’ as
λP ′λP∀x (P ′(x) → P(x)), substitute the first term for D, the second for
D ′, and man, adores and woman for P, R and P ′ as before, we get a term
that is equivalent to ¬∃x (man(x) ∧ ∀y(woman(y) → adores(y)(x))), the
translation of ‘no man adores every woman’.

5

P ′ ` P ′

P ` P

v′ ` v′
v ` v p ` p

[\L]
v, P ′′ ` P ′′(v)

[/L]
v,R, v′ ` R(v′)(v)

[/R]
v,R ` λv′.R(v′)(v) p′ ` p′

[\L]
v,R,Q ` Q(λv′.R(v′)(v))

[\R]
R,Q ` λv.Q(λv′.R(v′)(v)) p′′ ` p′′

[/L]
Q′, R,Q ` Q′(λv.Q(λv′.R(v′)(v)))

[/L]
D,P,R,Q ` D(P)(λv.Q(λv′.R(v′)(v)))

[/L]
D,P,R,D′, P ′ ` D(P)(λv.D′(P ′)(λv′.R(v′)(v)))

Figure 2: Semantic tree for ‘a man adores a woman’

4 Boxes in Type Logic

In this section I will show that there is a natural way to emulate the DRT
language in the first-order part of type logic, provided that we adopt a few
axioms. This possibility to view DRT as being a fragment of ordinary type
logic will enable us to define our interface between Categorial Grammar and
DRT in the next section.

We shall have four types of primitive objects in our logic: apart from
the ordinary cabbages and kings sort of entities (type e) and the two truth
values (type t) we shall also allow for what I would like to call pigeon-holes or
registers (type π) and for states (type s). Pigeon-holes, which are the things
that are denoted by discourse referents, may be thought of as small chunks
of space that can contain exactly one object (whatever its size). States may
be thought of as a list of the current inhabitants of all pigeon-holes. States
are very much like the program states that theoretical computer scientists
talk about, which are lists of the current values of all variables in a given
program at some stage of its execution.

In order to be able to impose the necessary structure on our models, we
shall let V be some fixed non-logical constant of type π(se) and denote the
inhabitant of pigeon-hole u in state i with the type e term V(u)(i). We
define i [u1 . . . un]j to be short for

6

∀v((u1 6= v ∧ . . . ∧ (un 6= v)→ V (v)(i) = V (v)(j)) ,

a term which expresses that states i and j differ at most in u1 ,. . . ,un ; i[]j
will stand for the formula ∀v(V (v)(i) = V (v)(j)). We impose the following
axioms.

AX1 ∀i∀v∀x ∃j (i [v]j ∧ V(v)(j) = x)
AX2 ∀i∀j (i []j → i = j)
AX3 u 6= u′, for each two different discourse referents (con-

stants of type π) u and u′.

AX1 requires that for each state, each pigeon-hole and each object, there
must be a second state that is just like the first one, except that the given
object is an occupant of the given pigeon-hole. AX2 says that two states
cannot be different if they agree in all pigeon-holes. AX3 makes sure that
different discourse referents refer to different pigeon-holes, so that an update
on one discourse referent will not result in a change in some other discourse
referent’s value.

Type logic enriched with these three first-order non-logical axioms has
the very useful property that it allows us to have a form of the ‘unselec-
tive binding’ that seems to be omnipresent in natural language (see Lewis
[1975]). Since states correspond to lists of items, quantifying over states cor-
responds to quantifying over such lists. The following lemma gives a precise
formulation of this phenomenon; it has an elementary proof.

Unselective Binding Lemma. Let u1 ,. . . ,un be constants of type π, let
x 1 ,. . . ,xn be distinct variables of type e, let ϕ be a formula that does not
contain j and let ϕ′ be the result of the simultaneous substitution of V(u1)(j)
for x 1 and . . . and V(un)(j) for xn in ϕ, then:
|=AX ∀i(∃j (i [u1 ,. . . ,un]j ∧ ϕ′) ↔ ∃x 1 . . .∃xnϕ)
|=AX ∀i(∀j (i [u1 ,. . . ,un]j → ϕ′) ↔ ∀x 1 . . .∀xnϕ)

We now come to the emulation of the DRT language in type logic. Let us fix
some type s variable i and define (u)† = V(u)(i) for each discourse referent
(constant of type π) u and (t)† = t for each type e term t, and let us agree
to write

Pτ for λiP(τ)†,
τ 1Rτ 2 for λi(R(τ 1)†(τ 2)†),
τ 1 is τ 2 for λi((τ 1)† = (τ 2)†),

7

if P is a term of type et, R is a term of type e(et) and the τ ’s are either
discourse referents or terms of type e. This gives us our basic conditions of
the DRT language as terms of type st. In order to have complex conditions
and boxes as well, we shall write

not Φ for λi¬∃j Φ(i)(j),
Φ or Ψ for λi∃j (Φ(i)(j) ∨ Ψ(i)(j)),
Φ ⇒ Ψ for λi∀j (Φ(i)(j) → ∃kΨ(j)(k)),
[u1 . . . un | γ1 ,. . . ,γm] for λiλj (i [u1 ,. . . ,un]j ∧ γ1 (j) ∧. . .∧ γm(j)),
Φ ; Ψ for λiλj∃k(Φ(i)(k) ∧ Ψ(k)(j)).

Here Φ and Ψ stand for any term of type s(st), which shall be the type
we associate with boxes, and the γ’s stand for conditions, terms of type st.
[u1 . . . un | γ1 ,. . . ,γm] will be our linear notation for standard DRT boxes and
the last clause embodies an addition to the standard DRT language: in order
to be able to give compositional translations to natural language expressions
and texts, we borrow the sequencing operator ‘;’ from the usual imperative
programming languages and stipulate that a sequence of boxes is again a
box. The following useful lemma is easily seen to hold.

Merging Lemma. If ~u′ do not occur in any of ~γ then

|=AX [~u | ~γ]; [~u′ | ~γ′] = [~u~u′ | ~γ~γ′]

The present emulation of DRT in type logic should be compared with the
semantics for DRT given in Groenendijk & Stokhof [1991]. While Groe-
nendijk & Stokhof give a Tarski definition for DRT in terms of set theory
and thus interpret the object DRT language in a metalanguage, the clauses
given above are simply abbreviations on the object level of standard type
logic. Apart from this difference, the clauses given above and the clauses
given by Groenendijk & Stokhof are much the same.

5 From Semantic Recipes to Boxes

Now that we have the DRT language as a part of type logic, connecting Lam-
bek proofs for sentences and texts with Discourse Representation Structures
is just plain sailing. All that needs to be done is to define a function type
of the kind described in section 3 and to specify a lexicon for some frag-
ment of English. The general mechanism that assigns meanings to proofs

8

will then take care of the rest. The category-to-type function type is de-
fined as follows. type(txt) = type(s) = s(st), type(n) = π and type(cn)
= π(s(st)), while type(a / b) = type(b \ a) = (type(b), type(a)) in ac-
cordance with our previous requirement. It is handy to abbreviate a type of
the form α1 (. . . (αn(s(st)). . .) as [α1 . . .αn], so that the type of a sentence
now becomes [] (a box!), the type of a common noun [π] and so on.

expr. categories type translation
an (s/(n\s))/cn [[π][π]] λPλP ′([un |];P ′(un);P (un))

((s/n)\s)/cn
non (s/(n\s))/cn [[π][π]] λPλP ′[| not([un |];P ′(un);P (un))]

((s/n)\s)/cn
everyn (s/(n\s))/cn [[π][π]] λPλP ′[| ([un |];P ′(un))⇒ P (un)]

((s/n)\s)/cn
Maryn s/(n\s) [[π]] λP([un | un is mary] ; P(un))

(s/n)\s
hen s/(n\s) [[π]] λP(P(un))
himn (s/n)\s [[π]] λP(P(un))
who (cn\cn)/(n\s) [[π][π]π] λP ′λPλv(P(v) ; P ′(v))
man cn [π] λv [| man v]
stinks n\s [π] λv [| stinks v]
adores (n\s)/n [ππ] λv ′λv [| v adores v ′]
if (s/s)/s [[][]] λpq [| p ⇒ q]
. s\(txt/s)

txt\(txt/s)
[[][]] λpq(p ; q)

and s\(s/s) [[][]] λpq(p ; q)
or s\(s/s) [[][]] λpq [| p or q]

Table 1: The Lexicon

In Table 1 the lexicon for a limited fragment of English is given. The sen-
tences in this fragment are indexed as in Barwise [1987]: possible antecedents
with superscripts, anaphors with subscripts. The second column assigns one
or two categories to each word in the first column, the third column lists
the types that correspond to these categories according to the function type
and the last column gives each word a translation of this type. Here P is a
variable of type [π], p and q are variables of type [], and v is a variable of

9

type π.
Let us see how this immediately provides us with a semantics. We have

seen before that our Lambek analysis of (1) provides us with a semantic
recipe that is reprinted as (2) below. If we substitute the translation of a1,
λP ′λP([u1 |] ; P ′(u1) ; P(u1)) for D in the succedent of (2) and substitute
λv [| man v] for P, we get a lambda term that after a few conversions reduces
to (3). This can be reduced somewhat further, for now the merging lemma
applies, and we get (4). Proceeding further in this way, we obtain (5), the
desired translation of (1).

(1) A1 man adores a2 woman

(2) D,P,R,D ′,P ′` D(P)(λv.D ′(P ′)(λv ′.R(v ′)(v)))

(3) [u1 |] ; [| man u1] ; D ′(P ′)(λv ′.R(v ′)(u1))

(4) [u1 | man u1] ; D ′(P ′)(λv ′.R(v ′)(u1))

(5) [u1 u2 | man u1 , woman u2 , u1 adores u2]

(6) Every1 man adores a2 woman

(7) [| [u1 | man u1] ⇒ [u2 | woman u2 , u1 adores u2]]

(8) D,P,R,D ′,P ′` D ′(P ′)(λv ′.D(P)(λv.R(v ′)(v)))

(9) [u2 | woman u2 , [u1 | man u1] ⇒ [| u1 adores u2]]

(10) A1 man adores a2 woman. She2 abhors him1

(11) [u1 u2 | man u1 , woman u2 , u1 adores u2 , u2 abhors u1]

(12) If a1 man bores a2 woman she2 ignores him1

(13) [| [u1 u2 | man u1 , woman u2 , u1 bores u2] ⇒ [| u2 ignores u1]]

10

The same semantical recipe can be used to obtain a translation for sentence
(6), we find it in (7). But (1) and (6) have alternative derivations in the
Lambek calculus too. Some of these lead to semantical recipes equivalent to
(2), but others lead to recipes that are equivalent to (8) (for more explana-
tion consult Hendriks [1993]). If we apply this recipe to the translations of
the words in (6), we obtain (9), the interpretation of the sentence in which
a2 woman has a wide scope specific reading and is available for anaphoric
reference from positions later in the text.

I leave it to the reader to verify that the little text in (10) translates
as (11) by the same method (note that the stop separating the first and
second sentences is lexicalised as an item of category s\(txt/s)), and that
(12) translates as (13). A reader who has worked himself through one or two
of these examples will be happy to learn from Moortgat [1988] that there are
relatively fast Prolog programs that automatically find all semantic recipes
for a given sentence.

6 From Boxes to Truth Conditions

We now have a way to provide the expressions of our fragment automatically
with Discourse Representation Structures which denote relations between
states, but of course we are also interested in the truth conditions of a given
text. These we equate with the domain of the relation that is denoted by its
box translation (as is done in Groenendijk & Stokhof [1991]).

Theoretically, if we are in the possession of a box Φ, we also have its truth
conditions, since these are denoted by the first-order term λi∃j (Φ(i)(j)), but
in practice, reducing the last term to some manageable first-order term may
be a less than trivial task. Therefore we define an algorithmic function that
can do the job for us. The function given will in fact be a slight extension of
a similar function defined in Kamp & Reyle [1993].

First some technicalities. Define adr(Φ), the set of active discourse ref-
erents of a box Φ, by adr([~u | ~γ]) = {~u} and adr(Φ ; Ψ) = adr(Φ) ∪ adr(Ψ).
Let us define [t/u]Γ, the substitution of the type e term t for the discourse
referent u in the construct of the box language Γ, by letting [t/u]u = t and
[t/u]u ′ = u ′ if u ′ 6= u; for type e terms t ′ we let [t/u]t ′ = t ′. For complex
constructs [t/u]Γ is defined as follows.

11

[t/u]Pτ = P [t/u]τ
[t/u]τ 1Rτ 2 = [t/u]τ 1R[t/u]τ 2
[t/u](τ 1 is τ 2) = [t/u]τ 1 is [t/u]τ 2
[t/u]not Φ = not [t/u]Φ
[t/u](Φ or Ψ) = [t/u]Φ or [t/u]Ψ
[t/u](Φ ⇒ Ψ) = [t/u]Φ ⇒ [t/u]Ψ if u /∈ adr(Φ)
[t/u](Φ ⇒ Ψ) = [t/u]Φ ⇒ Ψ if u ∈ adr(Φ)
[t/u][~u | γ1, . . . , γm] = [~u | [t/u]γ1, . . . , [t/u]γm] if u /∈ {~u}
[t/u][~u | γ1, . . . , γm] = [~u | γ1, . . . , γm] if u ∈ {~u}
[t/u](Φ; Ψ) = [t/u]Φ; [t/u]Ψ if u /∈ adr(Φ)
[t/u](Φ; Ψ) = [t/u]Φ; Ψ if u ∈ adr(Φ)

The next definition gives our translation function † from boxes and condi-
tions to first-order formulae. The variable x that is appearing in the sixth
and eighth clauses is supposed to be fresh in both cases, i.e. it is defined to
be the first variable in some fixed ordering that does not occur (at all) in
Φ or in Ψ. Note that the sequencing operation ; is associative: Φ; (Ψ; Ξ) is
equivalent with (Φ; Ψ); Ξ for all Φ, Ψ and Ξ. This means that we may assume
that all boxes are either of the form [~u | ~γ]; Φ or of the form [~u | ~γ]. We shall
use the form [~u | ~γ]; Φ to cover both cases, thus allowing the possibility that
Φ is empty. If Φ is empty, Φ ⇒ Ψ denotes Ψ.

(Pτ)† = P(τ)†

(τ 1Rτ 2)† = R(τ 1)†(τ 2)†

(τ 1 is τ 2)† = (τ 1)† = (τ 2)†

(not Φ)† = ¬(Φ)†

(Φ or Ψ)† = Φ† ∨ Ψ†

(([u~u | ~γ]; Φ)⇒ Ψ)† = ∀x([x/u](([~u | ~γ]; Φ)⇒ Ψ))†

(([| γ1, . . . , γm]; Φ)⇒ Ψ)† = (γ†1 ∧ . . . ∧ γ†m)→ (Φ⇒ Ψ)†

([u~u | ~γ]; Φ)† = ∃x([x/u]([~u | ~γ]; Φ))†

([| γ1, . . . , γm]; Φ)† = γ†1 ∧ . . . ∧ γ†m ∧ Φ†

By way of example, the reader may verify that the function † sends (14) to
(15).

(14) [| [u1 u2 | man u1 , woman u2 , u1 bores u2] ⇒ [| u2 ignores u1]]

(15) ∀x 1x 2 ((man(x 1) ∧ woman(x 2) ∧ bores(x 1)(x 2)) → ignores(x 2)(x 1))

It is clear that the function † is algorithmic: at each stage in the reduction of
a box or condition it is determined what step should be taken. The following

12

theorem, which has a surprisingly tedious proof, says that the function does
what it is intended to do.

Theorem. For all conditions γ and boxes Φ:

|=AX λiΦ† = λi∃j(Φ(i)(j))
|=AX λiγ† = γ

References

[1] Andrews, P.B.: 1986, An Introduction to Mathematical Logic and Type
Theory: to Truth through Proof, Academic Press, Orlando, Florida.

[2] Barwise, J.: 1987, Noun Phrases, Generalized Quantifiers and
Anaphora, in P. Grdenfors (ed.), Generalized Quantifiers, Reidel, Dor-
drecht, 1-29.

[3] Van Benthem, J.F.A.K.: 1986, Essays in Logical Semantics, Reidel,
Dordrecht.

[4] Van Benthem, J.F.A.K.: 1988, The Lambek Calculus, in: R.E. Oehrle,
E. Bach and D. Wheeler (eds.), 1988, Categorial Grammars and Natural
Language Structures, Reidel, Dordrecht.

[5] Van Benthem, J.F.A.K.: 1991, Language in Action, North-Holland, Am-
sterdam.

[6] Church, A.: 1940, A Formulation of the Simple Theory of Types, The
Journal of Symbolic Logic 5, 56-68.

[7] Gallin, D.: 1975, Intensional and Higher-Order Modal Logic, North-
Holland, Amsterdam.

[8] Groenendijk, J. and Stokhof, M.: 1990, Dynamic Montague Grammar,
in L. Klmn and L. Plos (eds.), Papers from the Second Symposium on
Logic and Language, Akadmiai Kiad, Budapest, 3-48.

[9] Groenendijk, J. and Stokhof, M.: 1991, Dynamic Predicate Logic, Lin-
guistics and Philosophy 14, 39-100.

13

[10] Heim, I.: 1982, The Semantics of Definite and Indefinite Noun Phrases,
Dissertation, University of Massachusetts, Amherst. Published in 1989
by Garland, New York.

[11] Heim, I.: 1983, File Change Semantics and the Familiarity Theory of
Definiteness, in R. Buerle, Ch. Schwarze and A. von Stechow (eds.),
Meaning, Use and Interpretation of Language, De Gruyter, Berlin, 164-
189.

[12] Hendriks, H.: 1993, Studied Flexibility, ILLC Dissertation Series, ILLC,
University of Amsterdam.

[13] Janssen, T.: 1983, Foundations and Applications of Montague Gram-
mar, Dissertation, University of Amsterdam. Published in 1986 by CWI,
Amsterdam.

[14] Kamp, H.: 1981, A Theory of Truth and Semantic Representation, in
J. Groenendijk, Th. Janssen, and M. Stokhof (eds.), Formal Methods
in the Study of Language, Part I, Mathematisch Centrum, Amsterdam,
277-322.

[15] Kamp, H. and Reyle, U.: 1993, From Discourse to Logic, Kluwer, Dor-
drecht.

[16] Lewis, D.: 1975, Adverbs of Quantification, in E. Keenan (ed.), Formal
Semantics of Natural Language, Cambridge University Press, 3-15.

[17] Montague, R.: 1973, The Proper Treatment of Quantification in Or-
dinary English, in R. Montague, Formal Philosophy, Yale University
Press, New Haven, 1974, 247-270.

[18] Moortgat, M.: 1988, Categorial Investigations, Foris, Dordrecht.

[19] Muskens, R.A.: forthcoming, A Compositional Discourse Representa-
tion Theory, to appear in the proceedings of the Ninth Amsterdam Col-
loquium.

[20] Rooth, M.: 1987, Noun Phrase Interpretation in Montague Grammar,
File Change Semantics, and Situation Semantics, in P. Grdenfors (ed.),
Generalized Quantifiers, Reidel, Dordrecht, 237-268.

14

[21] Zeevat, H.: 1989, A Compositional Approach to Discourse Representa-
tion Theory, Linguistics and Philosophy 12, 95-131.

15

