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Abstract

In the tradition of Denotational Semantics one usually lets program
constructs take their denotations in reflexive domains, i.e. in domains
where self-application is possible. For the bulk of programming con-
structs, however, working with reflexive domains is an unnecessary
complication. In this paper we shall use the domains of ordinary clas-
sical type logic to provide the semantics of a simple programming
language containing choice and recursion. We prove that the rule of
Scott Induction holds in this new setting, prove soundness of a Hoare
calculus relative to our semantics, give a direct calculus C on programs,
and prove that the denotation of any program P in our semantics is
equal to the union of the denotations of all those programs L such that
P follows from L in our calculus and L does not contain recursion or
choice.

1 Introduction

In this paper we translate a simple but non-trivial imperative programming
language into an axiomatic extension of classical second order logic. Since
classical logic comes with a modeltheoretic interpretation, we get an interpre-
tation for our programming language too, as we may identify the denotation
of any programming construct in a given model with the denotation of its
translation in that model. The resulting semantics thus assigns a mathemat-
ical object to each programming construct in each model.

This last aspect makes the paper fall within the tradition of Denotational
Semantics [21, 20, 3, 19, 13, 22]. But we shall deviate considerably from
the usual denotational approach by not making any use of the Scott domains
which are ubiquitous in that tradition. A characteristic property of such
domains is that they can be reflexive, i.e. a domain D can be isomorphic
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to, and can in fact be identified with, the function space [D → D] of all
continuous functions from D to D. This guarantees that any object d ∈
D is also a function d : D → D and hence that it is meaningful to talk
about d(d). Scott domains thus support the interpretation of self-application
and in fact are essential for the interpretation of functional languages which
are based on the untyped lambda calculus and in which self-application is
possible. But, although there are some imperative languages which allow
self-application, it seems that the bulk of constructs normally encountered
in imperative languages, including iteration and recursion, can be treated
without the use of reflexive domains. As we shall see in this paper, imperative
programs containing iteration and recursion can be interpreted in the models
of classical type logic via a translation into the second-order fragment of that
logic.

Classical type logic itself then can function as a kind of universal specifi-
cation language in the design of programming languages: In order to specify
the intended semantics of some construct, the language designer may simply
write down its intended logical translation. On a more theoretical level, we
consider it an advantage to be able to describe the semantics of programming
constructs with the help of the language and the models which also underly
mainstream mathematical logic. True, there are important differences be-
tween the semantics of mathematics and the semantics of programming, in
the sense that the model theory of, say, the natural numbers is ‘static’, while
the model theory of a program must needs be ‘dynamic’. But these differ-
ences, important as they are, should not blind us to the fact that the two
forms of semantics are essentially one. We shall model the difference be-
tween ‘static’ and ‘dynamic’ semantics as a difference in type here. While
static theories are sets of sentences, i.e. closed terms of type t , the logical
translation of a program must have a more complex type. If we choose to
treat programs as relations between input and output states, as we shall do
here (other choices are very well possible), the type of programs becomes
s× s→ t. It is this type difference which constitutes the difference between
static and dynamic semantics, but the type difference is already present in
standard logic.

Treating the semantics of a programming language with the help of clas-
sical logic should not be construed as being in opposition to the effort of
Dynamic Logic ([18, 7]), the modal logic of programs, however. In Dynamic
Logic one typically studies logics containing only a very few programming
constructs. The goals here are of a purely logical nature and the primary
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interest is in stating and proving metatheorems on completeness, decidabil-
ity etc. Such aims are best served with logics with a limited expressivity, as
increase in expressivity generally leads to loss of metalogical properties. On
the other hand, the goal of providing a general logical framework for program
semantics, as we find it in denotational semantics, does not square well with
such limited expressivity. In this area and for this purpose we must have
rich and typed logics. Our decision to use classically typed models instead
of the domains one usually finds in denotational semantics brings us closer
to the dynamic enterprise, but we still need a logic which is more expressive
than the ones which are characteristically studied in that tradition. The
goals and aims of Dynamic Semantics and Denotational Semantics are of a
complementary rather than of an opposing nature and in fact the present
logic can be viewed as a typed extension of Quantificational Dynamic Logic
(QDL): see [14, 17] for an embedding of QDL into (a variant of) the present
system which is related to the well-known embedding of PDL into Lω1ω.

Giving the semantics of a language by means of a compositional trans-
lation into some typed logic is a procedure which is known in linguistics
under the name of Montague Semantics [11, 12]. Linguists try to explain
the semantics of, say, English by translating fragments of that language into
suitable higher-order logics. We do the same here for a simple programming
language, thereby threading into the footsteps of Janssen [10], who gave a
Montague Semantics for programming by translating fragments of an Algol-
like language into a special Dynamic Intensional Logic. Janssen did not give
a treatment of recursion and we hope to improve upon his work by repair-
ing this omission. Janssen’s logic has also played a role in linguistics, as
Groenendijk and Stokhof have applied it to this area with some success in
[6]. Variants of the axiomatic extension of classical logic that will be used
in this paper have been used by the present author for giving the semantics
of fragments of English in [14, 15, 16] ([14] also considers a treatment of the
while languages). A related system, which uses a non-classical set-up, is Van
Eijck’s interesting paper [26]. Van Eijck prefers to replace the non-logical ax-
ioms of [14] by certain extralogical requirements on his models, but proves
that some important properties of standard logic are not lost.

The set-up of the rest of this paper is as follows. In section 2 we shall
define a simple programming language with choice and recursion, give some
abbreviations and introduce some necessary syntactic conventions. In sec-
tion 3 then, we present a calculus C in which certain rewriting operations
on programs are possible. These rewritings are in close correspondence to
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the intended behaviour of our programs and in fact P1 `C P2 will imply that
an execution of P1 is also a possible way of executing P2. Section 4 gives a
short overview of classical type logic (of which we shall use only the second-
order part) and section 5 introduces the necessary axiomatic extension. One
restriction on our class of models will be that we shall want a certain do-
main De to behave like the natural numbers, to which end we shall adopt
the (second-order) Peano axioms. Another constraint will be that we want
a domain Ds to act like a set of program states . This will be achieved by
adopting a first-order axiom. The actual translation of the programming lan-
guage then follows in section 6. Section 7 imports the concepts of continuity,
anticontinuity and monotonicity from the usual Scott approach, develops
some theory, and proves that Scott’s Induction Rule holds within the present
setting. Section 8 introduces the usual Hoare calculus for our programming
language and proves it to be sound relative to the semantics of section 6.
The main theorem of the paper then follows in section 9: We define a linear
program as a program which is just a sequence of atomic statements and, for
any program P , consider all linear programs L such that L `C P . It turns
out that the denotation of P , given our semantics, is exactly the union of the
denotations of all such L.

2 A Toy Programming Language

The programming language which we shall study in this paper is defined by
the Backus-Naur form in definition 1, which is almost self-explanatory. The
set Num consists of the numerals 0, S(0), S(S(0)),. . ., which we shall write
in decimal notation. N consists of arithmetical terms built out of numerals
and first-order variables. In B we find Boolean combinations of equalities
and inequalities built up from these terms, and F is essentially the language
of first order arithmetic. The set A consists of assignment statements x := N ,
testsB?, and program variables, or procedure callsX. The category P extends
this set by allowing sequencing, choice and, the most important programming
construct in this paper, recursion. We allow a set of procedure declarations
〈X1 ⇐ P1, . . . , Xn ⇐ Pn〉, abbreviated 〈Xi ⇐ Pi〉

n
i=1, or even 〈Xi ⇐ Pi〉i, to

bind the program variables X1, . . . , Xn in a given program P . The variables
X1, . . . , Xn may occur free (for the definition of free occurrence see below) in
P1, . . . , Pn, so that procedure declarations may call one another.
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Definition 1 (Language)

Num ::= 0 | S(Num)

N ::= x | Num | N1 +N2 | N1 ×N2

B ::= false | N1 = N2 | N1 ≤ N2 | B1 → B2

F ::= B | F1 → F2 | ∀xF

A ::= x := N | B? | X

P ::= A | P1;P2 | P1 ∪ P2 | 〈Xi ⇐ Pi〉
n
i=1(P )

C ::= {F1}P{F2} | P1 ⊆ P2

Note that the construction 〈Xi ⇐ Pi〉
n
i=1(P ), unlike the similar construct

studied in [3], may be nested to an arbitrary depth. A real programming
language such as PASCAL would write 〈Xi ⇐ Pi〉

n
i=1(P ) as follows.

procedure X1;
P1;
...
procedure Xn;
Pn;
P

This exhausts our stock of programs. The category C finally, consists of cor-
rectness statements, which can be divided into asserted programs {F1}P{F2}
stating that program P , whenever it is started in a state where F1 holds, will
after any successful execution be in a state where F2 holds. The statement
P1 ⊆ P2 expresses that if we can reach a state j starting from a state i by
running P1, we can also get from i to j by running P2.

The following abbreviations are useful.

Definition 2 (Abbreviations)

true is short for false→ false

¬F is short for F → false

F1 ∨ F2 is short for ¬F1 → F2

F1 ∧ F2 is short for ¬(¬F1 ∨ ¬F2)

∃xF is short for ¬∀x¬F

N1 < N2 is short for N1 ≤ N2 ∧ ¬N1 = N2
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skip is short for true?

fail is short for false?

if B then P1 else P2 fi is short for (B?;P1) ∪ (¬B?;P2)

µX(P ) is short for 〈X ⇐ P 〉(X)

while B do P od is short for µX((B?;P ;X) ∪ ¬B?)

Remark on notation. The sequence operator “;” is associative, both on its
intuitive interpretation (P1;P2 meaning “do P1 and then P2”) and given the
semantics (relational composition) it gets in this paper and elsewhere. We
shall also make no syntactic distinction between (P1;P2);P3 and P1; (P2;P3)
and write both as P1;P2;P3. Similarly, we syntactically identify P with
skip;P and with P ;skip. This is allowed because skip intuitively means
“do nothing” and will be interpreted formally as the diagonal relation {〈i, i〉 |
i is a state}. The identification will allow us to say that the programs P1;P
and P ;P2, as well as the program P , have the form P1;P ;P2: we can take
P1 or P2 or both to be the identity element skip.

An occurrence of a program variable Y ∈ {X1, . . . , Xn} is free in a program
P if it does not occur within a subprogram of the form 〈Xi ⇐ Pi〉

n
i=1(P

′) in
P . A program is closed if it contains no free program variables.

Our procedure declarations can bind a series of program variables simul-
taneously, and since procedure declarations may make mutual calls it will not
be possible to reduce this form of binding to an iteration of bindings, as it
can usually be done in logic. Since we shall also have occasion to work with
simultaneous substitutions, things threaten to get a bit complicated. The
following definition may look a bit hairy, but in fact gives a straightforward
generalisation of the usual notion of substitution.

Definition 3 (Substitution) The simultaneous substitution [Pi/Xi]
n
i=1P

of P1 for X1 and . . . and Pn for Xn in P (abbreviated as [Pi/Xi]iP ) is defined
as follows.

[Pi/Xi]iXk = Pk, if 1 ≤ k ≤ n

[Pi/Xi]iA = A, if A /∈ {X1, . . . , Xn}

[Pi/Xi]i(Q1;Q2) = [Pi/Xi]iQ1; [Pi/Xi]iQ2

[Pi/Xi]i(Q1 ∪Q2) = [Pi/Xi]iQ1 ∪ [Pi/Xi]iQ2
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[Pi/Xi]i〈Yk ⇐ Qk〉
m
k=1(Q) = 〈Zk ⇐ Q′

k〉
m
k=1(Q

′), where Z1, . . . , Zm

are fresh, Q′
k abbreviates

[Pi/Xi]i [Z`/Y`]
m
`=1Qk and Q

′

abbreviates [Pi/Xi]i [Z`/Y`]
m
`=1Q

An alternative notation for [Pi/Xi]
n
i=1P is [P1/X1, . . . , Pn/Xn]P . The follow-

ing lemma is standard and has a straightforward proof.

Lemma 1 If {X1, . . . , Xn} ∩ {Y1, . . . , Ym} = ∅ and Y1, . . . , Ym are not free
in P1, . . . , Pn, then

[Pi/Xi]
n
i=1 [Qk/Yk]

m
k=1 P = [[Pi/Xi]

n
i=1Qk/Yk]

m
k=1 [Pi/Xi]

n
i=1 P

3 A Computational Calculus

Let us call a program which consists only of a sequence of assignments x :=
N , tests B? and program variables X linear, so that the class L of linear
programs is given by

L ::= A | L1;L2

We present a simple calculus C characterising a derivability relation `C on
the set of programs. The idea is that if L `C P holds for some closed L, then
an execution of the deterministic L will count as one possible execution of
the possibly indeterministic P . Conversely, any execution of P will be an
execution of some L such that L `C P . The rules of the calculus are the
following.

Pi
P1 ∪ P2

i ∈ {1, 2} (∪ rule)

[〈Xi ⇐ Pi〉
n
i=1(P1)/X1, . . . , 〈Xi ⇐ Pi〉

n
i=1(Pn)/Xn]P

〈Xi ⇐ Pi〉
n
i=1(P )

(ρ rule)

The idea behind these rules is that bottom-up they can be read as rules for
executing a program. Executing P1∪P2 consists of executing P1 or executing
P2 and an execution of 〈Xi ⇐ Pi〉

n
i=1(P ) consists of replacing all procedure

calls Xk in P by their bodies Pk, but so that further procedure calls in Pk
are still bound by the delarations in 〈Xi ⇐ Pi〉

n
i=1. This means that we have

to substitute the Xk in P simultaneously by 〈Xi ⇐ Pi〉
n
i=1(Pk). Viewed in
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this procedural way, the rule is a generalisation of the procedural rule for the
µ operator studied in [21, 3].

The following definition says what it is for a program to follow from
another program in one step. Note that we make use of the notational
convention given in the previous section here: Q1 and Q2 may be taken to
be empty.

Definition 4 (Immediate Consequence) A program Q1;Q;Q2 is an im-
mediate consequence of a program Q1;Q

′;Q2 iff Q follows from Q′ by the
∪ rule or the ρ rule. Q1;Q;Q2 is a leftmost immediate consequence of
Q1;Q

′;Q2 if, moreover, Q1 is linear.

From the notion of immediate consequence we can define the notion of com-
putational entailment we are after.

Definition 5 (Computational Entailment) A (leftmost) derivation of Pn

from P1 is a sequence of programs P1, . . . , Pn such that each Pi+1 is a (left-
most) immediate consequence of Pi. We write P `C Q (P `LC Q) iff there is
a (leftmost) derivation of Q from P .

Example 1 The following is a leftmost derivation of

〈Z ⇐ (x < 3?;x := x+ 1;Z) ∪ ¬x < 3?〉(Z),

which we shall abbreviate as D(Z), from the linear program x < 3?;x :=
x+ 1;x < 3?;x := x+ 1;¬x < 3?.

1. x < 3?;x := x+ 1;x < 3?;x := x+ 1;¬x < 3? (premise)

2. x < 3?;x := x+ 1;x < 3?;x := x+ 1;
((x < 3?;x := x+ 1;D(Z)) ∪ ¬x < 3?) (∪ rule)

3. x < 3?;x := x+ 1;x < 3?;x := x+ 1;D(Z) (ρ rule)

4. x < 3?;x := x+ 1; ((x < 3?;x := x+ 1;D(Z)) ∪ ¬x < 3?) (∪ rule)

5. x < 3?;x := x+ 1;D(Z) (ρ rule)

6. (x < 3?;x := x+ 1;D(Z)) ∪ ¬x < 3? (∪ rule)

7. D(Z) (ρ rule)
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Note that D(Z) is the expanded form of while x < 3 do x := x + 1 od.
Clearly, the set of linear programs L such that L `LC D(Z) can informally
be described as (x < 3?;x := x+ 1)∗;¬x < 3?, where * is the Kleene star.

We shall be interested in the set of linear programs L which derive a given
program P . The following proposition shows that it is immaterial whether
we take the notion `C or the notion `LC as the underlying entailment relation.
Leftmost derivations are closer to actual executions, but the order in which
we execute statements does not matter for our purposes.

Proposition 2 If L `C P then L `LC P

Proof. Let L `C P . We use induction on the length n of the derivation
L = P1, . . . , Pn = P of P from L to show that a leftmost derivation of P from
L of length n can be constructed. If n = 1 then P = L and the derivation is
leftmost, so assume that n > 1. Then Pn is of the form L0;Q;Qn with Q of
one of the forms P ′ ∪ P ′′ or 〈Xi ⇐ Pi〉

n
i=1(P

′). Consider the greatest i such
that Pi does not have the form L0;Q;Qi. Then Pk is of the form L0;Q;Qk

for i < k ≤ n, while Pi has the form L0;Q
′;Qi+1, Q follows from Q′ by the ∪

rule or the ρ rule, and Pi+1 is a leftmost immediate consequence of Pi. For
i < k ≤ n, define P ′

k to be L0;Q
′;Qk. Then Pi = P ′

i+1 and it is easily seen
that P1, . . . , Pi−1, P

′
i+1, . . . , P

′
n is a derivation of P ′

n from L of length n − 1.
Using induction we find a leftmost derivation of P ′

n from L of the same length.
Since Pn is a leftmost immediate consequence of P ′

n (= L0;Q
′;Qn) this also

gives us a leftmost derivation of P from L of length n. 2

4 Classical Type Logic

Mainly in order to fix notation, we give a short exposition of classical type
logic, Church’s formulation of Russell’s Simple Theory of Types . For more
extensive treatments see [2, 8, 9, 4, 25, 1].

In classical type logic (higher-order logic) every expression comes with a
type. Types are either basic or complex. The type t of truth values should
be among the basic types, but there may be other basic types as well. In this
paper we fix the set of basic types as {t, e, s}, where e is the type of natural
numbers and s the type of states . The logic we are describing here thus is
essentially the two-sorted type logic TY2 of [4] (but we shall add product
types).

We build up complex types in the following way.
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Definition 6 (Types) The set of types is the smallest set such that:

1. all basic types are types;

2. if α and β are types then α→ β and α× β are types.

Each type may correspond to a set of objects of that type. In this way
hierarchies of type domains, called (standard) frames are obtained.

Definition 7 (Standard Frames) A (standard) frame is a set of non-empty
sets {Dα | α is a type} such that, for all α, β

Dt = {0, 1};

Dα→β = Dα → Dβ;

Dα×β = Dα ×Dβ.

Frames will be the backbones of our models. We shall use them in order to
interpret the language which we are about to define. For each type α, let us
assume the existence of a denumerably infinite set of variables V ARα and
some set of constants CONα. From these basic terms complex ones can be
built.

Definition 8 (Terms) Define, for each α, the set Tα of terms of type α by
the following induction.

1. CONα ⊆ Tα, V ARα ⊆ Tα;

2. A ∈ Tα→β, B ∈ Tα ⇒ A(B) ∈ Tβ;

3. A ∈ Tβ, ξ ∈ V ARα ⇒ λξ.A ∈ Tα→β;

4. A ∈ Tα, B ∈ Tβ ⇒ 〈A,B〉 ∈ Tα×β;

5. A ∈ Tα×β ⇒ (A)0 ∈ Tα and (A)1 ∈ Tβ;

6. A ∈ Tα, B ∈ Tα ⇒ (A = B) ∈ Tt.

If A ∈ Tα we may (but need not) indicate this by writing Aα. Terms of type
t are called formulae. In (A)0 and (A)1 the parentheses are often omitted if
this is not likely to lead to confusion. Note that the first five clauses in the
above definition give the syntax of a simply typed λ-calculus with pairing and
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projection, but that the sixth clause explicitly requires the logical operator
= to be in the language. Having = is enough to get the usual other logical
operators, as some crucial ones can be defined as follows (see [9]) and the
others can be obtained as in Definition 2.

Definition 9 (Abbreviations)

∀ξα. ϕ is short for (λξα. ϕ) = (λξα. ξ = ξ)

false is short for ∀ξt. ξt

ϕ→ ψ is short for (〈true, false〉 = 〈ϕ, ψ〉) = false

In order to interpret the language of Definition 8, we need to have interpreta-
tions of its constants and variables. An interpretation function I for a frame
{Dα}α is a function with the set of all constants as its domain such that
I(cα) ∈ Dα for all cα. Similarly, an assignment a for {Dα}α is a function
taking variables as its arguments such that a(ξα) ∈ Dα for all ξα. We write
a[d1/ξ1, . . . , dn/ξn] for the assignment a′ such that a′(ξi) = di if 1 ≤ i ≤ n
and a′(ξ) = a(ξ) if ξ /∈ {ξ1, . . . , ξn}. A (standard) model is a pair 〈F , I〉 of
a frame F and an interpretation function I for F . The following definition
provides the logic with a semantics. (We use fst and snd as functions that
will pick out the first and second element of an ordered pair respectively.)

Definition 10 (Tarski Definition) The value VM(A, a) of a term A on
a standard model M = 〈F , I〉 under an assignment a for F is defined as
follows (we suppress superscripts M to improve readability).

1. V(c, a) = I(c), if c is a constant;
V(ξ, a) = a(ξ), if ξ is a variable;

2. V(A(B), a) = V(A, a)(V(B, a)), i.e. V(A, a) applied to V(B, a);

3. V(λξα.Aβ, a) = the G ∈ Dα→β such that, for each d ∈ Dα,
G(d) = V(A, a[d/ξ]);

4. V(〈A,B〉, a) = 〈V(A, a),V(B, a)〉;

5. V((A)0, a) = fst(V(A, a)); V((A)1, a) = snd(V(A, a));

6. V(A = B, a) = 1 iff V(A, a) = V(B, a).
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Note that the logical operators that were obtained in Definition 9 get their
standard meaning.

We can now define the notion of entailment.

Definition 11 Let Γ ∪ {ϕ} be a set of sentences. Γ (standardly) entails ϕ,
Γ |=s ϕ, iff, for each modelM, and each assignment a forM, VM(ϕ, a) = 1,
if VM(γ, a) = 1 for all γ ∈ Γ.

It will be useful to have a typographical convention which helps us distinguish
between variables of various types. The following table gives an overview of
the symbols we shall typically use for variables of a fixed type. For variables
whose type is not fixed, we shall continue to use ξ and ζ.

Type Variables

e x, y, z, v
e→ t X
s i, j

s× s r
s× s→ t X, Y

5 Nonlogical Axioms

There are two kinds of constraints we wish to impose on our models. First,
we want our domain Ds to behave as a set of states. Second, we want De to
behave as the natural numbers.

Starting with the second requirement, we impose the (second order) Peano
Axioms, which for the sake of completeness we shall list here. We refer to
the conjunction of these axioms as PA2.

¬∃x. S(x) = 0
∀x∀y. S(x) = S(y)→ x = y
∀x. x+ 0 = x
∀x∀y. x+ S(y) = S(x+ y)
∀x. x× 0 = 0
∀x∀y. x× S(y) = (x× y) + x
∀X ((X (0) ∧ ∀x (X (x)→ X (S(x))))→ ∀xX (x))
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Here the constants + and × are of type e× e→ e, but we use infix notation
and write x + y and x × y for +(〈x, y〉) and ×(〈x, y〉) respectively. As is
usual, we abbreviate ∃z. x + z = y as x ≤ y and we write S0(0) for 0 and
Sn+1(0) for S(Sn(0)), so that Sn(0) is be the object-level representation of
the number n.

We identify the variables x introduced in section 2 with the variables of
type e and variables X with the variables of type s × s → t. Note that the
first identification turns the set F defined in section 2 into a subset of the
set of first-order formulae of our logic.

The natural numbers shall in fact play a double role in our translation of
the programming language defined in section 2. Their first role is obvious:
they must interpret the elements of N . Their second role will be to act as
addresses of registers . In order to let them behave in this way, we let V be
some fixed non-logical constant of type e→ (s→ e). The intended interpre-
tation of, say, V (S17(0))(i) is the number which is stored in the register with
address 17 in state i. The formula V (S17(0))(i) = S23(0) thus expresses that
the value of register 17 in state i is 23. As a mnemonic to help distinguish
between these two roles of the natural numbers, we shall use the variable v
whenever we think of them as the addresses of registers but use x, y, z in all
other cases. Formally, however, there is no difference here.

Since we want objects of types s to really behave as states, and since we
want it to be the case that registers can be updated independently from each
other, we shall impose an axiom. If t is a term of type e and i and j are
variables of type s we may use i[t]j to abbreviate ∀v(v 6= t → V (v)(i) =
V (v)(j)). This expresses that states i and j differ at most in the register
with address t. Our axiom requires that there are enough states; so that
given any state, any register, and any number, we can update the register
and set its value to the given number without effecting the values of other
registers.1

UA ∀i∀v ∀x∃j. i[v]j ∧ V (v)(j) = x

1If we interpret registers as (logical) variables, states as (logical) assignments, and
V (v)(i) as the application of assignment i to variable v, the axiom formalises the usual
situation in logic that we have enough assigments to let variables take their values inde-
pendently from one another. In [23, 24] Van Benthem studies various weakenings of this
requirement, obtaining variants of predicate logic which are decidable and in which one
can have dependent variables. Weakening UA would not result in decidability of course,
but would also result in introducing similar dependencies among variables. This could be
useful for particular purposes. See also [17].
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We shall refer to UA as to the Update Axiom. The axiom is related to the
‘Update Postulate’ of [10] and to the ‘Having Enough States’ axiom of [5].
We write Γ |=AX ϕ if Γ, UA, PA2 |=s ϕ.

This ends the list of axioms we wish to impose. To see that they are
consistent, it suffices to construct a model in which De consists of the set N
of natural numbers, where Ds is the set of all functions f : N → N , and
where I(V ) is the function such that I(V )(n)(f) = f(n) for all n ∈ De and
all f ∈ Ds. We can obtain a model with denumerable basic domains if we
let Ds be the set of all functions f : N → N such that f(n) 6= 0 for finitely
many n and define De and I(V ) as before.

6 The Translation

We are now in the position to define the promised translation of our pro-
gramming language into the second-order part of classical type logic. We
shall give it in three installments, translating terms and formulas first and
programs and correctness formulas afterwards. We assume that V ARe is
enumerated by the natural numbers. In the following definition arithmetical
terms N translate as terms of type s→ e and formulas F translate as terms
of type s→ t.

Definition 12 (Translation of Terms and Formulas)

0† = λi.0 (1)

(S(Num))† = λi.S(Num†(i)) (2)

x†k = λi.V (Sk(0))(i) (3)

(N1 +N2)
† = λi.N †

1(i) +N †
2(i) (4)

(N1 ×N2)
† = λi.N †

1(i)×N †
2(i) (5)

false† = λi.false (6)

(N1 = N2)
† = λi.N †

1(i) = N †
2(i) (7)

(N1 ≤ N2)
† = λi.N †

1(i) ≤ N †
2(i) (8)

(F1 → F2)
† = λi.F †

1 (i)→ F †
2 (i) (9)

(∀xkF )
† = λi.∀j (i[Sk(0)]j → F †(j)) (10)

Most clauses in this definition are self-explanatory; but note that in (3)
variables x are translated as the values of registers and that quantification
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over individual variables is translated in (10) by means of quantification over
states. The following two Lemmas are there to ensure that this is correct.

Lemma 3 Let ϕ be a formula in which j does not occur free, then

|=AX ∀v∀i ((∀j (i[v]j → [V (v)(j)/x]ϕ)↔ ∀xϕ)

Proof. Immediate from AX1. 2

Lemma 4 For any type s variable i and term N , let N i be obtained by
replacing, for all k, each free xk in N with V (Sk(0))(i). Similarly, let F i be
the result of replacing each free xk in F with V (Sk(0))(i) for all k. Then

1. |=AX N †(i) = N i

2. |=AX F †(i)↔ F i

Proof. The truth of the first statement is obvious and the second state-
ment is proved by an induction on the complexity of formulas in which
only the ∀xkF case is interesting. For the latter, consider that, by Lemma
3, (∀xkF )

i is equivalent with (∀j (i[Sk(0)]j → [V (Sk(0))(j)/xk]F ))
i and

use the definition of i[Sk(0)]j to see that this formula is equivalent with
∀j (i[Sk(0)]j → F j). Induction tells us that this formula in its turn is equiv-
alent with ∀j (i[Sk(0)]j → F †(j)), which needed to be proved. 2

The previous Lemma in fact tells us that the translation given thus far pre-
serves entailment between formulas F if we take our axioms into account.
The following definition translates programs into type logic. The type of
target terms is s× s→ t here: binary relations between states.

Definition 13 (Translation of Programs)

(xk := N)† = λr. r0[S
k(0)]r1 ∧ V (Sk(0))(r1) = N †(r0) (11)

(B?)† = λr.B†(r0) ∧ r0 = r1 (12)

X† = X (13)

(P1;P2)
† = λr.∃j. P †

1 (〈r0, j〉) ∧ P
†
2 (〈j, r1〉) (14)

(P1 ∪ P2)
† = λr.P †

1 (r) ∨ P
†
2 (r) (15)

(〈Xi ⇐ Pi〉
n
i=1(P ))

† = λr.∀X1 . . . Xn(
n
∧

i=1

Xi = P †
i → P †(r)) (16)

15



We see here that an assignment statement x := N is interpreted as the set
of pairs of input and output states such that input and output state differ
at most in the affected register and the value of the register in the output
state is the original value of N . The translation is clearly dependent upon
the Update Axiom. Tests B? are interpreted as sets of those pairs 〈i, i〉 such
that B is true in i. Program variables translate themselves; sequencing is
translated as relational composition; and choice is interpreted as union. The
recursion construct is interpreted as a simultaneous fixpoint. The interpre-
tation of 〈Xi ⇐ Pi〉

n
i=1(P ) is obtained by considering all those assignments

to X1, . . . , Xn for which it is the case that X1 = P1 and . . . and Xn = Pn are
all simultaneously true. For each of those assignments P will have a certain
value and we get the value of the whole construct by taking the intersection
of all values so obtained.

We give the translations of correctness formulas to conclude with. Trans-
lations are now of type t and are almost self-explanatory again. The interpre-
tation of the asserted program {F1}P{F2} expresses that after any successful
execution of P from a state where F1 holds we shall be in a state where F2

holds and ⊆, not unexpectedly, is interpreted as inclusion.

Definition 14 (Translation of Correctness Formulas)

({F1}P{F2})
† = ∀ij ((F †

1 (i) ∧ P
†(〈i, j〉))→ F †

2 (j)) (17)

(P1 ⊆ P2)
† = ∀r (P †

1 (r)→ P †
2 (r)) (18)

7 Scott’s Induction Rule

The aim of this section is to import some conceptual machinery from the
Scott-Strachey tradition, adapt it to our revised setting, and develop the
necessary theory in this new setting. In particular, it will turn out to be
possible to prove the validity of Scott Induction, a rule which is immensely
useful when it comes to proving properties of programs containing the recur-
sion construct.

Our translation function † sends formulae to terms of type s → t, pro-
grams to s×s→ t terms and correctness formulae to terms of type t. Clearly,
the domains corresponding to these terms come with natural Boolean alge-
bras: if F is of type α→ t then F is the characteristic function of a set RF ,
which may be identified with F itself. This means that Dα→t corresponds to
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the power set of Dα. The natural Boolean algebra on Dt is also turned into a
set algebra if we identify 1 with {0}, as it is usually done in set theory. Type
t and types α→ t will be called relational and objects in such domains will
be called relations. We shall freely talk about unions, intersections, inclusion
etc. of relations. In fact, we shall often have occasion to talk about chains
R0 ⊆ R1 ⊆ . . . ⊆ Rn ⊆ . . . of relations of some type, and shall write the
union

⋃

n∈N Rn of such a chain as Rω. The following definition imports some
important notions from the Scott-Strachey tradition into our modeltheoretic
setting.

Definition 15 (Continuity, Anticontinuity, Weak anticontinuity)
A term A of relational type is called (a) continuous, (b) anticontinuous, (c)
weakly anticontinuous in the variable ξ of relational type α iff it holds for
each model, each assignment a, and each chain of type α relations R0 ⊆ R1 ⊆
. . . ⊆ Rn ⊆ . . . that

(a)
⋃

n

V(A, a[Rn/ξ]) = V(A, a[Rω/ξ])

(b)
⋂

n

V(A, a[Rn/ξ]) = V(A, a[Rω/ξ])

(c)
⋂

n

V(A, a[Rn/ξ]) ⊆ V(A, a[R
ω/ξ])

It will be our aim to show that translations of programs are continuous in the
procedure calls occurring free in them and that translations of correctness
formulas are weakly anticontinuous in such procedure calls.

Related to continuity is monotonicity. We define the notion below and
state the usual lemma which says that it is weaker than continuity.

Definition 16 (Monotonicity) A term A of relational type is called mono-
tonic in ξ iff R1 ⊆ R2 implies V(A, a[R1/ξ]) ⊆ V(A, a[R2/ξ]).

Lemma 5 If A is continuous in ξ then A is monotonic in ξ.

Proof. Consider R1 ⊆ R2 ⊆ R2 ⊆ . . . ⊆ R2 ⊆ . . . 2

The next two lemmas generalise the notions of continuity and anticontinuity
somewhat. These notions were defined with respect to one variable, but
the first lemma shows that that restriction was inessential in the case of
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continuity while the second lemma proves a generalisation related to weak
anticontinuity. Lemma 6 will be applied immediately in the proof of lemma
8 below, but the application of lemma 7 will have to wait a bit, until we come
to the proof of Scott’s Induction Rule.

Lemma 6 Let Aα be continuous in ξ1, . . . , ξn, then

⋃

m

V(A, a[Rm
1 /ξ1, . . . , R

m
n /ξn]) = V(A, a[R

ω
1 /ξ1, . . . , R

ω
n/ξn])

Proof. Repeated application of continuity gives us that

⋃

m1

. . .
⋃

mn

V(A, a[Rm1

1 /ξ1, . . . , R
mn

n /ξn]) = V(A, a[R
ω
1 /ξ1, . . . , R

ω
n/ξn])

That the lefthand side of this equation is equal to

⋃

m

V(A, a[Rm
1 /ξ1, . . . , R

m
n /ξn])

follows by the monotonicity of A in each of the variables ξ1, . . . , ξn. 2

Lemma 7 Let Aα be continuous in ξ1, . . . , ξn, while B is weakly anticontin-
uous in ζα, and ξ1, . . . , ξn are not free in B. For each k (1 ≤ k ≤ n), let
R0
k ⊆ R1

k ⊆ . . . ⊆ Rm
k ⊆ . . . be a chain, then

⋂

m

V([A/ζ]B, a[Rm
1 /ξ1, . . . , R

m
n /ξn]) ⊆ V([A/ζ]B, a[R

ω
1 /ξ1, . . . , R

ω
n/ξn])

Proof. For each m ∈ N let Sm = V(A, a[Rm
1 /ξ1, . . . , R

m
n /ξn]). From the

monotonicity of A in each ξk we obtain that S0 ⊆ S1 ⊆ . . . ⊆ Sm ⊆ . . ..
Hence, by the usual Substitution Theorem and the weak anticontinuity of B
in ζ,

⋂

m

V([A/ζ]B, a[Rm
1 /ξ1, . . . , R

m
n /ξn]) =

⋂

m

V(B, a[Sm/ζ]) ⊆ V(B, a[Sω/ζ])

From Lemma 6 it follows that Sω = V(A, a [Rω
1 /ξ1, . . . , R

ω
n/ξn]) for each m,

so that
V(B, a[Sω/ζ]) = V([A/ζ]B, a [Rω

1 /ξ1, . . . , R
ω
n/ξn])

2
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The reason why we are interested in continuity at all is the so-called Knaster-
Tarski theorem, which says that intersections of fixpoints as we have used
them in the translation of the recursion construct can be ‘approximated from
below’. The following lemma is a version of the Knaster-Tarski theorem in
our modeltheoretic setting. It will be crucial in proving the induction theorem
we are after.

Lemma 8 (Knaster-Tarski) Let B and A1, . . . ,An be terms of type s ×
s→ t which are continuous in the type s×s→ t variables X1, . . . , Xn. Fix a
model and an assignment a. For each k (1 ≤ k ≤ n) let R0

k = ∅ and R
m+1
k =

V(Ak, a[R
m
1 /X1, . . . , R

m
n /Xn]). Then V(Ak, a[R

ω
1 /X1, . . . , R

ω
n/Xn]) = Rω

k for
each k and

V(λr.∀X1 . . . Xn(
n
∧

i=1

Xi = Ai → B(r)), a) = V(B, a[Rω
1 /X1, . . . , R

ω
n/Xn])

Proof. First, we check by induction on m that R0
k ⊆ R1

k ⊆ . . . ⊆ Rm
k ⊆ . . .,

for each k. Trivially, ∅ = R0
k ⊆ R1

k. Suppose that Rm
k ⊆ Rm+1

k for each k.
Since Ak is monotonic in X1, . . . , Xn it holds that

Rm+1
k = V(Ak, a[R

m
1 /X1, . . . , R

m
n /Xn]) ⊆

V(Ak, a[R
m+1
1 /X1, . . . , R

m+1
n /Xn]) = Rm+2

k

which proves the statement. It follows from Lemma 6 that

V(Ak, a[R
ω
1 /X1, . . . , R

ω
n/Xn]) =

⋃

m

V(Ak, a[R
m
1 /X1, . . . , R

m
n /Xn]) =

⋃

m

Rm+1
k =

⋃

m

Rm
k = Rω

k

Next, observe that

λr.∀X1 . . . Xn(
n
∧

i=1

Xi = Ai → B(r))

is equivalent with

λr.∀Y (∃X1 . . . Xn(
n
∧

i=1

Xi = Ai ∧ Y = B)→ Y (r))
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So that the value of this term is the intersection of all S such that S =
V(B, a[S1/X1, . . . , Sn/Xn]) for some S1, . . . , Sn which are simultaneous fix-
points in the sense that Sk = V(Ak, a[S1/X1, . . . , Sn/Xn]) for each k. It
follows from the continuity of the terms Ak that V(B, a[Rω

1 /X1, . . . , R
ω
n/Xn])

is among those S, so that we have

V(λr.∀X1 . . . Xn(
n
∧

i=1

Xi = Ai → B(r)), a) ⊆ V(B, a[Rω
1 /X1, . . . , R

ω
n/Xn])

To show the converse, suppose that Sk = V(Ak, a[S1/X1, . . . , Sn/Xn]) for
1 ≤ k ≤ n. The monotonicity of the Ak readily gives us that Rm

k ⊆ Sk for all
k and m. It follows that Rω

k ⊆ Sk for all k and hence, by B’s monotonicity,
that

V(B, a[Rω
1 /X1, . . . , R

ω
n/Xn]) ⊆ V(B, a[S1/X1, . . . , Sn/Xn]).

Since S1, . . . , Sn were arbitrary simultaneous fixpoints, we conclude that

V(B, a[Rω
1 /X1, . . . , R

ω
n/Xn]) ⊆ V(λr.∀X1 . . . Xn(

n
∧

i=1

Xi = Ai → B(r)), a)

2

Having shown some general properties of continuity and weak anticontinu-
ity to hold, we now turn to proving that the translations we have given in
section 6 possess the desired properties. A reader who wants to prove that
translations of programs are continuous in the variables X occurring in them
will notice that one clause of the required induction cannot be proved us-
ing simple continuity properties of union and relational composition. The
required extra proof uses lemma 8 and is given below.

Lemma 9 If B and A1, . . . ,An are terms of type s × s → t which are con-
tinuous in the type s× s→ t variables X1, . . . , Xn and in ξα, then

λr.∀X1 . . . Xn(
n
∧

i=1

Xi = Ai → B(r))

is also continuous in ξ.

Proof. If ξ is among {X1, . . . , Xn} we are done, so assume Xk 6= ξ. Let
R0 ⊆ R1 ⊆ . . . ⊆ Rn ⊆ . . . be an arbitrary chain of type α relations. Define,
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for each ` ∈ N ∪ {ω}, each m ∈ N and each k (1 ≤ k ≤ n) the relation
Rm
`,k by setting R0

`,k = ∅ and Rm+1
`,k = V(Ak, a[R

m
`,1/X1, . . . , R

m
`,n/Xn, R

`/ξ]).
Then R0

`,k ⊆ R1
`,k ⊆ . . . ⊆ Rn

`,k ⊆ . . . for each k and `. Moreover, it
is easily proved by induction on m, using the monotonicity of the Ak and
the definition of Rm

`,k that Rm
`,k ⊆ Rm

`+1,k if ` ∈ N , so that we also have
chains Rm

0,k ⊆ Rm
1,k ⊆ . . . ⊆ Rm

`,k ⊆ . . .. We prove by induction on m that
⋃

`R
m
`,k = Rm

ω,k. This is trivial for m = 0. Suppose the statement holds for
m. Then, using the continuity of the Ak and the induction hypothesis, we
find that

⋃

`

Rm+1
`,k =

⋃

`

V(Ak, a[R
m
`,1/X1, . . . , R

m
`,n/Xn, R

`/ξ]) =

V(Ak, a

[

⋃

`

Rm
`,1/X1, . . . ,

⋃

`

Rm
`,n/Xn,

⋃

`

R`/ξ

]

) =

V(Ak, a
[

Rm
ω,1/X1, . . . , R

m
ω,n/Xn, R

ω/ξ
]

) =

Rm+1
ω,k

Since Rω
ω,k =

⋃

m

⋃

`R
m
`,k =

⋃

`

⋃

mR
m
`,k it follows that (*) Rω

ω,k =
⋃

`R
ω
`,k. Now

we reason as follows, using Lemma 8 twice and using (*) and the continuity
of B in ξ

⋃

`

V(λr.∀X1 . . . Xn(
n
∧

i=1

Xi = Ai → B(r)), a[R`/ξ]) =

⋃

`

V(B, a[Rω
`,1/X1, . . . , R

ω
`,n/Xn, R

`/ξ]) =

V(B, a

[

⋃

`

Rω
`,1/X1, . . . ,

⋃

`

Rω
`,n/Xn,

⋃

`

R`/ξ

]

) =

V(B, a
[

Rω
ω,1/X1, . . . , R

ω
ω,n/Xn, R

ω/ξ
]

) =

V(λr.∀X1 . . . Xn(
n
∧

i=1

Xi = Ai → B(r)), a[Rω/ξ])

This concludes the proof 2

That translations of programs are continuous is now easily proved. The
proposition will allow us to apply the Knaster-Tarski theorem to those trans-
lations.
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Proposition 10 For every program P and procedure call X in P , P † is
continuous in X.

Proof. By induction on the complexity of P , using the previous lemma for
the case that P = 〈Xi ⇐ Pi〉i(Q). 2

We can prove a similar connection between correctness formulae and weak
anticontinuity. First we note that there are certain syntactic features which
will guarantee a type logical term to be continuous or anticontinuous in a
given variable.

Lemma 11

1. If ϕ is continuous in ξ then ¬ϕ is anticontinuous in ξ;

2. If ϕ is anticontinuous in ξ then ¬ϕ is continuous in ξ;

3. If ϕ, ψ are (anti-)continuous in ξ then ϕ∧ψ is (anti-)continuous in ξ;

4. If Aα→t is (anti-)continuous in ξ and ξ does not occur in δα then A(δ)
is (anti-)continuous in ξ;

5. If ϕ is (anti-)continuous in ξ then λζα. ϕ is (anti-)continuous in ξ;

6. If ϕ is anticontinuous in ξ then ∀ζ ϕ is anticontinuous in ξ;

7. If ϕ is continuous in ξ then ∃ζ ϕ is continuous in ξ.

Proof. By inspection of the various cases. To prove the first case, for example,
assume that ϕ is continuous in ξ, and let R0 ⊆ R1 ⊆ . . . ⊆ Rn ⊆ . . . be a
chain. Then

⋂

n V(¬ϕ, a[R
n/ξ]) = 1 iff, for all n, V(¬ϕ, a[Rn/ξ]) = 1 iff (by

Definition 10), for all n, V(ϕ, a[Rn/ξ]) = 0 iff
⋃

n V(ϕ, a[R
n/ξ]) = 0 iff (by

continuity of ϕ) V(ϕ, a[Rω/ξ]) = 0 iff (by Definition 10) V(¬ϕ, a[Rω/ξ]) = 1.
The other cases are equally simple and are left to the reader. 2

The relation between correctness formulas and weak anticontinuity that was
promised is stated and proved as follows.

Proposition 12 For every correctness formula C and procedure call X in
C, C† is weakly anticontinuous in X.
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Proof. If C = {F1}P{F2} then C† = ∀ij. (F †
1 (i) ∧ P

†(〈i, j〉)) → F †
2 (j) and

X occurs in P . Using that P † is continuous in X and applying Lemma 11
repeatedly, we find that C† is anticontinuous in X. If C = P1 ⊆ P2 then C

† =
∀r. P †

1 (r)→ P †
2 (r). The following series of equivalences and implications give

the required proof.

⋂

n

V(∀r. P †
1 (r)→ P †

2 (r), a[R
n/X]) = 1 ⇐⇒

for all n: V(∀r. P †
1 (r)→ P †

2 (r), a[R
n/X]) = 1 ⇐⇒

for all n: V(P †
1 , a[R

n/X]) ⊆ V(P †
2 , a[R

n/X]) =⇒
⋃

n

V(P †
1 , a[R

n/X]) ⊆
⋃

n

V(P †
2 , a[R

n/X]) ⇐⇒ (P1, P2 are continuous)

V(P †
1 , a[R

ω/X] ⊆ V(P †
2 , a[R

ω/X]) ⇐⇒

V(∀r. P †
1 (r)→ P †

2 (r), a[R
ω/X]) = 1

2

The main rule of Scott Induction can now be proved. We first formulate a
general logical variant, from which the Rule itself follows as a corollary.

Theorem 13 Let B and A1, . . . ,An be terms of type s × s → t which are
continuous in the type s × s → t variables X1, . . . , Xn and let ϕ be a for-
mula which is weakly anticontinuous in the s × s → t variable X such that
X1, . . . , Xn are not free in ϕ. For readability, write ϕ(A) instead of [A/X]ϕ.
Then

ϕ([λr. false/X1, . . . , λr. false/Xn]B)
∀X1 . . . Xn(ϕ(B)→ ϕ([A1/X1, . . . ,An/Xn]B)

ϕ(λr.∀X1 . . . Xn(
∧n
i=1Xi = Ai → B(r)))

AX

Proof. For each k, let R0
k = ∅ and Rm+1

k = V(Ak, a[R
m
1 /X1, . . . , R

m
n /Xn]).

The first premise says that V([B/X]ϕ, a[R0
1/X1 . . . R

0
n/Xn]) = 1 and the sec-

ond premise implies that

V([B/X]ϕ, a[Rm
1 /X1 . . . R

m
n /Xn]) = 1 only if

V([B/X]ϕ, a[Rm+1
1 /X1 . . . R

m+1
n /Xn]) = 1.

We conclude that
⋂

m V([B/X]ϕ, a[Rm
1 /X1 . . . R

m
n /Xn]) = 1 and use Lemma 7

to derive that V([B/X]ϕ, a[Rω
1 /X1 . . . R

ω
n/Xn]) = 1. From this the Theorem

follows with Lemma 8. 2

23



Corollary 14 (Scott’s Induction Rule) Assume X1, . . . , Xn are not free
in C. Write C(Q) for [Q/X]C. Then

C([fail/X1, . . . , fail/Xn]P )
†

∀X1 . . . Xn(C(P )† → C([P1/X1, . . . , Pn/Xn]P )
†

C(〈Xi ⇐ Pi〉i(P ))†
AX

8 Hoare’s Calculus

As a simple application we show that our semantics subsumes the Hoare
Calculus, which we shall present in Gentzen form. Sequents Γ `H C will
consist of a set of asserted programs Γ and an asserted program C. The
derivability relation `PA between assertions F is given by an axiomatization
of first-order logic plus the first-order Peano axioms. Structural rules of our
Hoare-Gentzen calculus are the following.

C `H C (Id)

Γ1 `H C
Γ1,Γ2 `H C (Weakening)

Γ1 `H C1 Γ2, C1 `H C2

Γ1,Γ2 `H C2
(Cut)

The following logical rules embody the Hoare Calculus.

`H {[N/x]F}x := N{F} (Assignment)

`H {F}B?{F ∧B} (Test)

Γ1 `H {F1}P1{F2} Γ2 `H {F2}P2{F3}
Γ1,Γ2 `H {F1}P1;P2{F3}

(Composition)

Γ1 `H {F1}P1{F2} Γ2 `H {F1}P2{F2}
Γ1,Γ2 `H {F1}P1 ∪ P2{F2}

(Choice)

Γ `H {F1}[fail/X1, . . . , fail/Xn]P{F2}
Γ, {F1}P{F2} `H {F1}[P1/X1, . . . , Pn/Xn]P{F2}

Γ `H {F1}〈Xi ⇐ Pi〉
n
i=1(P ){F2}

(Recursion)

F1 `PA F2 Γ `H {F2}P{F3} F3 `PA F4

Γ `H {F1}P{F4}
(Consequence)
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Example 2 As an example of an (informal) derivation in this calculus, we
show that

Γ, {F1}X{F2} `H {F1}P{F2}

Γ `H {F1}µX(P ){F2}
(µ)

is a derived rule:

1. `H {F1}fail{F1 ∧ false} (Test)

2. `H {F1}fail{F2} (Consequence, 1)

3. Γ `H {F1}fail{F2} (Weakening, 2)

4. Γ, {F1}X{F2} `H {F1}P{F2} (premise)

5. Γ `H {F1}〈X ⇐ P 〉(X){F2} (Recursion, 3,4)

Example 3 A second example uses the rule we have just derived to show
that

Γ ` {F ∧B}P{F}

Γ ` {F}while B do P od {F ∧ ¬B}
(while)

is another derived rule.

1. Γ `H {F ∧B}P{F} (premise)

2. `H {F}B?{F ∧B} (Test)

3. Γ `H {F}B?;P{F} (Composition, 1,2)

4. {F}X{F ∧ ¬B} `H {F}X{F ∧ ¬B} (Id)

5. Γ, {F}X{F ∧ ¬B} `H {F}B?;P ;X{F ∧ ¬B} (Composition, 3,4)

6. `H {F}¬B?{F ∧ ¬B} (Test)

7. Γ, {F}X{F ∧ ¬B} `H {F}(B?;P ;X) ∪ ¬B?{F ∧ ¬B} (Choice, 5,6)

8. Γ `H {F}µX((B?;P ;X) ∪ ¬B?){F ∧ ¬B} (µ, 7)

We can give a rather straightforward proof of the soundness of the calculus
H by simply considering the translations of its axioms and rules. For any set
of asserted programs Γ, we write Γ† for the set of translations {C† | C ∈ Γ}.
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Theorem 15 (Soundness of H) Γ `H C implies Γ† |=AX C†

Proof. We need to check that axioms and rules of the Hoare-Gentzen Calculus
continue to hold if we replace every `H by |=AX and every asserted program
C by its translation C†. For example, Composition is translated to:

Γ†
1 |=AX ∀ij((F

†
1 (i) ∧ P

†
1 (〈i, j〉))→ F †

2 (j))

Γ†
2 |=AX ∀ij((F

†
2 (i) ∧ P

†
2 (〈i, j〉))→ F †

3 (j))

Γ†
1,Γ

†
2 |=AX ∀ij((F

†
1 (i) ∧ ∃k(P

†
1 (〈i, k〉) ∧ P

†
2 (〈k, j〉)))→ F †

3 (j))

This is easily seen to be valid on the force of predicate logic alone. Similarly,
the structural rules, the Test axiom, Choice and Consequence lead to trans-
lations whose validity is easily verified. The soundness of the Recursion rule
follows almost directly from Scott Induction.

This leaves it for us to verify the soundness of the Assignment axiom. We
must check that

|=AX ∀ij((([N/xk]F )
†(i) ∧ i[Sk(0)]j ∧ V (Sk(0))(j) = N †(i))→ F †(j))

Using Lemma 4 and the notation that was defined in that lemma, we find
that this is equivalent with

|=AX ∀ij((([N/xk]F )
i ∧ i[Sk(0)]j ∧ V (Sk(0))(j) = N i)→ F j)

Letting F ′ be the result of substituting V (Sn(0))(i) for xn in F , for each
n 6= k, we see that the latter is equivalent with

|=AX ∀ij((([N
i/xk]F

′) ∧ i[Sk(0)]j ∧ V (Sk(0))(j) = N i)→ F j)

in its turn. But this last statement is easily seen to hold on the basis of the
definition of i[Sk(0)]j. 2

9 The Union Theorem

The main theorem of this section, and indeed of the paper, is Theorem 23
below, which states that the meaning of a program is equal to the union of
the meanings of all linear programs deriving it. Before we prove the theorem
itself, it will be expedient to consider a series of lemmas and a proposition.
The lemma and the proposition below establish the soundness of the calculus
C and are therefore of interest in themselves.
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Lemma 16 (Soundness of the ρ rule)

V((〈Xi ⇐ Pi〉i(P ))
†, a) = V(([〈Xi ⇐ Pi〉i(Pk)/Xk]

n
k=1P )

†, a)

Proof. Directly from Lemma 8 and Proposition 10. 2

Proposition 17 (Soundness of C) P1 `C P2 ⇒ V(P †
1 , a) ⊆ V(P

†
2 , a)

Proof. The proof proceeds by induction on the length of the derivation of P2

from P1. 2

We now come to a series of five lemmas which are of a more technical nature.
They are needed for the proof of Theorem 23 below. Let us begin with three
simple lemmas of a proof-theoretical nature. Lemma 18 says that a program
P can only derive a sequence P1;P2 if P can be split into two parts which
derive P1 and P2 respectively; lemma 20 establishes a useful substitution
property and uses lemma 19 for its proof.

Lemma 18 P `C P1;P2 iff there are P ′
1 and P

′
2 such that P = P ′

1;P
′
2, P

′
1 `C

P1 and P
′
2 `C P2.

Proof. A straightforward induction on length of derivation. 2

Lemma 19 Let i and ` range over {1, . . . , n} and let k range over {1, . . . ,m},
then

1. [Pk/Xk]k (Q1 ∪Q2) follows from [Pk/Xk]kQ1 and from [Pk/Xk]kQ2 by
the ∪ rule;

2. [Pk/Xk]k 〈Yi ⇐ Qi〉i(Q) follows from [Pk/Xk]k [〈Yi ⇐ Qi〉i(Q`)/Y`]`Q
by the ρ rule.

Proof. The first statement is trivial, so we prove the second. Let Z1, . . . , Zm

be the first variables in some given ordering which do not occur in any of
the Pk, in 〈Yi ⇐ Qi〉i(Q), or in any of the Xk. For any P , abbreviate
[Pk/Yk]k [Z`/Y`]` P as P ′. We have

[Pk/Xk]k [〈Yi ⇐ Qi〉i(Q`)/Y`]`Q =

[Pk/Xk]k [〈Yi ⇐ Qi〉i(Q`)/Z`]` [Z`/Y`]`Q = by Lemma 1

[[Pk/Xk]k 〈Yi ⇐ Qi〉i(Q`)/Z`]`Q
′ = by Definition 3

[〈Zi ⇐ Q′
i〉i(Q

′
`)/Z`]`Q

′

This means that [Pk/Xk]k 〈Yi ⇐ Qi〉i(Q), which by definition is 〈Zi ⇐
Q′
i〉i(Q

′), follows from [Pk/Xk]k [〈Yi ⇐ Qi〉i(Q`)/Y`]`Q by the ρ rule. 2
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Lemma 20 If Q `C Q
′ then [Pk/Xk]kQ `C [Pk/Xk]kQ

′.

Proof. Let Q1, . . . , Qn be a derivation of Q′ from Q. It follows immediately
from the previous lemma that, for 1 ≤ i ≤ n, [Pk/Xk]kQi+1 is an immediate
consequence of [Pk/Xk]kQi. Hence [Pk/Xk]kQ1, . . . , [Pk/Xk]kQn is a deriva-
tion of [Pk/Xk]kQ

′ from [Pk/Xk]kQ. 2

The next two lemmas establish properties of the union of the denotations of
all linear programs deriving a given program.

Lemma 21 If R1 ⊆
⋃

{V(L†
1, a) | L1 `C Q1} and R2 ⊆

⋃

{V(L†
2, a) | L2 `C

Q2} then R1 ◦R2 ⊆
⋃

{V(L†, a) | L `C Q1;Q2}

Proof. From the assumptions and the translation of L1;L2 it follows that

R1 ◦R2 ⊆
⋃

{V(L†
1, a) ◦ V(L

†
1, a) | L1 `C Q1, L1 `C Q2}

=
⋃

{V((L1;L2)
†, a) | L1 `C Q1, L1 `C Q2}

But since Lemma 18 tells us that L `C Q1;Q2 iff there are L1 and L2 such
that L = L1;L2 while L1 `C Q1 and L2 `C Q2, the latter term is equal to
⋃

{V(L†, a) | L `C Q1;Q2}. 2

Lemma 22 Suppose Rk ⊆
⋃

{V(L†, a) | L `C Qk} for all k (1 ≤ k ≤ n).
Then for all linear programs L:

V(L†, a[R1/X1, . . . , Rn/Xn]) ⊆
⋃

{V(L′†, a) | L′ `C [Q1/X1, . . . , Qn/Xn]L}

Proof. This follows by induction on the number m of occurrences of the
variables X1, . . . , Xn in L. If m = 0 the statement reduces to V(L†, a) ⊆
⋃

{V(L′†, a) | L′ `C L}, which is obviously true. If m > 0 then L has the
form L1;Xk;L2, with fewer than m occurrences of X1, . . . , Xn in L1 and L2.
Write a′ for a[R1/X1, . . . , Rn/Xn]. Then

V(L†, a′) = V(L†
1, a

′) ◦Rk ◦ V(L
†
2, a

′).

From the induction hypothesis it follows that

V(L†
i , a

′) ⊆
⋃

{V(L′†, a) | L′ `C [Q1/X1, . . . , Qn/Xn]Li}

for i ∈ {1, 2}. This, together with the assumption Rk ⊆
⋃

{V(L†, a) | L `C
Qk} and Lemma 21 allows us to draw the desired conclusion that

V(L†, a′) ⊆
⋃

{V(L′†, a) | L′ `C [Q1/X1, . . . , Qn/Xn]L1;Xk;L2}

2
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The Union Theorem can now be proved. It was already clear that execution
of some program P must consist in execution of some L such that L `C P
and, conversely, that execution of any such L amounts to execution of P .
The theorem shows that this squares with the modeltheoretic interpretation
of programs which we have obtained by our translation and in this way
provides a justification for that translation.

Theorem 23 (Union Theorem) VM(P †, a) =
⋃

{VM(L†, a) | L `C P} for
all models M and assignments a.

Proof. That
⋃

{V(L†, a) | L `C P} ⊆ V(P
†, a) follows from Proposition 17.

We prove the reverse, the statement that V(P †, a) ⊆
⋃

{V(L†, a) | L `C P},
by induction on the complexity of P . In case P is atomic the only L such
that L `C P is P itself, so the statement is trivially true. In case P is P1∪P2

or P is P1;P2 and the statement holds for P1 and P2, we can easily derive
the statement for P itself. This leaves it for us to prove that

V((〈Xi ⇐ Pi〉
n
i=1(Pn+1))

†, a) ⊆
⋃

{V(L†, a) | L `C 〈Xi ⇐ Pi〉
n
i=1(Pn+1)}

under the induction hypothesis (*) that for all k (1 ≤ k ≤ n+ 1) V(P †
k , a) ⊆

⋃

{V(L†, a) | L `C Pk} for all assignments a. In fact, we shall strengthen the
statement somewhat and use the induction hypothesis to prove that

V((〈Xi ⇐ Pi〉
n
i=1(Pk))

†, a) ⊆
⋃

{V(L†, a) | L `C 〈Xi ⇐ Pi〉
n
i=1(Pk)}

for all k (1 ≤ k ≤ n + 1). To this end, define relations Rm
k for all m ∈

N by setting R0
k = ∅ and Rm+1

k = V(P †
k , a[R

m
1 /X1, . . . , R

m
n /Xn]). Using a

subinduction onm we prove that Rm
k ⊆

⋃

{V(L†, a) | L `C 〈Xi ⇐ Pi〉
n
i=1(Pk)}

for all m and k (1 ≤ k ≤ n+1). Since this is trivially true for m = 0, suppose
(**) the statement holds for m. The induction hypothesis (*) gives us that

Rm+1
k = V(P †

k , a[R
m
1 /X1, . . . , R

m
n /Xn])

⊆
⋃

{V(L′†, a[Rm
1 /X1, . . . , R

m
n /Xn]) | L

′ `C Pk}

On the other hand, Lemma 22 in combination with the subinduction hypoth-
esis (**) tells us that, for any linear program L′:

V(L′†, a[Rm
1 /X1, . . . , R

m
n /Xn]) ⊆

⋃

{V(L†, a) | L `C [〈Xi ⇐ Pi〉
n
i=1(Pj)/Xj]

n
j=1L

′}
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Combining our findings, we conclude that

Rm+1
k ⊆

⋃

{V(L†, a) | ∃L′ : L `C [〈Xi ⇐ Pi〉
n
i=1(Pj)/Xj]

n
j=1L

′&L′ `C Pk}

Since, by Lemma 20, L′ `C Pk implies that

[〈Xi ⇐ Pi〉
n
i=1(Pj)/Xj]

n
j=1L

′ `C [〈Xi ⇐ Pi〉
n
i=1(Pj)/Xj]

n
j=1Pk

It follows that

Rm+1
k ⊆

⋃

{V(L†, a) | L `C [〈Xi ⇐ Pi〉
n
i=1(Pj)/Xj]

n
j=1Pk}

⊆
⋃

{V(L†, a) | L `C 〈Xi ⇐ Pi〉
n
i=1(Pk)}

We may conclude that
⋃

mR
m
k ⊆

⋃

{V(L†, a) | L `C 〈Xi ⇐ Pi〉
n
i=1(Pk)} for all

k and now reason as follows.

V((〈Xi ⇐ Pi〉
n
i=1(Pk))

†, a) = (Lemma 8)

V(P †
k , a[R

ω
1 /X1, . . . , R

ω
n/Xn]) = (continuity)

⋃

m

V(P †
k , a[R

m
1 /X1, . . . , R

m
n /Xn]) =

⋃

m

Rm
k ⊆

⋃

{V(L†, a) | L `C 〈Xi ⇐ Pi〉
n
i=1(Pk)}

This concludes the proof. 2

10 Conclusion and Further Prospects

In this paper we have shown that at least some non-trivial programming
constructs, including recursion, can be provided with a semantics in the
models of ordinary second-order logic, using the technique of translating
programs and correctness statements into that logic as it is commonly done
in Montague Semantics. The programming language which we have treated
was very small of course, but there seem to be no reasons why we should
not be able in principle to extend it with many useful constructs. This is
one way to continue from here, but there are other possibilities as well. We
speculate on two of them.

• In this paper we have only looked at an imperative language, but the
procedural semantics of logic programming languages is usually done in
the denotational framework as well and makes extensive use of fixpoint
constructions. The idea that we could have a logical treatment of the
procedural semantics of these languages is tantalising.
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• We have taken the naive view that the meaning of a program consists
in a relation between input and output states. But more finegrained
notions of meaning (for example, the meaning of a program as a process
or as an execution trace) do not seem to be in conflict with the methods
employed here. As long as we let programs be translated as terms of
relational type the methods of section 7 seem to be applicable.
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