
Order-independence and Underspecification∗

Reinhard Muskens

1 Two Desiderata: Order-independence and Underspecifica-

tion

In standard Montague Semantics we find a very close correspondence be-
tween syntactic and semantic rules (the ‘Rule-to-Rule Hypothesis’). This is
attractive from a processing point of view, as we like to think of syntactic
and semantic processing as being done in tandem, with information flow-
ing in both directions, from parsing to interpretation and vice versa. The
parsing procedure erects the necessary scaffolding for interpretation, while
semantics (and via semantics context and world knowledge) ideally rules out
wrong parses at an early stage.

Montague Semantics, however, also favours a strictly bottom up semantic
processing architecture. The principle of Compositionality, which says that
the meaning of a mother node is to be computed from the meanings of her
daughters, seems to enforce such a bottom up procedure. Since we know that
parsing algorithms that make use of top down predictions are often much
more efficient than those that do not, and since we do not therefore expect
human syntactic processing to be strictly bottom up, there is a dilemma. On
the one hand, we want interpretation to be order-independent: it should not
be decided a priori whether we assign meanings in a top-down, a bottom-
up, or any other fashion. On the other hand, the building block picture of
meaning that the principle of Compositionality has to offer is attractive too,
if it were only because it explains why language users seem to be able to
construct unlimited numbers of meanings from the finite set they find in the
lexicon.

∗From: Hans Kamp and Barbara Partee, editors, Context-Dependence in the Analysis

of Linguistic Meaning, Elsevier, 2004. This paper was presented at the Prague meeting of
the 1995 Prague-Teinach Workshop. For some of my more recent views on the description
theory of meaning that is introduced here see Muskens [2001] and Van Leusen and Muskens
[2003].

1

A second desirable constraint on processing meanings has to do with the
many readings that semantic theories normally assign to any given syntac-
tic input and the combinatorial explosion resulting from this multitude of
analyses. As the average sentence will naturally contain at least some scope
bearing elements, the number of readings of even a short text may well run
into the thousands. Poesio [1994], inspired by Lincoln’s saying no doubt,
gives the example in (1). Since the two conjuncts of this sentence count five
scope bearing elements each, there will be 5!*5! = 14400 permutations of
these elements that respect the constraint that conjunctions are scope is-
lands. Not all of these permutations lead to semantically different readings,
but the number of readings that are predicted is still immense.

(1) A politician can fool most voters on most issues most of the time, but
no politician can fool all voters on every single issue all of the time.

As most texts do not seem to offer insuperable processing difficulties to their
readers, it seems improbable that we process sentences by first generating
all of their readings and then testing them. Many authors (e.g. Schubert &
Pelletier [1982], Alshawi [1992], Reyle [1992], Poesio [1994], Pulman [1994],
Cooper et al. [1994], Cooper et al. [1995]) therefore have advocated an
approach in which scope ambiguities are not immediately resolved but are
allowed to exist for some time. This requires a level of underspecified repre-

sentations. We do not want a representation for each of the multitudinous
different scoping possibilities of a given text, but want a single efficient
representation for them all. During the parsing process and afterwards,
contextual information may narrow down the range of possible scopings of a
text; but as long as this process of narrowing down the range of possibilities
has not resulted in a unique reading of the text, its semantic representation
must be underspecified.

In this paper I shall give a set of simple LFG-like annotated phrase struc-
ture rules which connect underspecified representations with other compo-
nents of the grammar. The rules may be traversed in any order. The under-
specified representations will be much like the UDRSs of Reyle [1992], but
will formally consist of two parts: (a) a set of equations in ordinary classical
type logic with abbreviations that emulate the language of Discourse Rep-
resentation Theory, and (b) a set of descriptions in the first-order language
of trees. Both parts will be generated by the grammar in a relatively inde-
pendent way. The first part will give us building blocks of ‘open’ Discourse
Representation Structures. The second part will summarise all possible ways
in which these building blocks may be combined into an ordinary DRS.

2

2 Continuous Interpretation in Montague Semantics

In the previous section we have formulated the constraint that the interpre-
tation process should be order-independent. But in fact we may generalise
this constraint somewhat and demand that the association of semantic rep-
resentations with syntactic entities be continuous. By this we mean the
following. Consider the tree in (2).

(2) S

NP

Det

every

N

boy

VP

V

adores

NP

Det

a

N

girl

This tree can be thought of as the union of the set of all its local subtrees:

S

NP VP

, NP

Det N

, VP

V NP

, Det

every

, etc.

Now supposing that we can find independent interpretations for the local
subtrees of (2), the Continuity Principle says that the interpretation of (2)
itself should simply be the set-theoretic union of those interpretations. The
general formulation is as follows:

Principle of Semantic Continuity The interpretation of the union of a
set of trees is the union of the interpretations of its elements.

Note that if this principle can be adopted, it will immediately ensure that
interpretation can be done order-independently. It will also follow that
interpretation is monotonic, in the sense that the interpretation of a tree
will include the interpretation of any of its subtrees. The principle will
moreover allow interpretations to be partial in the following sense. Suppose
you hear a sentence uttered, but for some reason miss one or more of the
words. For instance, suppose that what you actually hear is Every boy

xxxxxx a girl. Then obviously it will not be possible to interpret the complete
utterance. On the other hand, equally obviously, people do assign meanings
to what they hear even if they miss some part of it. Supposing that you have
managed to assign the incomplete tree (3) to the utterance, the principle of

3

Continuity will now guarantee that you find some meaning for it, namely
the union of the interpretations of all local subtrees of (3).

(3) S

NP

Det

every

N

boy

VP

V NP

Det

a

N

girl

In (4) below we have given a description of the tree that is shown in (2).
The symbols s1, np2, vp3, etc. are constants referring to nodes. The symbol
✁ denotes the relation of immediate dominance, and we write a✁ b, c as an
abbreviation of a✁b∧a✁c∧b ≺ c, where ≺ denotes the left-of relation. The
function denoted by cat assigns a category label to each node and lex assigns
lexical items to the leaves of a tree. There are of course many trees which
satisfy the constraints in (4), but given some reasonable general assumptions
about trees (see Backofen et al. 1995 for a first-order axiomatization) the
one in (2) is the unique minimal tree satisfying the constraints here.

(4) s1 ✁ np2, vp3 cat(s1) = S
np2 ✁ det4, n5 cat(np2) = NP
vp3 ✁ v6, np7 cat(vp3) = VP
np7 ✁ det8, n9 cat(det4) = Det
lex(det4) = every cat(n5) = N
lex(n5) = boy cat(v6) = V
lex(v6) = adores cat(np7) = NP
lex(det8) = a cat(det8) = Det
lex(n9) = girl cat(n9) = N

We can now interpret (2) in the following way. With each node ni we
associate a variable of type logic xi and we interpret each local subtree with
an equation in type logic of the form x = A, where x is a variable and A is a
term, as in (5) below. The type of a variable follows from its typography: p
stands for propositions (type t), P for properties (type et), Q for quantifiers
(type (et)t), D for type (et)((et)t), V for type ((et)t)(et), and x and y for
type e.

The interpretation of the entire tree will now simply be the collection
of all equations in the second column of (5). It is clear that this system of

4

equations entails that p1 = ∀x (boy(x) → ∃y (girl(y) ∧ adores(x)(y)), but all
other indexed variables are likewise equated with a closed term and there are
intermediate results as well. Obviously, this way of interpreting conforms to
the principle of Continuity and so is order-independent and monotonic. But
the principle of Compositionality is respected as well; in fact it is embodied
in the first four equations in the second column of (5).

(5) s1 ✁ np2, vp3 p1 = Q2(P3)
np2 ✁ det4, n5 Q2 = D4(P5)
vp3 ✁ v6, np7 P3 = V6(Q7)
np7 ✁ det8, n9 Q7 = D8(P9)
lex(det4) = every D4 = λP ′λP∀x(P ′(x) → P (x))
lex(n5) = boy P5 = boy

lex(v6) = adores V6 = λQλy.Q(λx.adores(x)(y))
lex(det8) = a D8 = λP ′λP∃x(P ′(x) ∧ P (x))
lex(n9) = girl P9 = girl

The interpretation procedure given above is inspired by the way in which
f-structures are obtained in Lexical Functional Grammar. Each syntactic
rule in LFG comes with functional annotations that give rise to a set of
equations constraining f-structure. For example the rule

S → NP VP
↑subj = ↓ ↑ = ↓

gives rise to the equations subj(x1) = x2 and x1 = x3 saying that the
subject attribute of the feature x1 corresponding with S has the feature x2
corresponding with the NP as its value and that the features corresponding
with S and VP are the same. Lexical items carry similar equations. Thus we
can decorate each entry in (4) with a set of feature equations, as it is done in
(6) (we suppress category information). The resulting system of equations
for the entire c-structure (the f-description) describes the f-structure given
in (7). The latter, an alternative notation for a certain graph, is the minimal
solution of the system of equations in the right column of (6).

5

(6) s1 ✁ np2, vp3 subj(x1) = x2, x1 = x3
np2 ✁ det4, n5 x2 = x4 = x5
vp3 ✁ v6, np7 obj(x3) = x7, x3 = x6
np7 ✁ det8, n9 x7 = x8 = x9
lex(det4) = every pred(spec(x4)) = “every”, num(x4) = sg
lex(n5) = boy pred(x5) = “boy”, num(x5) = sg
lex(v6) = adores pred(x6) = “adore”, subj(pred(x6)) = subj(x6)

obj(pred(x6)) = obj(x6), tense(x6) = pres
num(subj(x6)) = sg

lex(det8) = a pred(spec(x8)) = “a”, num(x8) = sg
lex(n9) = girl pred(x9) = “girl”, num(x9) = sg

(7)

x1

pred “adores〈(↑ subj), (↑ obj)〉”
tense pres

subj x2

spec

[

pred “every”
]

pred “boy”
num sg

obj x7

spec

[

pred “a”
]

pred “girl”
num sg

But the continuous interpretation procedure as illustrated in (5) suffers from
a fundamental handicap: it does not seem possible to handle semantic rules
that involve variable binding. In particular, although the method allows
us to treat all rules of functional application in Montague’s system, it will
not allow us to treat his quantification rules. Consider the Analysis Tree /
Logical Form given in (8). We would like the local subtree

S

NP3 S

to have its own interpretation, a semantic equation as in (5). But under
the usual assumptions there is no way to assign it such an equation with
the result that the free variable x3 corresponding to the trace e3 gets bound
in the solution of the final system of semantic equations. For example, the
equation p1 = Q(λx3.p2) (where Q is the variable corresponding to the NP
and p1 and p2 are variables corresponding to the mother and daughter Ss
respectively) will obviously not do. The other equations will enable us to
derive that p2 = adores(x3)(x7), but a general condition on substitution
(adores(x3)(x7) is not free for p2 in p1 = Q(λx3.p2)) prohibits the deduction
we would like to make.

6

(8) S

NP7

Det

a

N

girl

S

NP3

Det

every

N

boy

S

e3 VP

V

adores

e7

It turns out, however, that the difficulty sketched here need not arise in the
dynamic system of Compositional DRT (CDRT), defined in Muskens [1991,
1994, 1996] (for similar systems see Asher & Wada [1989], Groenendijk &
Stokhof [1990], Asher [1993], Bos et al. [1994] and Van Eijck & Kamp
[1997]), which is a synthesis between Montague Semantics and DRT. The
reason is essentially that CDRT is based on a logic (standard type logic)
in which a copy of the variable binding mechanism is internalised. This
internalisation will allow us to circumvent the present difficulty. In the next
section I shall explain how the internalisation is brought about and how
CDRT works.

3 Internalising the Binding Mechanism: Compositional DRT

The mathematics underlying CDRT can be explained in two pages. The
logic that will be used to internalise binding will be the ordinary three-
sorted type logic TY3. Apart from the sort of entities (type e) and the
two truth values (type t), we shall also allow for what I would like to call
pigeon-holes or registers (type π) and for states (type s). Registers, which
are the things that stand proxy for variables and constants, may be thought
of as small chunks of space that can contain exactly one object (the value of
the variable or constant). States may be thought of as a list of the current
inhabitants of all registers. States are very much like the program states that
theoretical computer scientists talk about, which are lists of the current
values of all variables in a given program at some stage of its execution.
Since some registers stand proxy for variables and some for constants, we
must distinguish them and we shall have predicates VAR and CON of type
π to do so. We shall typically use (subsripted) δ to range over variables
and constants of type π; v is a variable of type π; constants u and w (with
the exception of w0) denote registers that model variables; the constant

7

w0, but also constants like John, Mary or Sue, denote registers that stand
proxy for constants. Constants u and w denoting variable registers are also
called unspecific (discourse) referents, constants denoting constant registers
specific (discourse) referents.

In order to be able to impose the necessary structure on our models, we
shall let V be some fixed non-logical constant of type π(se) and denote the
inhabitant of register δ in state i with the type e term V (δ)(i). We define
i[δ1 . . . δn]j to be short for

∀v((δ1 6= v ∧ . . . ∧ δn 6= v) → V (v)(i) = V (v)(j)) ,

a term which expresses that states i and j differ at most in δ1, . . . , δn; i[]j
will stand for the formula ∀v (V (v)(i) = V (v)(j)). We impose the following
axioms.

AX1 ∀i∀v∀x(VAR(v) → ∃j(i[v]j ∧ V (v)(j) = x))

AX2 ∀i∀j∀v(CON(v) → V (v)(i) = V (v)(j))

AX3 VAR(δ), where δ is an unspecific referent

AX4 CON(δ), where δ is a specific referent

AX5 un 6= um, for each two different unspecific referents un and um

AX1 requires that for each state, each variable register and each object, there
must be a second state that is just like the first one, except that the given ob-
ject is an occupant of the given register (this is the ‘Having Enough States’
axiom from Dynamic Logic, but also the ‘Update Axiom’ from Janssen’s
Dynamic Intensional Logic). AX2 says that constant registers have con-
stant values, AX3 and AX4 allow us to make a typographical distinction
between constants denoting constant registers and constants denoting vari-
able registers, and AX5 makes sure that different unspecific referents refer
to different registers, so that an update on one discourse referent will not
result in a change in some other discourse referent’s value.

This takes care of the internalisation of the binding mechanism. We now
come to the emulation of the DRT language in type logic. Let us agree to
write

Rδ1 . . . δn for λi.R(V (δ1)(i) . . . V (δn)(i)) ,

δ1 is δ2 for λi.V (δ1)(i) = V (δ2)(i) ,

8

if R is a term of type ent and the δs are constants or variables of type π.
This gives us our basic conditions of the DRT language as terms of type st.
In order to have complex conditions and boxes as well, we shall write

notK for λi¬∃j K(i)(j) ,

K or K ′ for λi∃j (K(i)(j) ∨K ′(i)(j)) ,

K ⇒ K ′ for λi∀j (K(i)(j) → ∃kK ′(j)(k)) ,

[δ1 . . . δn | γ1, . . . , γm] for λiλj (i[δ1, . . . , δn]j ∧ γ1(j) ∧ . . . ∧ γm(j)) ,

K ; K ′ for λiλj∃k (K(i)(k) ∧K ′(k)(j)) .

Here K and K ′ stand for any term of type s(st), which shall be the type
we associate with boxes, and the γs stand for conditions, terms of type st.
[δ1 . . . δn | γ1, . . . , γm] will be our linear notation for standard DRT boxes
and the last clause embodies an addition to the standard DRT language:
in order to be able to give compositional translations to natural language
expressions and texts, we borrow the sequencing operator ‘;’ from the usual
imperative programming languages and stipulate that a sequence of boxes
is again a box. The following useful lemma is easily seen to hold.

Merging Lemma. If ~u′ do not occur in any of ~γ then
|=AX [~u | ~γ] ; [~u′ | ~γ′] = [~u~u′ | ~γ~γ′]

The present emulation of DRT in type logic should be compared with the
semantics for DRT given in Groenendijk & Stokhof [1991]. While Groe-
nendijk & Stokhof give a Tarski definition for DRT in terms of set theory
and thus interpret the object DRT language in a metalanguage, the clauses
given above are simply abbreviations on the object level of standard type
logic. Apart from this difference, the clauses given above and the clauses
given by Groenendijk & Stokhof are much the same.

4 Continuous Interpretation of Logical Forms

An important advantage of our emulation of DRT in type logic is that we
can now combine the niceties of Montague Semantics with those of Dis-
course Representation Theory. Most importantly, we can now combine the
Montagovian way of composing meanings with the treatment of binding in
DRT on the basis of a well-understood and transparant logic. In the trans-
lations for a limited set of words given in the table below the constructs
of our extended version of DRT are in free combination with lambdas and

9

application. We abbreviate any type of the form α1(. . . (αn(s(st)) . . .) as
[α1 . . . αn]. Variables p and q are of type [], variable P is of type [π], and
variables v and v′ are of type π. Note that all translations are closed terms.

EXPRESSION TRANSLATION TYPE
a λPλvλp ([v |] ; P (v) ; p) [[π]π[]]
every λPλvλp [| ([v |] ; P (v)) ⇒ p] [[π]π[]]
boy λv[| boy v] [π]
girl λv[| girl v] [π]
adores λv′λv [| adores vv′] [ππ]

Let us see how we can use the present system to give a continuous interpre-
tation of a Logical Form which involves some quantification (a monostratal
approach will follow in section 6). An example tree is given in (9) below,
with its description in the first column of (10). In the third column of (10)
each local subtree is paired with a semantic equation, as it was done before.
The rules for obtaining semantic equations from local subtrees are as follows.
(Variables D are of type [[π]π[]], variables Q of type [π[]], variables R of
type [ππ].)

I Each lexicalised terminal node nk is paired with an equation xk = A

where A is the translation of the lexical element as in the table above.
Each trace ek with index i is paired with an equation vk = ui.

II Each local subtree described by sk✁npl, sm such that npl is indexed by
i is paired with an equation pk = Ql(ui)(pm). All other local subtrees
are interpreted by means of function application.

(9) S

NP2

Det

a

N

girl

S

NP1

Det

every

N

boy

S

e1 VP

V

adores

e2

10

(10) s1 ✁ np2, s3 index(np2) = 2 p1 = Q2(u2)(p3)
s3 ✁ np6, s7 index(np6) = 1 p3 = Q6(u1)(p7)
np2 ✁ det4, n5 Q2 = D4(P5)
np6 ✁ det8, n9 Q6 = D8(P9)
s7 ✁ e10, vp

11
p7 = P11(v10)

vp11 ✁ v12, e13 P11 = R12(v13)
index(e10) = 1 v10 = u1

index(e13) = 2 v13 = u2

lex(det4) = a D4 = λPλvλp ([v |] ; P (v) ; p)
lex(n5) = girl P5 = λv[| girl v]
lex(det8) = every D8 = λPλvλp [| ([v |] ; P (v)) ⇒ p]
lex(n9) = boy P9 = λv[| boy v]
lex(v12) = adores R12 = λv′λv [| adores vv′]

The reader may verify that the only variables which occur free in the system
of equations in the third column of (10) are the subscripted ones and these
are nowhere abstracted over. So we can substitute equals by equals without
any restriction. Doing this we find that p7 = [| adores u1u2] is derivable,
for example, but also that p1 = [u2 |] ; [| girl u2] ; p3. The latter can
be reduced somewhat further with the help of the Merging Lemma, which
allows us to obtain p1 = [u2 | girl u2] ; p3. In a similar way we get p1 = [|
[u1 | boy u1] ⇒ p7]. The equation corresponding to the top node of the tree
hence is

p1 = [u2 | girl u2, [u1 | boy u1] ⇒ [| adores u1u2]] .

As a second example we may consider the tree in (11). For its description
and the system of equations interpreting it, replace the first two rows in (10)
by those in (12) (s3 will now be the maximal S node).

(11) S

NP1

Det

every

N

boy

S

NP2

Det

a

N

girl

S

e1 VP

V

adores

e2

(12) s3 ✁ np6, s1 index(np6) = 1 p3 = Q6(u1)(p1)
s1 ✁ np2, s7 index(np2) = 2 p1 = Q2(u2)(p7)

11

The interpretation of (11) is thus summed up by the equations

p3 = [| [u1 | boy u1] ⇒ p1]
p1 = [u2 | girl u2] ; p7
p7 = [| adores u1u2]

From which it is easily derived that

p3 = [| [u1 | boy u1] ⇒ [u2 | girl u2, adores u1u2]]

5 Ambiguous Logical Forms

Let us look again at our two Logical Forms in (9) and (11). They were
described by two sets of formulas. In particular (9) was described by

s1 ✁ np2, s3 s3 ✁ np6, s7

plus some other formulas, while (11) was described by

s3 ✁ np6, s1 s1 ✁ np2, s7

plus the same set of other formulas. The relation between the given sets of
formulas and the trees is that between a logical theory (set of sentences) and
its minimal models. Now if we want to have a representation for both trees
at the same time, we must find a theory that has exactly these two trees as
its minimal models. Such a theory will be hard to find if we confine ourselves
to the language we have been using thus far (unless of course we resort to
using disjunctions), but if we take an idea from Marcus et al. [1983] (see
also Vijay-Shanker [1992]) and allow the language to talk not only about
the relation of immediate dominance but also about its reflexive transitive
closure (dominance), it can be straightforwardly done. In the following set
of sentences the symbol ✁∗ denotes dominance.

smax ✁
∗ s1 s1 ✁ np2, s′ s′ ✁ ∗s7

smax ✁
∗ s3 s3 ✁ np6, s′′ s′′ ✁ ∗s7

Assuming that np2 and np6 cannot denote the same object (as they carry
different indices this will be ruled out automatically), there are two minimal
models of this theory that conform to the general axioms for binary branch-
ing trees, one in which smax = s1, s

′ = s3 and s′′ = s7, and another in which
smax = s3 , s

′′ = s1 and s′ = s7. Essentially, these two minimal models are

12

(9) and (11). In (13) we find a complete underspecified representation for
these two logical forms. The third column again gives a system of equations
for the Ambiguous Logical Form, as we shall baptise the description in the
first and second columns. Clearly, the interpretation can only be a partial
one this time, as there are no obvious semantical analogues to the relation
of dominance.

(13) smax ✁
∗ s1

smax ✁
∗ s3

s′ ✁ ∗s7
s′′ ✁ ∗s7
s1 ✁ np2, s′ index(np2) = 2 p1 = Q2(u2)(p

′)
s3 ✁ np6, s′′ index(np6) = 1 p3 = Q6(u1)(p

′′)
np2 ✁ det4, n5 Q2 = D4(P5)
np

6
✁ det8, n9 Q6 = D8(P9)

s7 ✁ e10, vp11 p7 = P11(v10)
vp11 ✁ v12, e13 P11 = R12(v13)
index(e10) = 1 v10 = u1

index(e13) = 2 v13 = u2

lex(det4) = a D4 = λPλvλp ([v |] ; P (v) ; p)
lex(n5) = girl P5 = λv[| girl v]
lex(det8) = every D8 = λPλvλp [| ([v |] ; P (v)) ⇒ p]
lex(n9) = boy P9 = λv[| boy v]
lex(v12) = adores R12 = λv′λv [| adores vv′]

Unwieldy representations such as the one in (13) are to be avoided of course
and the characteristics of this Ambiguous Logical Form can be conveniently
summed up in the quasi-tree (the term is Vijay-Shanker’s) in (14). Here
dashed lines stand for dominance. It should be kept in mind that Ambiguous
Logical Forms such as the one in (14) are not trees themselves but stand for
descriptions of sets of trees.

13

(14) S

S

NP1

Det

every

N

boy

S

S

NP2

Det

a

N

girl

S

S

e1 VP

V

adores

e2

Let us take stock. The interpretation part of (13) is again best summed
up by a reduced system of equations as in the second column of (15). The
relevant part of the description of the immediate dominance relation is given
in the first column.

(15) smax ✁
∗ s1 p3 = [| [u1 | boy u1] ⇒ p′′]

smax ✁
∗ s3 p1 = [u2 | girl u2] ; p

′

s′ ✁ ∗s7 p7 = [| adores u1u2]
s′′ ✁ ∗s7
s1 ✁ s′

s3 ✁ s′′

Clearly, by a route different from the one taken in Reyle [1992], we have ar-
rived at an example of an Underspecified Discourse Representation Structure

(UDRS). It seems that Reyle’s UDRSs naturally emerge from a continuous
interpretation of Ambiguous Logical Forms. Note, however, that our UDRSs
essentially are expressions in a syntactically sugared classical logic plus some
information about admissable substitutions of one expression for another.

There are many ways to monotonically add information to (13) so that
it admits of only one tree as a minimal model. The addition of smax = s1,
for example, will do. On the basis of (13), this sentence, minimality, and
general assumptions about trees, it can be inferred that s′ = s3 and s′′ = s7.
Assuming that the latter identities correspond to the identities p′ = p3 and
p′′ = p7, the reading where every boy gets wide scope will be obtained.

14

6 A Grammar Yielding Underspecified Representations

In the previous section we have presented Ambiguous Logical Forms as cer-
tain zero order descriptions (sets of literals, to be precise) such that more
than one Logical Form could possibly be a minimal tree model of such a
description. The question now is how to generate such descriptions. Ob-
viously, it will not do to generate a set of Logical Forms first and then
somehow extract the strongest description such that all trees in the set sat-
isfy that, as our desire not to have to generate all possible readings of a text
was our motivation for considering Ambiguous Logical Forms in the first
place. Instead, we shall give a toy grammar which is meant to illustrate
how our variants of Underspecified Discourse Representation Structures can
be generated directly.

The annotated phrase structure grammar, which is given in Table 1,
is not unlike the grammars that are employed in LFG. The idea is that
the grammar not only generates c-structures and f-structures via sets of
c-descriptions and f-descriptions, but that it also simultaneously generates
the semantic equations (s-descriptions) we have met before and a set of l-
descriptions which partly determine scoping possibilities. In Table 1 we do
not show how f-descriptions are being generated, as this is a familiar process.
The l-descriptions will not be unlike the sentences in the first column of (15)
and thus say something about the Logical Form of the expression, while c-
structure is just surface structure. The elements of an l-structure are called
labels.

We shall use the convention that each non-terminal in a rewrite rule
corresponds to a constant in the set of l-descriptions and to a variable in
the set of s-descriptions. l#0 denotes the l-description constant correspond-
ing to the mother category, l#1 the constant corresponding to the leftmost
daughter, l#2 that corresponding to the second daughter, etc. Similarly, a
variable x#0 in the s-description corresponds to the mother node of the local
tree covered by the rule, x#1 to the leftmost daughter, etc. Rules may also
introduce constants and variables that do not directly correspond to nodes
in c-structure (e.g rule (7) introduces lk, lm, pk and pm). These must be
instantiated by fresh constants and variables. b is a function which sends a
label corresponding to a c-structure node to the label corresponding to the
nearest S node dominating that node in c-structure and in a similar fashion i

sends labels to the nearest dominating label that corresponds to a quantifier
scope island.

We assume that relative clauses and coordinations give rise to scope
islands, but that sentence complement constructions do not. The equation

15

PS Rules l-descriptions s-descriptions
(+ l-s correspondences)

(1) T → S l#1 = i(l#1) [w | w is w0] ; p#1

(2) T → T S l#0 ✁ l#1, l#0 ✁ l#2, p#0 = p#1 ; p#2

l#1 6= l#2, i(l#2) = l#2

(3) S → S′ l#0 ✁
∗ l#1, b(l#1) = l#0,

i(l#1) = i(l#0)
(4) S′ → NP′ VP l#1 = l#2 = l#0 p#0 = P#2(v#1)
(5) S′ → S′′ S l#0 ✁ l#1, l#0 ✁ l#2, p#0 = Z#1(p#2)

l#1 6= l#2, i(l#1) = l#1

i(l#2) = l#2

(6) S′′ → IMP S l#2 = l#0 Z#0 = C#1(p#2)
(7) VP → NEG VP′ b(l#0)✁

∗ lk ✁ lm ✁
∗ l#0, P#0 = P#2

i(l#0)✁
∗ lk, l#2 = l#0 pk = Z#1(pm)

(8) VP → VP′ l#1 = l#0 P#0 = P#1

(9) VP′ → Vdt NP′ NP′ l#2 = l#3 = l#0 P#0 = U#1(v#2)(v#3)
(10) VP′ → Vt NP′ l#2 = l#0 P#0 = R#1(v#2)
(11) VP′ → Vin P#0 = P#1

(12) VP′ → Vpa S l#0 ✁ l#2, i(l#2) = i(l#0) P#0 = Y#1(p#2)
(13) NP′ → NP i(l#0)✁

∗ l#1 = lk ✁ lm ✁
∗ l#0 pk = Q#1(un)(pm)

v#0 = un

(14) NP′ → PRO v#0 = v#1

(15) NP → DET N l#2 = l#0 Q#0 = D#1(P#2)
(16) N → N RC l#1 = l#2 = l#0 P#0 = X#1(P#2)
(17) RC → RPRO S l#0 ✁ l#2, i(l#2) = l#2 X#0 = V#1(p#2)
(18) X → X CONJ X l#0 ✁ l#1, l#0 ✁ l#3, x#0 = C#2(x#1)(x#3)

l#1 6= l#3, i(l#1) = l#1

i(l#3) = l#3

Table 1: Annotated Phrase Structure Rules

i(l#2) = l#2 in rule (16), for example, captures the fact that the S is a
scope island here, while the equation i(l#2) = i(l#0) in rule (12) merely says
that the next scope island dominating the S is the island dominating the
VP′. The grammar rules that really let things happen are (3), (7) and (13).
Rules (7) and (13) send scope bearing elements afloat, merely demanding
that the label corresponding to the nearest scope island (and in the case of
(7) also the label of the nearest S) must dominate the label of the scope
bearing element and that the latter dominates the label of the node where
it was generated. Rule (13) moreover generates a discourse referent that
interprets the NP′ (and thus functions as the semantic equivalent of a trace),
while this discourse referent is simultaneously used in the interpretation
of the quantifying expression. This obviates the need for coindexation of

16

quantifiers and their traces at the level of syntax. Rule (3) creates a possible
adjunction site where floating scope elements can land. It makes sure that
two labels correspond to what conventionally would have been one S node.
Of these labels the first need only dominate the second and the possibility
that scope bearing elements intervene is left open. (For this technique see
also Vijay-Shanker [1992].)

In Table 2 we have given a simple lexicon for the fragment. Since we
want to be able to deal with intensional constructions all basic relations are
now given an extra argument w, a discourse referent which always stands
for the current world of evaluation. The first rule of Table 1 makes sure
that this referent is set to the value of w0, the actual world, at the outset,
but later quantifications over worlds in intensional constructions may change
this value. In the translation for believe, for example, the current world is
temporarily stored in referent w′ while it is simultaneously required that
the value p of the embedded sentence will hold in all worlds w which are
doxastic alternatives for the subject v in w′ (Bvww′ says that w is a doxastic
alternative for v in w′). In the translation of the embedded sentence w will
again become the current world of evaluation.

We shall assume that some other part of the grammar will coindex rel-
ative pronouns and their ‘traces’ and let these indices play a role in the
translation of these elements. With respect to pronouns we follow a differ-
ent strategy: pronouns will not be indexed themselves, but addition of an
equation vk = ui, where vk corresponds to a node labelled PRO, will only
be allowed if (a) some equation p = A can be shown to hold on the basis of
equations that have already been generated and (b) ui can be shown to be
accessible from v in A on the basis of some accessibility calculus such as the
one in Muskens [1996].

17

category expression translation type
DET a λPλvλp ([v |] ; P (v) ; p) [[π]π[]]

no λPλvλp [| not([v |] ; P (v) ; p)] [[π]π[]]
every λPλvλp [| ([v |] ; P (v)) ⇒ p] [[π]π[]]

NP John λvλp ([v | v is John] ; P (v)) [π[]]
N girl λv[| girl vw] [π]
Vin stinks λv[| stinks vw] [π]
Vt adores λv′v[| adores vv′w] [ππ]
Vpa believes λpλv[w′ | w′ is w, [w | Bvww′] ⇒ p] [[]π]
RPRO whoi λpλPλv (P (v) ; [ui | v is ui] ; p) [[][π]π]
NP′ ei ui π

PRO she ui π

IMP if λpq [| p ⇒ q] [[][]]
NEG doesn’t λp [| not p] [[]]
CONJ and λpq (p ; q) [[][]]

or λpq [| p or q] [[][]]

Table 2: The Lexicon

(16) T,0

S,1

S′,2

NP′,3

NP,5

DET,6

every

N,7

boy

VP,4

VP′,8

Vt,9

adores

NP′,10

NP,11

DET,12

a

N,13

girl

As a simple example to see how the grammar works, we can have a look
at our every boy adores a girl sentence again. The grammar will obviously
assign the c-structure in (16) to the sentence. We have annotated each non-
terminal in this structure with a different number. This can be done in any
order. The grammar will connect l-descriptions and s-descriptions to the
local trees of this c-structure in the following way. The topmost local tree,
which has resulted from the T → S rule, will give us descriptions l1 = i(l1)
and p0 = [w | w is w0] ; p1. The application of S → S′ gives l1 ✁

∗ l2,

18

b(l2) = l1, and i(l2) = i(l1). Continuing in this way (a boring task best
left to a computer, once understood), we find the descriptions l3 = l4 = l2
and p2 = P4(v3) corresponding to the S′ → NP′ VP rule and see that the
descriptions i(l3) ✁

∗ l5 = l14 ✁ l15 ✁
∗ l3, p14 = Q5(u1)(p15) and v3 = u1

correspond to the leftmost local tree covered by the NP′ → NP rule. We
follow the tree top-down here, but it is clear that any alternative order will
give the same results.

In the end, after some very elementary reasoning, we see the following
familiar picture emerge: essentially the UDRS that was given in (15).

(17) l1 ✁
∗ l14 p0 = [w | w is w0] ; p1

l1 ✁
∗ l16

l14 ✁ l15 p14 = [| u1 | boy u1w] ⇒ p15]
l16 ✁ l17 p16 = [u2 | girl u2w] ; p17
l17 ✁

∗ l2 p2 = [| adores u1u2w]
l15 ✁

∗ l2

Disambiguation corresponds to strengthening the l-description, with the un-
derstanding that the result must remain consistent with the axioms for
unordered trees. As soon as the resulting description entails an equation
lk = lm, we may add the correspondinng equation pk = pm to the s-
description.

References

[1] Allen, J., 1995, Natural Language Understanding (2nd edition), The
Benjamins / Cummings Publishing Company, Redwood City, CA.

[2] Alshawi, H. (ed.), 1992, The Core Language Engine, MIT Press, Cam-
bridge Mass.

[3] Asher, N., 1993, Reference to Abstract Objects in Discourse, Kluwer,
Dordrecht.

[4] Asher, N., and H. Wada, 1989, A Computational Account of Syntactic,
Semantic and Pragmatic Factors in Anaphora Resolution, Journal of
Semantics.

[5] Backofen, R., J, Rogers and K. Vijay-Shanker, 1995, A First-Order Ax-
iomatization of the Theory of Finite Trees, Journal of Logic, Language
and Information 4, 5-39.

19

[6] Bos, J., E. Mastenbroek, S. McGlashan, S. Millies and M. Pinkal,
1994, ‘A Compositional DRS-based Formalism for NLP Applications’,
in H. Bunt, R. Muskens and G. Rentier, eds., Proceedings International
Workshop on Computational Semantics, Institute for Language Tech-
nology and Artificial Intelligence, Tilburg, 21-31.

[7] Cooper, R., R. Crouch, J. van Eijck, C. Fox, J. van Genabith, J. Jas-
pars, H. Kamp, M. Pinkal, M. Poesio, S. Pulman and E Vestre, 1994,
The State of the Art in Computational Semantics: Evaluating the De-

scriptive Capabilities of Semantic Theories, FraCaS deliverable D9.

[8] Cooper, R., R. Crouch, J. van Eijck, C. Fox, J. van Genabith, J. Jas-
pars, H. Kamp, M. Pinkal, M. Poesio, and S. Pulman 1995, Evaluating
the State of the Art, FraCaS deliverable D10.

[9] Dalrymple, M., J. Lamping and V. Seraswat, 1993, LFG Semantics via
Constraints, in Proceedings of the Sixth European ACL, Utrecht 1993,
97-105.

[10] Eijck, J. van, and H. Kamp, 1997, ‘Discourse Representation Theory’,
in J.F.A.K van Benthem and A. ter Meulen (eds.), The Handbook of

Logic and Language, Elsevier Science Publications.

[11] Groenendijk, J. and Stokhof, M., 1990, Dynamic Montague Grammar,
in L. Kálmán and L. Pólos (eds.), Papers from the Second Symposium

on Logic and Language, Akadémiai Kiadó, Budapest, 3-48.

[12] Groenendijk, J. and Stokhof, M.: 1991, Dynamic Predicate Logic, Lin-
guistics and Philosophy 14, 39-100.

[13] Halvorsen, P.-K. and R.M. Kaplan, 1988, Projections and Semantic
Description in Lexical-Functional Grammar, in Proceedings of the In-

ternational Conference on Fifth Generation Computer Systems, Tokyo,
1116-1122.

[14] Kaplan, R.M. and J. Bresnan, 1982, Lexical-Functional Grammar: A
formal system for grammatical representation, in J. Bresnan (ed.),
The Mental Representation of Grammatical Relations, The MIT Press,
Cambridge, MA, 173-281.

[15] Kaplan, R.M., 1989, The Formal Architecture of Lexical-Functional
Grammar, Journal of Information Science and Engineering 5, 305-322.

20

[16] Leusen, N. van, and Muskens, R., 2003, Construction by Description in
Discourse Representation, in J. Peregrin, (ed.), Meaning: The Dynamic

Turn. Elsevier. 33-67.

[17] Marcus, M.P., D. Hindle and M.M. Fleck, 1983, D-theory: Talking
about Talking about Trees, in Proceedings of the 21st ACL.

[18] Muskens, R.A., 1991, Anaphora and the Logic of Change, in Jan van
Eijck (ed.), JELIA ’90, European Workshop on Logics in AI, Springer
Lecture Notes, Springer, Berlin, 414-430.

[19] Muskens, R., 1994, ‘Categorial Grammar and Discourse Representation
Theory’, Proceedings of COLING 94, Kyoto, 508-514.

[20] Muskens, R., 1996, ‘Combining Montague Semantics and Discourse
Representation’, Linguistics and Philosophy 19, 143-186.

[21] Muskens, R., 2001, ‘Talking about Trees and Truth-conditions’, Journal
of Logic, Language and Information 10, 417-455.

[22] Poesio, M., 1994, Ambiguity, Underspecification and Discourse Inter-
pretation, in: H. Bunt, R. A. Muskens and G. Rentier (eds.), Pro-

ceedings of the International Workshop on Computational Semantics,

Tilburg, 151-160.

[23] Pulman, S.G., 1994, A Computational Theory of Context Dependence,
in: H. Bunt, R. A. Muskens and G. Rentier (eds.), Proceedings of the In-
ternational Workshop on Computational Semantics, Tilburg, 161-170.

[24] Reyle, U., 1993, Dealing with Ambiguities by Underspecification: Con-
struction, representation and deduction, Journal of Semantics 10, 123-
179.

[25] Schubert, L.K. and F.J. Pelletier, 1982, From English to Logic:
Context-free computation of conventional logical translation, Ameri-

can Journal of Computational Linguistics 8, 165-176.

[26] Vijay-Shanker, K., 1992, Using Descriptions of Trees in a Tree Adjoin-
ing Grammar, Computational Linguistics 18, 481-518.

21

