Skip to main content
Log in

Propagation of Electromagnetic Waves in Fractional Space Time Dimensions

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

In this paper, we investigate non-homogeneous wave equations in fractional space-time domains of space dimension D, \(0 < D \le 3\) and time dimension \(\beta\), \(0 < \beta \le 1\). We write the wave equations in terms of potential functions and non-zero source terms. For scalar source terms, the potential functions are also scalar functions, and for vector source terms, the potential functions are vector functions. We derived an expression for the wave to propagate from the source point to the observation point. The study shows that the time for a wave to propagate from the source point to the observation point in a fractional space-time domain could be different from that in an integer order space-time domain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Mandelbrot, B.B.: The Fractal Geometry of Nature. W.H. Freeman, New York (1983)

    Book  Google Scholar 

  2. Laskin, N.: Fractional schrodinger equation. Phys. Rev. E 66, 056108–056115 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  3. Feynman, R.P.: Statistical Mechanics. Benjamin Reading, Mass (1972)

    Google Scholar 

  4. Feynman, R.P., Hibbs, A.R.: Quantum Mechanics and Path Integrals. McGraw-Hill, New York (1965)

    MATH  Google Scholar 

  5. He, X.: Anisotropy and isotropy: a model of fraction-dimensional space. Solid State Commun. 75, 111–114 (1990)

    Article  ADS  Google Scholar 

  6. He, X.: Exciton in anisotropic solids: the model of fractional-dimensional space. Phys. Rev. B 43, 2063–2069 (1991)

    Article  ADS  Google Scholar 

  7. He, X.: Fractional dimensionality and fractional derivative spectra of interband optical transitions. Phys. Rev. B 42, 11751–11756 (1990)

    Article  ADS  Google Scholar 

  8. Daftardar-Gejji, V., Bhalekar, S.: An Iterative Method for Solving Fractional Differential Equations. PAMM · Proc. Appl. Math. Mech. 7, 2050017–2050018 (2007)

    Article  Google Scholar 

  9. Khater, M., Mohamed, M., Attia, R.: On semi analytical and numerical simulations for a mathematical biological model; the time-fractional nonlinear Kolmogorov-Petrovskii-Piskunov (KPP) equation. Solitons & Fractals 144, 110676 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  10. Khater, M., Nisar, K., Mohamed, S.: Numerical investigation for the fractional nonlinear space-time telegraph equation via the trigonometric quintic B-spline scheme. Math. Methods Appl. Sci. 44, 4598–4606 (2021)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. Klages, R., Radons, G., Sokolov, I.M. (eds.): Anomalous Transport: Foundations and Applications. Wiley, Weinheim (2008)

    Google Scholar 

  12. Luchko, Yu.: Fractional wave equation and damped waves. J. Math. Phys. 54, 031505 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. Magin, R.L.: Fractional calculus in bioengineering : Part1, Part 2 and Part 3. Crit. Rev. Biomed. Eng. (2004). https://doi.org/10.1615/critrevbiomedeng.v32.i34.10

    Article  Google Scholar 

  14. Wang, N., Xing, G., Zhu, T., Zhou, H., Shi, Y.: Propagating seismic waves in VTI attenuating media using fractional viscoelastic wave equation. J. Geophys. Res. Solid Earth 27, 023280 (2022)

    Google Scholar 

  15. Mainardi, F.: Fractional Calculus and Waves in Linear Viscoelasticity. Imperial College Press, London (2010)

    Book  MATH  Google Scholar 

  16. Matos-Abiague, A.: Bose-like oscillator in fractional-dimensional space. J. Phys. A Math. Gen. 34, 3125–3128 (2001)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. Jing, S.J.: A new kind of deformed calculus and parabosonic coordinate representation. Phys. A Math. Gen. 31, 6347–6354 (1998)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. Misner, C.W., Thorne, K.S., Wheeler, J.A.: Gravitation. Freeman, San Francisco (1973)

    Google Scholar 

  19. Zeilinger, A., Svozil, K.: Measuring the dimension of space-time. Phys. Rev. Lett. 54, 2553–2555 (1985)

    Article  ADS  Google Scholar 

  20. Francisco, C., Francisco, S.N.L.: Gravitational waves and electrodynamics: new perspectives. Eur. Phys. J C Part Fields 77(4), 237 (2017)

    Google Scholar 

  21. Muslih, S.I., Agrawal, O.P.: Solutions of wave equation in fractional dimensional space. In: Baleanu, D., et al. (eds.) Fractional Dynamics and Control, pp. 217–228. Springer, New York (2011)

    Google Scholar 

  22. Jackson, J.D.: Classical Electrodynamics, 3rd edn. Wiley, New York (1998)

    MATH  Google Scholar 

Download references

Acknowledgements

The author would like to sincerely thank Al-Azhar University-Gaza for providing him the financial support and the Department of Mechanical Engineering and Energy Processes (MEEP) and the Dean of Graduate Studies at Southern Illinois University, Carbondale (SIUC), IL, for providing him the necessary facilities during his stay at SIUC. Also, the author would like to sincerely thank Prof. Om P. Agrawal and the reviewers for their constructive comments.

Author information

Authors and Affiliations

Authors

Contributions

AB: wrote the main manuscript text.

Corresponding author

Correspondence to Sami I. Muslih.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Muslih, S.I. Propagation of Electromagnetic Waves in Fractional Space Time Dimensions. Found Phys 53, 37 (2023). https://doi.org/10.1007/s10701-023-00677-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10701-023-00677-y

Keywords

Navigation