
Talking about Trees and Truth-Conditions∗

Reinhard Muskens

To Johan

Abstract

We present Logical Description Grammar (LDG), a model of grammar
and the syntax-semantics interface based on descriptions in elemen-
tary logic. A description may simultaneously describe the syntactic
structure and the semantics of a natural language expression, i.e., the
describing logic talks about the trees and about the truth-conditions of
the language described. Logical Description Grammars offer a natural
way of dealing with underspecification in natural language syntax and
semantics. If a logical description (up to isomorphism) has exactly
one tree plus truth-conditions as a model, it completely specifies that
grammatical object. More common is the situation, corresponding to
underspecification, in which there is more than one model. A situa-
tion in which there are no models corresponds to an ungrammatical
input.

1 Introduction

In this paper we present a new model of grammar and the syntax-semantics
interface which allows syntactic and semantic representations to be highly
underspecified, allows syntactic and semantic information to mutually con-
strain each other and which potentially allows reasoning on the basis of un-
derspecified forms. The basic idea underlying this model derives from work
in computational syntax in the early eighties ((Kaplan and Bresnan 1982),
(Marcus, Hindle, and Fleck 1983)) and is sometimes called the Description
Theory of linguistic representation. It holds, in short, that linguistic rep-
resentations must in the first place be conceived of as certain descriptions

∗Journal of Logic, Language, and Information,Volume 10, Number 4, Fall 2001.

1

and can only in a derived sense be understood as whatever is described by
those descriptions. One example of this perspective can be found in Lexical-
Functional Grammar (Kaplan and Bresnan 1982),1 where collecting so-called
f-descriptions preceeds the formation of f-structures. A second example is
in (Marcus, Hindle, and Fleck 1983), where certain parsing anomalies were
avoided by taking descriptions of phrase structure trees, not the trees them-
selves, as the output of a parsing algorithm. The idea is very general, is
essentially theory neutral in the sense that it is compatible with many ap-
proaches to grammatical theory, and need not be confined to syntactic theory
or parsing. In this paper it will be argued that a similar shift to descriptions
is also expedient in semantics. The paper continues work that was done in
(Muskens 1995) and (Muskens 1999), but offers an approach that is much
simpler, and no less precise, than the treatments found there.

The semantic component of a grammar usually outputs representations
which at least determine truth-conditions, but we shall move from truth-
conditions to descriptions of truth-conditions, just as (Marcus, Hindle, and
Fleck 1983) moved from trees to descriptions of trees. In the usual set-
up of a semantic theory (the paradigm is (Montague 1973)) a fragment of
a natural language is translated into an interpreted logical language. We
choose a different approach and let our logical description language essen-
tially function as a metalanguage for English. Our descriptions talk about
the truth-conditions of English sentences much in the same way as, in any
textbook account of logic, mathematical English talks about the truth con-
ditions of predicate logic. In fact, just as any textbook will define the syntax
and the semantics of elementary logic, we will codescribe trees and truth-
conditions—one single logical description will talk about the syntactic and
the semantic component of a linguistic object. There seem to be no a priori
obstacles for also codescribing other levels of the grammar, but these other
levels are not considered here. Since we describe linguistic structures with
the help of classical logic, we shall call our grammars Logical Description
Grammars (ldgs).

1An even earlier example of the descriptions perspective on syntax are the ‘neighbour-
hood grammars’ of (Borščev and Xomjakov 1971). More recent examples are to be found
in the ‘model-theoretic syntax’ of e.g. (Blackburn 1993), (Blackburn, Gardent, and Meyer-
Viol 1993), (Rogers 1996), and (Blackburn and Meyer-Viol 1996). The relevance of the
descriptions view for the theory of discourse is witnessed in (Gardent and Webber 1998)
and (Webber, Knott, and Joshi 1999). A computational perspective, also relevant for the
present undertaking, is given in (Duchier and Gardent 1999).

2

The move from structures and truth conditions to descriptions of struc-
tures and their truth conditions offers a uniform and natural way to under-
specify syntax and semantics. Natural language is replete with syntactic and
semantic ambiguities. In (1) we exemplify just a few cases. (1a) is a paradigm
illustrating the different possibilities with PP attachment; the real life exam-
ple (1b) is similar, with a purpose clause that can be attached to different
VPs, with different results for the meaning of the whole sentence;2 and (1c)
and (1d) are examples of sentences in which scope ambiguities arise.3 The
reader will have no difficulty to add to these examples.

(1) a. John saw a man with a telescope

b. We do know that there are elements within society here who will take
advantage of the quite understandable protest the Orange Order
have organised in order to create mayhem.

c. A barbie doll is sold every two seconds somewhere in the world,
contributing around two billion dollars a year to Mattel.4

d. You may fool all the people some of the time; you can even fool
some of the people all the time; but you can’t fool all of the people
all the time.

The descriptions perspective on language offers an attractive way to model
such ambiguity. Since descriptions may be satisfied by more than one model,
one representation may correspond to many possibilities and in that case
the description compactly represents many readings. This contrasts with
a view in which linguistic representations essentially are structures, as this
view leads to classifying many structures in terms of one. The last strategy

2This sentence is attributed to David Trimble, who is reported to have said it after
meeting the Protestant Orange Order at Drumcree in 1998 (BBC News Online, Friday,
July, 10, 1998—New push for peace at Drumcree).

3(1d) is usually ascribed to Abraham Lincoln, although the historical evidence is some-
what scanty. Note that, while world knowledge makes us interpret (1c) on its ∀∃∃ reading,
the first two clauses of (1d) need not be taken to be fully disambiguated. The first clause
can be taken on its 3∀∃ reading, but the 3∃∀ option seems also possible. Since the first
two clauses of Lincoln’s dictum only function rethorically to set the stage for the third, it
seems that the exact readings here can be left open to some degree. We conjecture that
in such and other instances no disambiguation takes place.

4BBC News Online, Tuesday, November 18, 1997—Barbie undergoes plastic surgery.

3

is certainly possible5 and in semantics is exemplified by the groundbreaking
‘Underspecified Discourse Representation Theory’ (UDRT) of (Reyle 1993).
UDRT essentially generalises existing accounts in Discourse Representation
Theory (Kamp 1981; Kamp and Reyle 1993) and its ‘Underspecified Dis-
course Representation Structures’ (UDRSs) generalise Discourse Represen-
tation Structures. Barring details, a UDRS representation of the ambiguous
(2a) looks like the picture in (2b) (here ⊕ is the Zeevat merge). Here vari-
ous segments of Discourse Representation Structures are connected by some
ordering ≤ which may graphically be represented by a set of lines. The struc-
ture in (2b) can be collapsed in two ways. One way of collapsing it leads to
(2c) and by a subsequent series of substitutions to the ∀∃ interpretation for
the sentence. Another way of collapsing (2b) leads to the ∃∀ reading.

(2) a. Every man loves a woman

b. •

[| [x | man(x)]⇒ •] [y | woman(y)]⊕ •

[| loves(x, y)]

c. •

[| [x | man(x)]⇒ •]

[y | woman(y)]⊕ •

[| loves(x, y)]

Reyle’s approach has been very influential. Deservedly so, as it offers a simple
picture of how disambiguation works, even if the underlying mathematics in
(Reyle 1993) seems a considerable complication of the DRT approach. There
are, however, two questions that have to be answered, one technical and one
conceptual. The technical question that arises concerns the possibility of the
sequence of substitutions that have to be carried out in order to transform
a UDRS like (2c) into the ordinary DRS that represents the ∀∃ reading of
(2a). In predicate logic, for example, it is certainly not possible to substitute

5In a sense feature-based forms of grammar offer classification of structures by struc-
tures. A feature structure classifies all those feature structures it subsumes. See (Muskens
1999) for more information on the possibility of feature structures to classify other feature
structures.

4

∃y[woman(y) ∧ loves(x, y)] for p in ∀x[man(x) → p] and obtain the desired
capturing of the x in loves(x, y) by the universal quantifier. We can ‘solve’
this problem by letting forms such as (2b) and (2c) be uninterpreted represen-
tations or by employing ‘metavariables’ (which also shifts the interpretation
of the expressions involved), but it would be nicer to interpret ambiguous
forms in the same way as their unambiguous counterparts.

The conceptual question—much more important than the technical one—
is why a theory that allows for underspecified representations should be a
complication of a theory that does not. Ambiguity is not something that
should be explained over and above an existing linguistic theory. Ambiguity
is an inherent feature of language and should preferably be a direct conse-
quence of the way in which linguistic representation is modeled. A theory
which arrives at underspecified representations by means of complicating an-
other theory in which all representations are completely specified seems to
predict that language would have been simpler if only it were not ambiguous.
In all probability however, language would not have been simpler (but much
more complex) if it were not ambiguous.

In the descriptions view that we advocate underspecification naturally
follows from the chosen perspective. Indeed, complications of the grammar
would be necessary if we were to arbitrarily rule out the possibility that one
representation is satisfied by many models. We shall show that the problem
with substitution noted above disappears in a pure descriptions approach and
we shall also see that representations very much like the one depicted in (2b)
appear as a consequence of our theory. However, such representations will not
be independently stipulated, but will be epiphenomenal. Our descriptions
will be descriptions of ordinary trees and truth-conditions, but can have
parts that are not unlike (2b).

The set-up of the rest of the paper is as follows. In the next section we
shall informally introduce Logical Description Grammars. Section 3 then
gives a formalisation of their syntax and that part of semantics in which
the binding of variables plays no role. Section 4 gives some applications and
shows how syntactic underspecification naturally follows from the chosen per-
spective. Section 5, finally, shows how the given semantics can be extended
to the case of variable binding. The paper ends with a conclusion.

5

2 The Linguistic Model

The linguistic model underlying Logical Description Grammars derives from
(Lexicalised) Tree Adjoining Grammars ((l)tags, (Joshi, Levy, and Taka-
hashi 1975; Schabes 1990)) and from D-Tree Grammars (dtgs, (Vijay-Shankar
1992), (Rambow, Vijay-Shanker, and Weir 1995)).6 The purpose of this sec-
tion is to give a very informal sketch of the basic idea behind ldgs and their
historical continuity (as far as syntax is concerned) with ltags and dtgs.
The next section will then provide more formal background. We shall give
our informal sketch by considering the simple sentence in (3) and analysing
it on the basis of the three related theories.

(3) John suddenly saw Mary

If (3) is analysed with the help of a Lexicalised Tree Adjoining Grammar, first
lexical items are associated with each word, so that we arrive at a sequence
of elementary trees as in (4).

(4)

DP

John

VP

AP

suddenly

VP∗

S

DP↓ VP

V

saw

DP↓ DP

Mary

These elementary trees can then be combined using the operations of ad-
joining and substitution. The elementary tree for suddenly, for example, can
be adjoined to the tree for saw at the latter’s internal VP node. This then
results in the following structure.

(5) S

DP↓ VP

AP

suddenly

VP

V

saw

DP↓

6The approach to underspecified semantics taken in (Muskens 1995) was very much
inspired by Description Theory and the work in (Vijay-Shankar 1992) but did not offer an
actual integration with Tree-Adjoining Grammars. In this paper we endeavour to set this
right.

6

The trees for John and Mary can subsequently be attached to the two sub-
stitution DP nodes (marked with ↓s) and a correct analysis will result.

This very simple example illustrates one of the great attractions of the
ltag framework and also the rudiments of another. The attraction it fully
illustrates is the naturalness with which subcategorization is handled. In this
example the verb saw subcategorizes for a subject and an object DP, which is
directly reflected in the geometry of its elementary tree. The other attraction
is that ltags provide for a mechanism in which unbounded dependencies can
be treated at the lexical level. Consider the S node contributed by saw. In
(4) the distance (measured as the number of immediate dominance edges)
between this node and the saw node was 3, while in (5) it has become 4
as a result of adjoining the suddenly tree. More adjunctions may further
increase this distance. This shows that material can ‘travel’ from its original
position and as long as the number of intervening adjunctions is unlimited,
the distance that can be travelled is unbounded.

(6)

DP

Mary

DP

Bill

S

DP↓ VP

V

claims

S∗ DP

John

VP

AP

suddenly

VP∗

S

DP↓ S

DP↓ VP

V

saw

DP

e

The example in (6) illustrates this further. Here the word saw is connected
with a variant of the saw tree in (4) (words may come with more than one
tree). The variant essentially embodies the possibility that extraction has
taken place from the object position of the transitive verb. Adjoining the
suddenly tree to the VP node of the new saw tree and adjoining the claims
tree to the lower S node increases the distance between the ‘extracted’ DP
and its trace. No additional movement operation is necessary. Dependencies
(such as case-marking) between extracted element and trace can be regulated
on the lexical level and will persist after the movement that is a consequence
of tree adjunction has taken place. The lexical tree therefore defines an
extended domain of locality. In this paper we shall make use of this extended
domain of locality for semantic purposes.

Lexicalised Tree Adjoining Grammars definitely offer a structural ap-
proach to linguistic representations, but a strongly related descriptions ap-
proach was given in the D-Tree Grammar framework of (Vijay-Shankar 1992)

7

and (Rambow, Vijay-Shanker, and Weir 1995). This work is not only based
on ltags, but also on the pioneering (Marcus, Hindle, and Fleck 1983),
already mentioned in the introduction. As Vijay-Shankar notes in (Vijay-
Shankar 1992), the operation of tree adjoining is destructive in the sense
that it does not preserve tree geometric relations. For example, in (4) the S
node in the elementary tree for saw is the grandmother of the V node, but in
(5) this is no longer so. Within a descriptions approach such destruction can
be avoided, as will become clear from example (7). Here the elementary trees
are no longer taken to be structures, but are certain descriptions summing
up everything that is true in all trees in which the lexical element appears.
In the lexical element connected with the word saw the single VP node of
(4) is replaced by a pair of ‘quasi-nodes’ which stand in a relation of domi-
nation, i.e. it is stated that the two VP nodes can be identical or that any
positive number of immediate dominance links may intervene. The relation
of dominance is indicated with dashed lines while immediate dominance is
represented with uninterrupted lines.

(7)

DP

John

VP

AP

suddenly

VP

S

DP VP

VP

V

saw

DP DP

Mary

The correct structure is now obtained by a series of subsertions. A subsertion
essentially consists of the addition of extra dominance edges. For example,
the result of subserting the suddenly tree into the saw tree is given in (8).
This operation essentially adds two dominance relations, one between the
VP daughter of S and the mother of AP and one between the sister of AP
and the mother of V. Adding two more edges (one between the DP daughter
of S and the DP mother of John and one between the DP sister of V and
the DP mother of Mary) results in a D-tree that is already very close to
the desired result. The latter is obtained by an operation which removes
dominance edges and identifies their end nodes. It is important to note
that the whole process can be described in terms of a monotonic increase of
information: Subsertion is the addition of dominance edges, the operation

8

of sister-adjunction, which we shall not illustrate here, is a result of similar
additions, and the final operation which removes dominance edges in fact
strengthens statements about dominance to identity statements.

(8) S

DP VP

VP

AP

suddenly

VP

VP

V

saw

DP

While D-Tree Grammars thus make a very important step towards a fully
declarative formulation of Tree-Adjoining Grammars they still have an op-
erational flavour. Subsertion and sister-adjunction are two operations on
D-trees and the final move of replacing dominance edges by identities is an-
other one. Information must be added in order to arrive at the possible
structures and the grammar operationally prescribes how the additions may
come about. In contrast, we propose a more radically declarative set-up by
characterising the possible phrase structure trees corresponding to a given
sentence S simply as the set of models of a certain description D. How D
is composed out of an observable statement about S, a lexicon, and other
general information will be explained in the next section. Here we explain
the basic intuition behind our set-up. Consider (7) again. There are three
kinds of ‘quasi-nodes’ in the D-trees in this picture.

1. Nodes that will never be identified with other nodes, these we call
saturated.

2. Nodes that may attach to material below them, these we will mark
with a −.

3. Nodes that may attach to material above them, these we will mark
with a +.

9

For example, the VP immediately dominating the V will always be attached
to material above it, in any tree in which the lexical item partakes, and is
therefore marked +, while the VP daughter of S needs material below it and
therefore gets a −. The S node in the elementary tree for saw will not get
any material above it, as it ends up as the root of the structure here, but
in other structures it will have a subordinated position. Therefore it gets a
+. In general, the roots of ‘components’ in dtg are marked positively, while
‘substitution nodes’ are marked negatively. If nodes are marked in this way
we find that the number of + nodes exceeds the number of − nodes by 1.
We shall make up for this by adding an extra root node r and marking it
negatively. The picture in (9) results.

(9) r−

DP+

John

VP+

AP

suddenly

VP−

S+

DP− VP−

VP+

V

saw

DP− DP+

Mary

(9) is in fact a graphical representation of a description of the original input.
Other inputs will lead to similar descriptions. The models of such descrip-
tions can be obtained by pairing off + and − nodes in a one-to-one fashion
and identifying the nodes thus paired. I.e. each + node must be identified
with a − node and vice versa, but no two +s and no two −s can be identified.
The pairing must additionally satisfy the following constraints:

• The result must be a linguistic tree.

• The order of the words must be as given.

• Category information must be respected.

More constraints (e.g. feature information) may of course be added.
There is an obvious close connection between our + and − nodes on

the one hand and positive and negative occurrences of types in complex

10

types in Categorial Grammar (CG).7 The mechanism that finds models of
our descriptions by pairing off node names which are marked + and − can
perhaps be called the chemistry of composition.8

This then is the syntactic part of our linguistic model. Each lexical item
consists of a description which we may associate with an elementary tree.9

The description gives information about phrase structure nodes that are an-
chored to a certain lexeme. This information not only concerns the tree
geometric relations among those nodes and their category labeling, but also
whether they are anchored positively or negatively to the lexical item they
partake in. Parsing simply consists in pairing off + nodes and − nodes in a
way which respects the constraints that were mentioned. In the next section
we shall give a simple formalisation of this model in classical logic.

3 Logical Description Grammars Formalised

The graphical representations of descriptions in the previous section are ex-
tremely handy and we shall continue using them, but they are used as a
shorthand for sentences or sets of sentences in classical logic. The short-
hand is not perfect and in this section we explain the ‘official’ theory and its
relation to the graphical forms. We distinguish three kinds of descriptions:

• general descriptions, which are nothing but axioms,

• input descriptions, which vary per sentence, and

• lexical descriptions, which embody the elementary trees of the previous
section.

7Interestingly, Prof. Guy Perrier of Nancy University in unpublished work indepen-
dently arrives at a syntactic model strikingly similar to ours by translating proof nets
from Lambek Categorial Grammar / Linear Logic in a certain way (Perrier 1998). The
similarity between D-Trees and CG is also the subject of (Hepple 1998). In future work
we intend to investigate the obvious but fascinating possibility of letting proof nets for
(Lambek) Categorial Grammars be described by an ldg.

8Another useful metaphor comes from the domain of magnetism. Think of positively
(negatively) marked constants as of magnets with their positive (negative) poles uncovered.
Positive magnets like to combine with negative ones and vice versa, but repulse each other.
Saturated nodes are combinations of a positive and a negative magnet and leave no room
for other ones.

9Or, what is more common, with a set of such trees, among which one must be chosen.
We shall consider such ambiguity in the next section.

11

Each of these will be considered in turn.

3.1 General Descriptions

The structures we are describing are trees and we need axioms to rule out
non-trees. The set A1–A8 below (see also (Cornell 1994; Backofen, Rogers,
and Vijay-Shankar 1995)) essentially requires the binary relations �

+ and
≺ to behave like proper dominance and precedence. A1, which uses the
abbreviation k �

∗ k′ for k �
+ k′ ∨ k = k′, says that the root r dominates

all other nodes; A2–A5 ensure that �
+ and ≺ are strict partial orderings;

A6 is the Exhaustivity property that is typical of linguistic trees (nodes are
either identical or are in a proper dominance or precedence relation), while
A7 and A8 embody the requirement of Inheritance (precedence relations are
inherited from ancestors).

A1 ∀k r �
∗ k

A2 ∀k ¬ k �
+ k

A3 ∀k1k2k3 [[k1 �
+ k2 ∧ k2 �

+ k3]→ k1 �
+ k3]

A4 ∀k ¬ k ≺ k

A5 ∀k1k2k3 [[k1 ≺ k2 ∧ k2 ≺ k3]→ k1 ≺ k3]

A6 ∀k1k2 [k1 ≺ k2 ∨ k2 ≺ k1 ∨ k1 �
+ k2 ∨ k2 �

+ k1 ∨ k1 = k2]

A7 ∀k1k2k3 [[k1 �
+ k2 ∧ k1 ≺ k3]→ k2 ≺ k3]

A8 ∀k1k2k3 [[k1 �
+ k2 ∧ k3 ≺ k1]→ k3 ≺ k2]

The next two axioms concern the notion of immediate dominance (�) and—
very incompletely—regulate its relation with �

+. A9 states that immediate
dominance entails proper dominance, while A10 excludes a possibility that
would be in conflict with the notion of immediate dominance being immediate
dominance.

A9 ∀k1k2 [k1 � k2 → k1 �
+ k2]

A10 ∀k1k2k3 ¬[k1 � k3 ∧ k1 �
+ k2 ∧ k2 �

+ k3]

12

In fact, A1–A10 do not suffice to axiomatise the notion of linguistic tree,
as they are still satisfied by many undesirable structures. Infinite trees are
not ruled out, for example, even though we are only interested in finite ones.
Another possibility that should not be allowed to exist is that two nodes could
be in a �

+ relation without there being a finite path of nodes connected by
� between them. The axioms do not exclude this possibility. However, if
we choose to rule out such non-intended models with axiomatic means, the
exclusion of infinite trees would take us beyond the resources of first-order
logic. Below we shall see how a combination of the present axioms with other
descriptions will in fact rid us of unintended models.

Nodes in linguistic trees are labeled with category information10 and we
shall assume a domain of labels, for which we introduce a special primitive
type l. The objects of type l are denoted with label names such as dp, pp, np,
etc. The labeling must be functional of course, as (say) a DP can not also
be a (say) VP, and we shall express that node n is labeled dp as ℓ(n) = dp,
where ℓ is the labeling function. In order for this to have the intended effect,
we also need an axiom scheme to rule out the perverse situation that label
names such as dp and vp corefer, i.e. we must require A11.

A11 c1 6= c2, if c1 and c2 are distinct label names

Instantiations of this axiom scheme will be sentences like dp 6= vp and ap 6=
pp.

The axioms A12–A14, finally, are part of the machinery driving the chem-
istry of composition introduced in the previous section. We distinguish be-
tween lexical nodes (nodes which carry a lexeme) and non-lexical ones and
follow the ltag and dtg approaches by requiring that all nodes should be
anchored. In fact, we go beyond this and require each node to be both posi-
tively anchored and negatively anchored. The functions α+ and α− (of type
νν, where ν is the type of tree nodes) give the positive and negative anchors
of each node. A12 now requires that the positive anchor of a node is lexical
and A13 requires the same for negative anchoring, but exempts the root.
The root is negatively anchored to itself (A14).

A12 ∀k lex(α+(k))

A13 ∀k [k = r ∨ lex(α−(k))]

10For an easy formulation of the theory we shall identify nodes carrying a terminal string
with the first node above them carrying a category symbol.

13

A14 α−(r) = r

How exactly these axioms, together with other descriptions, help enforce
a pairing of positively marked and negatively marked node names will be
described shortly.

3.2 Input Descriptions

Input descriptions are constructed on the basis of the observable properties
of linguistic objects. In this paper they will all have the same form, which
is exemplified by (11), the input description of (3), repeated as (10). The
description says that there are four lexical nodes, carrying lexemes John,
suddenly, saw and Mary respectively; that each of these precedes the next;
and that the sentence contains no more lexical nodes than these four.

(10) John suddenly saw Mary.

(11) ∃k1k2k3k4(k1 ≺ k2 ≺ k3 ≺ k4

∧ john(k1) ∧ suddenly(k2) ∧ saw(k3) ∧ mary(k4)
∧ ∀k(lex(k)↔ (k = k1 ∨ k = k2 ∨ k = k3 ∨ k = k4)))

Input descriptions are the only part of our set-up which varies. As will be seen
below, the condition which limits the set of lexical nodes plays an important
part in ensuring that the models of our descriptions will always be finite.

3.3 Lexical Descriptions

The last set of descriptions we are considering is the lexicon. It contains two
kinds of descriptions, classifying descriptions and elementary tree descrip-
tions.

3.3.1 Classifying Descriptions

We need entries classifying John and Mary as proper names, suddenly as
an adverb and saw as either a transitive verb or a common noun. These
entries must also contain information about the semantic values of words.
In the classifying descriptions in (12) below, John and Mary are associated
with semantic values of a certain type, while saw and suddenly are connected
with values of other types. The logical translation of saw varies, of course,
depending on whether the word occurs as a noun or a verb.

14

(12) a. ∀k[john(k)→ (pn(k) ∧ σπ(k) = john)]

b. ∀k[mary(k)→ (pn(k) ∧ σπ(k) = mary)]

c. ∀k[suddenly(k)→ (adv(k) ∧ σ(πτ)(πτ)(k) = suddenly)]

d. ∀k[saw(k)→ ((cn(k) ∧ σπτ (k) = saw1) ∨
(tv(k) ∧ σπ(πτ)(k) = saw2))]

The typing here is slightly different from what is usual, for reasons that will
become apparent below. But the main mechanism behind it is standard.
From basic types for names (here: π) and sentences (here: τ) complex types
are built in the common way. For example, the type for properties such
as saw1 is πτ and the type for a constant such as suddenly, which forms a
property if it is given one, is (πτ)(πτ). In (12) we have used our official
notation and have employed a family of functions σα to associate nodes with
semantic values of type α, but we shall drop the superscripts immediately
for the sake of readability and only use them where we think it enlightening.

3.3.2 Elementary Tree Descriptions

Apart from descriptions that classify words and give semantic translations,
such as the ones in (12), the lexicon also has entries which associate substruc-
tures of trees with basic word classes. Since these elementary tree descriptions
tend to get rather large, we introduce some abbreviations before discussing
an example. Firstly, the common combination k�k′∧k�k′′∧k′ ≺ k′′ will be

abbreviated as ∆(k, k′, k′′). Secondly, the abbreviation t
+

←֓ {t1, . . . , tn} will
be used to express the information that t1, . . . , tn are exactly the elements

that are positively anchored to t. Formally, t
+

←֓ {t1, . . . , tn} abbreviates

(13) ∀k(α+(k) = t↔ (k = t1 ∨ . . . ∨ k = tn))

The shorthand t
−

←֓ {t1, . . . , tn} is used similarly, with α− replacing α+.
Using these abbreviations we can now give the elementary tree description

for adverbs.

(14) ∀k[adv(k)→ ∃k2k3[ℓ(k) = ap ∧ ℓ(k2) = vp ∧ ℓ(k3) = vp ∧

∆(k2, k, k3) ∧ σ(k2) = σ(k)(σ(k3)) ∧ k
+

←֓ {k, k2} ∧ k
−

←֓ {k, k3}]]

15

The statement requires nodes that carry an adverb to be labeled AP and have
two other VP nodes with them. It also requires certain immediate dominance
and precedence relations to hold, and expresses the semantics of one node as
that of a second applied to that of a third. Lastly, it strictly circumscribes
the nodes that are positively or negatively anchored to the adverb.

Graphical representations such as the ones we have seen earlier are handy
for working with elementary tree descriptions. The following conventions will
be used for the translation from logic to pictures.

1. Nodes are labeled as usual and node names (variables or constants) are
given as subscripts.

2. Uninterrupted lines stand for immediate dominance (�) relations, as
usual. Left-right ordering between sisters or between terminal nodes
stands for precedence (≺). Dashed lines stand for dominance (�∗).

3. Nodes which are positively but not negatively anchored are marked
+, while nodes which are negatively but not positively anchored are
marked −. Nodes which are anchored both ways are saturated and
unmarked. The situation that a node is not anchored at all will never
occur and the anchor itself may be marked with a 3.

4. The semantic value σ(k) of a node k may be written under it.

For (14) these rules help us draw the picture (15). The classification of the
picture with ‘adv:’, means that the description will hold whenever adv can
be predicated of the anchor k. The solid lines and the ordering between k
and k3 are an alternative to writing ∆(k2, k, k3); writing σ(k)(σ(k3)) below
k2 is no different from stating σ(k2) = σ(k)(σ(k3)); etc. (14) can essentially
be reconstructed if (15) is given, but some extra readability has been gained.
In many situations working with graphical representations such as (15) will
be easier than working with the official underlying representation (14).

(15) adv: VP+
k2

σ(k)(σ(k3))

AP3

k VP−
k3

If (14) is conjoined with the information that k carries the lexeme suddenly
and with (12c) then the picture in (16) emerges. The semantics of the top
VP can be instantiated to suddenly(σ(k3)).

16

(16) VP+
k2

suddenly(σ(k3))

APk

suddenly

VP−
k3

The following are elementary tree descriptions for proper names, common
nouns and transitive verbs. For the moment we shall stick to the official
predicate logical representation.

(17) ∀k[pn(k)→ (ℓ(k) = dp ∧ k
+

←֓ {k} ∧ k
−

←֓ ∅)]

(18) ∀k[cn(k)→ (ℓ(k) = np ∧ k
+

←֓ {k} ∧ k
−

←֓ ∅)]

(19) ∀k[tv(k)→ ∃k2k3k4k5k6[ℓ(k) = v ∧ ℓ(k2) = s ∧ ℓ(k3) = dp ∧
ℓ(k4) = vp ∧ ℓ(k5) = vp ∧ ℓ(k6) = dp ∧∆(k2, k3, k4) ∧∆(k5, k, k6) ∧
k4 �

∗ k5 ∧ σ(k5) = σ(k)(σ(k6)) ∧ σ(k2) = σ(k4)(σ(k3)) ∧

k
+

←֓ {k, k2, k5} ∧ k
−

←֓ {k, k3, k4, k6}]]

3.4 Parsing as Deduction

The hearer of (10) who has concluded (11) and who has the lexical descrip-
tions discussed above in her lexicon may now do some elementary reasoning.
She may take witnesses 1, 2, 3, and 4 for the nodes described in (11),11 which
leads to (20), and she may combine this information with (12) in order to
obtain (21).

(20) 1 ≺ 2 ≺ 3 ≺ 4 ∧ john(1) ∧ suddenly(2) ∧ saw(3) ∧mary(4)
∧ ∀k(lex(k)↔ (k = 1 ∨ k = 2 ∨ k = 3 ∨ k = 4))

(21) a. pn(1) ∧ σ(1) = john

b. adv(2) ∧ σ(2) = suddenly

c. (cn(3) ∧ σ(3) = saw1) ∨ (tv(3) ∧ σ(3) = saw2)

11Numerals 1, 2, 3, . . . will be used as constants of the node type ν. Clearly, none of the
usual properties of 1, 2, 3, . . . (as names for natural numbers) are intended to follow from
this usage. Statements such as 4 = 11 below will be perfectly consistent.

17

d. pn(4) ∧ σ(4) = mary

The third item here is a disjunction, which may be eliminated by considering
the disjuncts one by one. Let us suppose that our hearer hypothetically
assumes (22).

(22) tv(3) ∧ σ(3) = saw2

With the help of the information obtained or hypothesized thus far and the
elementary tree descriptions in (14)–(19) the following conjunctions can be
derived. Here fresh witnesses are taken wherever required.

(23) ℓ(1) = dp ∧ 1
+

←֓ {1} ∧ 1
−

←֓ ∅

(24) ℓ(2) = ap ∧ ℓ(5) = vp ∧ ℓ(6) = vp ∧∆(5, 2, 6) ∧ σ(5) =

suddenly(σ(6)) ∧ 2
+

←֓ {2, 5} ∧ 2
−

←֓ {2, 6}

(25) ℓ(3) = v ∧ ℓ(7) = s ∧ ℓ(8) = dp ∧ ℓ(9) = vp ∧ ℓ(10) = vp ∧
ℓ(11) = dp ∧∆(7, 8, 9) ∧∆(10, 3, 11) ∧ 9 �

∗ 10 ∧
σ(10) = saw2(σ(11)) ∧ σ(7) = σ(9)(σ(8)) ∧

3
+

←֓ {3, 7, 10} ∧ 3
−

←֓ {3, 8, 9, 11}

(26) ℓ(4) = dp ∧ 4
+

←֓ {4} ∧ 4
−

←֓ ∅

We are now in fact at the stage we have previously described informally in
(9). In (27) this figure is considered again, with subscripts added to the
nodes in order to facilitate comparison with the formal material.

(27) r−

DP+
1

john

John

VP+
5

suddenly(σ(6))

AP2

suddenly

VP−
6

S+
7

σ(9)(σ(8))

DP−
8

VP−
9

VP+
10

saw2(σ(11))

V3

saw

DP−
11

DP+
4

mary

Mary

18

The series of elementary trees here conveniently sums up the information
in (23)–(26) and the input description (11), plus the information (from the
axioms) that there must be a root node r which is negatively anchored.

Our hypothetical hearer may now reason as follows. By the axioms for ≺
and the precedence information in (20), 1, . . . , 4 must be pairwise distinct.
All nodes must be positively anchored to a lexical node (A12). Since, by
(20), 1, . . . , 4 are the only lexical nodes, it follows from (23)–(26) that each
node in the domain must be designated by one of 1, 2, 3, 4, 5, 7, or 10. For
each distinct pair n, n′ of these constants there are two possibilities.

1. Some statement of the form n′′ +

←֓ A, with n, n′ ∈ A is one of the
conjuncts of one of (23)–(26). Then n 6= n′ follows from that lexical
description and the tree axioms. Or,

2. it can be derived that n and n′ are positively anchored to distinct lexical
elements, in which case we also have n 6= n′.

So 1, 2, 3, 4, 5, 7, and 10 make up the whole domain of nodes and no
two distinct constants in this set can corefer. By a similar argument, but
using the information about negative anchoring and what is known about
the root, it can be shown that 2, 3, 6, 8, 9, 11, and r also make up the whole
domain and are pairwise distinct. It follows that each of 1, 4, 5, 7, and 10
must corefer with exactly one of 6, 8, 9, 11, and r. Given the additional
information about labeling and tree structure contained in (20) and (23)–
(26) and the constraints imposed upon these in the axioms, there is only one
model in which this is the case. In this model it holds that

(28) 1 = 8 ∧ 4 = 11 ∧ 5 = 9 ∧ 6 = 10 ∧ 7 = r.

This means that we arrive at the following picture in which our tree is com-
pleted and the semantics of its root node is computed.

(29) S
suddenly(saw2(mary))(john)

DP

john

VP

AP

suddenly

VP

V

saw

DP

mary

19

(30) σ(r) = suddenly(saw2(mary))(john)

But our hearer is not finished yet. She has derived (30) on the basis of the
assumption in (22) and so the alternative possibility (31), in which saw is
taken to be a common noun, must be considered.

(31) cn(3) ∧ σ(3) = saw1

Clearly, this possibility is not satisfiable. It will lead to a description as
in (32) below (semantic information is suppressed here). But here there
is no one-to-one pairing between positively marked and negatively marked
node names, let alone a pairing which respects category, tree and ordering
information.

(32) r−

DP+

John

VP+

AP

suddenly

VP− NP+

saw

DP+

Mary

It can be concluded that the semantical information (30) follows from the
original input description (11), given the set of general descriptions and lex-
ical descriptions G′considered thus far. Suppose that we have a grammar G
which is a set of such descriptions. Then, writing Γ |=G ϕ for Γ,G |= ϕ, we
may conclude that (11)|=G(30) if G′ ⊆ G. It is in this sense that our notion of
grammar is purely declarative. We are interested in finding a suitable G such
that, given any string of words of the language, that string is acceptable if
and only if the input description connected with the string is consistent with
G. Moreover, the linguistically relevant properties of a grammatical string
should be |=G consequences of its input description.

Note that the way in which the semantic information in (30) was obtained
is clearly reminiscent of the way in which feature descriptions are collected
in Lexical-Functional Grammar. We shall come back to this shortly. An-
other thing which is to be noted is that all values of σ in the example can be
denoted by means of closed terms. In section 5 it will be explained that a
straightforward attempt to apply the method to sentences with quantifying
DPs fails. Quantification essentially involves nodes with open expressions as
their translations, or so at least it seems. A straightforward approach then
leads to difficulties with substitution, as a logically minded reader may al-
ready have noticed. How these hurdles can be overcome will also be explained
in section 5.

20

3.5 Implicit Information

We have seen that the descriptions considered thus far admit only finite
models. This was not because some explicit stipulation excluded infinite
structures but followed from the way input descriptions and elementary tree
descriptions were set up. Input descriptions circumscribe the lexical nodes
of the tree as a specific finite set and elementary tree descriptions specify the
finite number of elements positively or negatively anchored to any given lex-

ical node. In particular, they always introduce statements t
+

←֓ {t1, . . . , tp}

and t
−

←֓ {t′1, . . . , t
′
q}, where t denotes the lexical element.12 The trick here

is that we do not try to describe once and for all what are the acceptable
structures of the language. Since finite structures of arbitrary size are ac-
ceptable this is not possible with first-order means.13 Instead we require our
input descriptions to have a certain form. The rest of our descriptions accept
a given input just if they are consistent with its description.

The information that structures are always finite thus is implicit. Al-
though it is true it cannot be derived explicitly from our descriptions. In
order to make it true we have accepted some integrity constraints: input
descriptions have a certain form and elementary tree descriptions always

contain statements of the forms t
+

←֓ {t1, . . . , tp} and t
−

←֓ {t′1, . . . , t
′
q}. In

fact the general processing strategy discussed above, which lets us obtain
models by pairwise identification of node names is correct in virtue of an-
other integrity constraint. It depends on the requirement that if D contains

t
+

←֓ {t1, . . . , tp} (or t
−

←֓ {t1, . . . , tp}), we can derive t′ 6= t′′ from D and the
general descriptions, for all t′, t′′ ∈ {t1, . . . , tp}. When writing a grammar, we
must make sure that this constraint will be satisfied by new tree descriptions.
But this is easy, because if t′ 6= t′′ does not follow from a given new D it can
simply be added to it as a conjunct.

Now consider the following integrity constraint:

• Whenever an elementary tree description negatively anchors a term t
it also introduces a conjunct t′ � t for some term t′.

I.e. whenever some element is negatively anchored by an elementary descrip-

12In both cases t is a variable that is universally quantified over and the other terms are
variables that are existentially quantified.

13It is a theorem about first-order logic that any theory that has arbitrarily large finite
models also has an infinite model. (This follows directly from Compactness.)

21

tion it is also provided with a mother.14 It is easily seen that our descriptions
thus far have respected this constraint. This is good because the next state-
ment follows from it.

• Whenever t′ �+ t holds in a model of one of our descriptions, there are
t1, . . . , tm (m ≥ 0) such that t′ � t1, t1 � t2, . . . , tm−1 � tm, tm � t hold
in that model.

The integrity constraint thus makes sure that the relation between �
+ and

� is as expected. We prove the statement as follows. Suppose t′ �+ t. Since
our models are finite by the first integrity constraint, there are only a finite
number of s such that t′ �+ s�

+ t. Let m be this number and assume that
the theorem holds for all m′ < m. Note that as a consequence of the way our
descriptions are set up, for every non-root element there must be an explicit
negative anchor. In particular, since t is not the root, there must be an

elementary description D containing a statement s′
−

←֓ {s′1, . . . , s
′
q}, where t

is one of the {s′1, . . . , s
′
q}. By the integrity constraint above D also contains

a conjunct of the form t′′ � t. We consider the relation between t′ and t′′.
It is impossible that t′ ≺ t′′ by A7, A8 and A4. The same axioms prevent
t′′ ≺ t′ being the case, while A10 excludes t′′ �+ t′. By A6 we are left with
the possibilities that t′′ = t′ or that t′ �+ t′′. In the first case we are through
and conclude that m = 0. In the second case we can take tm to be t′′ and
use induction.

The previous uses of implicit information were of a logical nature and
make the basic machinery of Logical Description Grammars run smoothly.
But we can easily imagine integrity constraints of a more linguistic nature.
For example, up to now we have used (and we will continue to use) a mild
version of X ′ theory to describe our trees. Again there was no explicit de-
scription to the effect that trees should satisfy theX ′ schema, but an integrity
constraint may well be imposed on lexical descriptions so that in fact they
do. The general set-up not only leaves room for this but in fact we see that
many other decisions of a linguistic nature remain open as well. It should be
emphasized therefore that, to a high degree, Logical Description Grammar
just offers and is intended to offer a formalism for linguistic work, it does not
in itself offer what linguists call a theory (although the descriptions form a
theory in the logicians’ sense). LDGs offer so much room for linguistic choices

14The root is negatively anchored but has no mother. This means that elementary tree
descriptions cannot redundantly negatively anchor the root.

22

of design that much of the hard linguistic work still needs to be done. The
main theoretical commitment that is made by LDG is the view that linguistic
representations on all levels are descriptions, not structures. This unifies the
forms of representations on all levels of the grammar and, as we shall argue
below, it explains the pervasiveness of ambiguity in language. But the choice
for descriptions is largely orthogonal to many other linguistic choices and
although we can use the notion of implicit information to implement such
choices, there is nothing in the formalism that enforces them.

3.6 Adding Features

The syntactic formalism developed thus far has enough detail to illustrate
our theory of syntactic and semantic underspecification, but it is too coarse-
grained for actual syntactic description. For the latter we additionally need
a feature system. We briefly consider such a feature system, basing ourselves
upon the first-order axiomatisation given in (Johnson 1991).

(33) agr • num • sg

• agr
subj •

A feature structure consists of a collection of feature nodes connected by
labeled transitions, as in (33). We distinguish between tree nodes and feature
nodes and give the latter their own type ϕ. The attributes labeling transitions
will have type α.

(34) ∃ff ′f ′′[arc(f,agr, f ′) ∧ arc(f,subj, f ′′) ∧ arc(f ′′,agr, f ′) ∧
arc(f ′,num,sg)]

That feature nodes are connected can be expressed using the three-place
relation symbol arc,15 with arc(f1, a, f2) saying that f1 and f2 are connected
by an arc labeled a. This is illustrated in (34), a statement that is satisfied
by the graph in (33). Here constants such as agr, subj, num, pers,. . . are
of type α and denote attributes, while constants such as sg, pl, 1st, 2nd,
3rd, +, −, . . . are of type ϕ. We typically use them to denote graph nodes
that have no successors and stand for atomic feature values. The set of all
constants of type α is called Cval.

15The relation symbol arc has type (ϕ× α× ϕ)→ t.

23

The following three axioms are a direct adaptation from (Johnson 1991).
The first puts a functionality requirement on the transition relation. The sec-
ond embodies the constraint that atomic features have no further attributes.
And the third axiom schema, reminiscent of A11, gives constant-constant
clashes by requiring that sg 6= 3rd, sg 6= pl, etc.

A15 ∀a∀f1f2f3[[arc(f1, a, f2) ∧ arc(f1, a, f3)]→ f2 = f3]

A16 ∀a∀f¬ arc(c, a, f), where c ∈ Cval

A17 c 6= c′, for all syntactically distinct pairs c, c′ ∈ Cval

We decorate tree nodes with features, writing n for the feature decorating
n (i.e. we use boxing as a function of type νϕ). Feature information can
be added to our lexical descriptions by adding conjuncts. The following
example sketches how within our framework LFG-like f-structures can be
combined with phrase structure trees in a way that is essentially identical to
the set-up in (Kaplan and Bresnan 1982).16 We not only need to augment the
information contained in classifying descriptions, but also the information in
elementary tree descriptions. The classifying description for a word like see,
for example, could contain the information that the verb is in the present
tense and requires its subject not to be third person singular:17

(35) ∀k[see(k)→ [tv(k) ∧ σ(k) = saw2 ∧ arc(k ,tense, pres) ∧
∀k′[arc(k , subj, k′)→ ¬[arc(k′ ,num, sg) ∧ arc(k′ , pers, 3rd)]]

Elementary tree descriptions need also be enriched with feature information.
The description for transitive verbs in (19), for example, could be made to

16The procedure sketched below can clearly also be used to provide tree nodes with
feature decorations as found in the LTAGs formalism. We choose to rather eclectically
combine LTAG-like phrase structures with LFG-like f-structures because a) we like to
emphasize the proximity of our descriptions approach to that of LFG and stress our
intellectual indebtedness to (Kaplan and Bresnan 1982) and b) we like our example to
contain complex-valued features (features in LTAGs tend to be single-valued and therefore
are simpler). Although we in fact do believe that the present combination of the two
theories does have certain advantages over each of its components taken separately, we
shall not argue for this in this paper.

17Of course it is a bit wasteful to give such completely regular information in each
classifying description, and this can easily be avoided, but for the purpose of exposition
we will leave it at this.

24

contain the extra conjunct in (36). This not only expresses that the feature
structures of certain nodes stand in certain functional relations, but also that
all nodes on the path from the lexical anchor to its maximal projection share
their features. After taking witnesses and elementary reasoning, a description
as in (37) is obtained.18

(36) arc(k2 , subj, k3) ∧ arc(k2 ,obj, k11) ∧ k2 = k3 = k4 = k5

(37) S+

7

arc(7 ,tense, pres) ∧
arc(7 , subj, 8) ∧
arc(7 ,obj, 11)

DP−

8

¬[arc(8 ,num, sg) ∧
arc(8 , pers,3)]

VP−

9

9 = 7

VP+

10

10 = 7

V3

3 = 7

see

DP−

11

In (38) the description obtained from I suddenly see Mary is given, with
attribute-value matrices abbreviating formulae in an obvious way.

(38) r−

DP+

1
[

num sg
pers 1st

]

I

VP+

5

AP2

suddenly

VP−

6

6=5

S+
7

tense pres
subj 8
obj 11

DP−

8

¬

[

num sg
pers 3rd

]

VP−

9

9=7

VP+
10

10=7

V3

3=7

see

DP−

11

DP+

4
[

num sg
pers 3rd

]

Mary

18We switch to graphical representations of descriptions again, but suppresss semantic
information.

25

It is clear that this description is satisfiable. However, the extra constraints
also provide a way to rule out cases where agreement is violated. Pairing off
constants in (38) leads to the picture in (39), which can either be read as a
description or as a minimal structure satisfying that description.19

(39) S

DP

I

VP

AP

suddenly

VP

V

see

DP

Mary

tense pres

obj

[

num sg
pers 3rd

]

subj

[

num sg
pers 1st

]

It is clear that in this way we can essentially combine the phrase structure
descriptions of LDG with feature structure descriptions. Again there is room
for extra integrity constraints. For example, our decision that all nodes along
the verbal projection line of see should be connected to the same feature
node, could easily be made into a universal principle expressed by such an
integrity constraint.20

3.7 Feature Structures as Semantic Representations?

Clearly, our method for describing features and the method discussed earlier
for obtaining the semantics of an expression by means of codescribing its
form and meaning have a lot in common. The question therefore poses itself
whether the second can be reduced to the first. Can the process of assigning a
semantic value to a given expression be subsumed under a general mechanism
of feature assignment? There is a tradition within constraint-based linguis-
tics which uses constraints to describe logical sentences. (Fenstad, Halvorsen,

19(38) is satisfied by more than one structure, as it sets no limit on the number of
feature nodes. It does restricts the number of tree nodes: there must be exactly seven of
them. If (39) is interpreted as a structure, the attribute-value matrix on the right must
be interpreted as a feature structure. If the picture is interpreted as a description, it is a
feature description.

20This would in fact put restrictions on ‘adjoining’. For example, if conflicting feature
information were put on nodes 5 and 6 in (38), so that 5 6= 6 could be derived, no
model satisfying the description would exist. Conversely, undesired adjunctions will not
occur if node names that could participate in such an adjunction bear conflicting feature
information.

26

Langholm, and van Benthem 1987), for example, propose to represent the
formula ∀x kick(j, x) as the attribute value matrix in (40). I.e. the formula
is represented as a certain graph, which can then be underspecified. This
possibility is used in (Nerbonne 1992) and also lies at the heart of the ‘Min-
imal Recursion Semantics’ of (Copestake, Flickinger, Malouf, Riehemann,
and Sag 1995).

(40)

formula

qp

[

quant ∀
var x

]

formula

rel kick
arg.1 j
arg.2 x

Although some interesting results have been obtained with the help of such
descriptions of logical formulas, we think that, apart from the unwieldiness of
(40) as compared with the much simpler representation ∀x kick(j, x), there
are at least two reasons to find the procedure unsatisfactory. The first objec-
tion is that linguistic representations should be used to characterise linguistic
objects and that logical formulas do not qualify as such. It is one thing to
assume that a logical formula is adequate for describing the meaning of a
natural language expression but quite another to assume that all aspects of
the particular form of such a formula are linguistically relevant. Representa-
tions like the one in (40) bring historically contingent aspects of our method
to denote logical formulas into linguistic theory. The second objection is that
if we represent formulas with the help of graphs and then describe graphs
with the help of formulas we have something that looks very much like an
epicycle. It would be much simpler to use formulas directly for describing
semantic values.

Attribute value matrices certainly provide enough structure for giving the
syntax of various logics in which the semantics of natural language expres-
sions can be expressed. But they do not seem to provide the right vehicle
for doing semantics. Logical computation on such structures is certainly un-
wieldy (try proving p → p from a standard set of axioms in this format!)
and there is no reason to assume that natural language obtains meaning via
the description of some artificial language. We can use a logical language for
describing the truth conditions of English, but we should not replace truth
conditions with formulas.

27

4 Talking about Trees

The example descriptions considered in the previous section described only
one tree, but this is indeed an exceptional situation. It is far more common
that a multiplicity of trees satisfy a given description. Consider (42), obtained
from an input description for (1a), repeated here as (41), a standard example
of a PP attachment ambiguity.21

(41) John saw a man with a telescope.

(42) r−

DP+

1

John

S+

8

DP−

9
VP−

10

VP+

11

V2

saw

DP−

12

DP+

13

D3

a

NP−

14 NP+

4

man

XP+

15

XP−

16
PP−

17

PP+

18

P5

with

DP−

19

DP+

20

D6

a

NP−

21 NP+

7

telescope

The labeling ‘XP’ on 15 and 16 in (42) is a bit of a stop-gap. In fact these
nodes can either be labeled VP or NP, but must of course carry the same
label. This means that (43) should be part of the description obtained from
the preposition.

(43) (ℓ(15) = vp ∨ ℓ(15) = np) ∧ ℓ(16) = ℓ(15)

Pairing off constants now leads to the following identifications. First we see
that 21 = 7 can be derived: 21 must match with a positively anchored name;
all constants other than 4, 15 and 7 are excluded on the basis of clashing
category information; but of these last the first two are out because they
precede 6 while 21 is preceded by 6. In much the same way 19 = 20, 12 = 13,
9 = 1, 17 = 18 and 8 = r are derived. This means that we arrive at the
intermediate representation in (44).22

21We suppress all semantic information in this section. The description connected with
the determiner a is simplified for reasons of exposition. A slightly more complex form will
be given shortly.

22Intermediate representations such as these should perhaps be compared with the
‘packed shared forests’ of (Tomita 1986).

28

(44) S

DP

John

VP−
10

VP+
11

V

saw

DP

D

a

NP−
14 NP+

4

man

XP+
15

XP−
16 PP

P

with

DP

D

a

NP

telescope

At this point there is a (first) choice. 16 can consistently be identified with
11, but also with 4. Each of these choices deterministically leads to fur-
ther identifications and we end up with two models, the one in (45) and its
alternative in (46).

(45) S

DP

John

VP

VP

V

saw

DP

D

a

NP

man

PP

P

with

DP

D

a

NP

telescope

29

(46) S

DP

John

VP

V

saw

DP

D

a

NP

NP

man

PP

P

with

DP

D

a

NP

telescope

This example shows that the descriptions approach naturally deals with
structural ambiguities. In fact the input description for (41) and the rep-
resentation (44) that is derived from it underdetermine the structure of (41),
in the sense that more than one structure validates the description. Our
second example is of a different kind. It illustrates a case where a structural
approach must necessarily overspecify the linguistic information. Consider
the following three sentences, which were taken from (XTAG Research Group
1995).

(47) a. I opened up Michelle a new bank account

b. I opened Michelle up a new bank account

c. I opened Michelle a new bank account up

In view of this example, a structural approach must posit the existence of
three elementary trees for the combination of words open. . . up. But it seems
that such a treatment misses a generalisation. There is simply no relative
ordering between the verb particle up and the two DP complements here. In
a descriptions approach, on the other hand, we can easily get the required
level of generality by not stipulating more relations to hold than is warranted.
The description in (48) in itself would only match with an input description
for (47b), but by weakening it, and putting only the constraints 5 ≺ 6 ≺ 8
and 5 ≺ 7 on the relative order of the daughters of 4, we get a description
which also squares with (47a) and (47c). This form of underspecification is

30

reminiscent of the Immediate Dominance / Linear Precedence (ID/LP) for-
mat of Generalised Phrase Structure Grammar (see (Gazdar, Klein, Pullum,
and Sag 1985)), and indeed we feel that the ID/LP format is best viewed as
a version of the descriptions approach to linguistic representation.

(48) S+
1

DP−
2 VP−

3

VP+
4

V5

open

DP−
6 PL7

up

DP−
8

While the previous example illustrated the fact that left-to-right ordering can
be underspecified in a descriptions approach, our third example shows that
it is also possible to underpecify the distance between filler and gap in a long
distance dependency.23 Consider the following elementary tree description
for the relative pronoun who.

(49) NP+

NP−

CP

C

who

S−

DP+

The description specifies that the relative pronoun must c-command a DP,
but underspecifies the distance between the two elements. Since the DP node
name is marked positively it will need to combine with a negatively marked
node name lower in the tree, and the result will be the filling of a gap as in
(50). In the lexical element (49) we can additionally specify dependencies
between filler and gap. For example, in one dialect of English the DP in
(49) should be marked for nominative, while in a similar tree for whom the
DP should have accusative case. But there is also a semantic dependency

23Compare the discussion of long distance dependencies in Lexicalised Tree Adjoining
Grammars given earlier.

31

which can be regulated at the level of the extended domain of locality for
who. Intuitively, the semantics of who forms a predicate out of the semantics
of its complement S and intersects this predicate with the semantics of the
NP− node. The DP contributes a variable (or similar) to the S semantics
and the intersecting predicate is obtained by abstracting over this position.
The semantics of the whole construction therefore crucially depends on that
of the DP.

(50) NP+

NP

man

CP

C

who

S

DP

Bill

VP

V

claims

S

DP

VP

V

loves

DP

Mary

We now turn to quantifier scope ambiguities such as the one exemplified in
(51). We have seen how the descriptions approach can naturally deal with
structural syntactic ambiguities, due to the fact that a single description may
have many structures satisfying it. Therefore, if scope ambiguities are as-
sumed to be manifestations of structural ambiguity, they should be amenable
to a similar treatment.

(51) Every man loves a woman.

It is natural at this point to turn to (May 1977)’s Logical Forms, as these are
the kind of structures required. One possible Logical Form for (51), the one
that encodes the wide scope reading of the existential quantifier, would be
(52). Here the DPs every man and a woman are indexed, are raised out of
their surface positions, and have left a coindexed trace behind. The raising
serves a semantic purpose, as it is now possible to compositionally assign
the desired reading to the sentence, but a secondary result of the raising is
that surface order is destroyed. This is less than desirable and in fact the
movement of surface material is redundant from a semantic point of view.

32

(52) S

DPj

D

a

NP

woman

S

DPi

D

every

NP

man

S

DP

ei

VP

V

loves

DP

ej

In (53) we have rearranged the material in (52), leaving the DPs in situ
syntactically, but retaining the S nodes that in May’s approach result from
adjoining DP to S. The result is close to the usual surface structure of the
tree except that the top S node is replaced by a segment of three nodes which
each will have a different semantic interpretation. The semantics of Si will
be the result of quantifying-in DPi into S, and similarly the semantics of Sj

will be the result of quantifying-in DPj into Si.
24

(53) Sj

Si

S

DPi

D

every

NP

man

VP

V

loves

DPj

D

a

NP

woman

Quantifying-in is a long-distance phenomenon and long-distance phenomena
are treated lexically in our theory, just as in the Tree-Adjoining Grammars
of which our theory is a subspecies. Quantification will be treated within
the extended domain of locality of determiners, the primary constructors

24The present approach may also be compared with the technique of Cooper Storage
(Cooper 1983). The extra Ss then represent stages in the interpretation process of S. For
example, the interpretation of Si will be the result of retrieving the interpretation of DPi

from the store, and similarly for Sj and DPj .

33

of quantifiers. In (54) the elementary tree descriptions of determiners are
revised to the effect that each determiner now comes with two extra S nodes.
(The coindexing between the top S and DP is just mnemonic. The indexation
is not as such reflected in the underlying logical representation.)

(54) r−

S+
6,i

S−
7

DP+
8,i

D1

every

NP−
9 NP+

2

man

S+
10

DP−
11 VP−

12

VP+
13

V3

loves

DP−
14

S+
15,j

S−
16

DP+
17,j

D4

a

NP−
18 NP+

5

woman

Identifying provably corefering node names as before, we arrive at the in-
termediate description in (55), our ‘packed’ representation of the two scope
possiblities.

(55) r−

S+
6,i S+

15,j

S−
7 S−

16

S+
10

DPi

D

every

NP

man

VP

V

loves

DPj

D

a

NP

woman

Clearly, two possibilities are left open here. Identifying 7 and 10 will lead
to the possibility in (53), the tree underlying the wide scope reading of the
existential quantifier. Adding 16 = 10 to the description on the other hand
will lead to the tree underlying the ∀∃ reading.

34

5 Talking about Binding

5.1 A Difficulty with Determiners

How can we assign a semantics to the lexical descriptions in (54)? When
we try to write down a semantics for the determiners, a difficulty pops up.
Consider again the lexical item for every (repeated here in (56)). We must
express the meaning of the upper S node 6 in terms of that of 7, whatever
the meaning of 7 turns out to be, i.e. we must be able to express the result
of quantification into an arbitrary context.25

(56) S+
6,i

S−
7

DP+
8,i

D1

every

NP−
9

It should be noted that there is a similar situation in elementary logic where
the semantics of universal quantification must be explained, i.e. where the
semantics of ∀xϕ must be given in terms of the semantics of ϕ. The way in
which this is standardly solved derives from Tarski and presupposes a sepa-
ration between a language described and the language describing it. This in
fact fits well into our general descriptions approach which allows us to de-
scribe any given natural language with the help of logic. In order to solve our
difficulty with quantification into arbitrary contexts we will emulate within
the system the usual approach to binding in classical logic. First, after an-
alyzing what is needed, we will axiomatize the binding machinery; then the
correctness of our axiomatization will be shown; and finally it will be ex-
plained how the approach solves the problem with stating the semantics of
(56).

25A naive attempt to give the required semantics would be to demand that σ(6) =
∀x[σ(9)(x) → σ(7)] and σ(8) = x. That this does not work is seen by considering that x

is not free in the term σ(7) and that hence, by α-conversion, σ(6) = ∀y[σ(9)(y) → σ(7)].
Substitution of σ(7) by a term containing a free x will not lead to the desired capturing
of the variable.

35

5.2 Axioms for Logical Binding

Let us recap the standard Tarski definition. Suppose we have a first-order
modelM, consisting of a domain D and an interpretation function I. Let V
be the set of variables in the language and define A, the set of assignments
forM, as DV . The statement that assignments a and b differ at most in the
variable x will be written as a[x]b and the value of a term t (inM) under an
assignment a, defined in the usual way, will be written as [[t]]a. The definition
then identifies the semantic value [[ψ]] (in M) of a formula ψ with a set of
assignments in the following way.

(57) [[R(t1, . . . , tn)]] = {a ∈ A | 〈[[t1]]
a, . . . , [[tn]]a〉 ∈ I(R)}

[[t = t′]] = {a ∈ A | [[t]]a = [[t′]]a}
[[¬ϕ]] = A− [[ϕ]]

[[ϕ→ ψ]] = (A− [[ϕ]]) ∪ [[ψ]]
[[∀xϕ]] = {a ∈ A | ∀b ∈ A : a[x]b→ b ∈ [[ϕ]]}

The last clause here gives the semantics of ∀xϕ in terms of that of ϕ, for
arbitrary ϕ. How can we emulate this feat within the classical language
L we have been using thus far? Definition (57) is framed in mathematical
English26 and talks about predicate logic; we want to use L to talk about
English. Mathematical English can talk about predicate logic because it has
available concepts such as variables and assignments. We therefore need to
have similar concepts at our disposal in L. Of course L already contains
variables and is interpreted in terms of assignments. But since we want to
use L as a metalanguage for English, we also need to have similar objects at
its object level.

Let us introduce such objects and call those that approximate variables
registers (type π), and those approximating assignments states (type s). An
essential property of the relation between variables and assignments is that,
for each assignment a, each variable z and each object d of the domain under
consideration, there is an assignment b such that a[z]b and b(z) = d. The
following axiom imposes that registers and states obey a similar constraint.27

A18 ∀is∀vπ∀xe ∃js [i[v]j ∧ V (v, j) = x]

26English + set theory roughly; in (57) we mainly see set theory.
27The property under consideration is exactly the one which is weakened in the ‘Modal

State Semantics’ of (van Benthem 1996). This suggests that by weakening A18 we could
have some of the effects of Van Benthem’s Modal State Semantics within our system. We
shall not further pursue this interesting possibility here.

36

Here V (type π×s→ e) is a function which assigns a value to each register v
in each state j and i[δ]j is an abbreviation of ∀v[v 6= δ → V (v, i) = V (v, j)].28

We need a way to generate ‘fresh’ registers and the following two axiom
schemes will provide a mechanism for providing them. Let C be a set of
constants of type ν → π. (We will use only one element u of C in this paper,
but want the possibility of having more than one register connected wit each
node) Define U as {ρ(n) | ρ ∈ C and n ∈ {0, 1, 2, . . .}}. The elements of
U (examples: u(4), u(23), often written as u4, u23)) are closed terms of
type π which will play the role of mimicking variables. They will be called
pseudovariables.29

The functions in C associate every node of our trees with a number of
variable registers. To make sure that these registers are really fresh, it must
be prevented that certain distinct elements of U corefer. For example, it must
be prevented that u8 and u12 in fact refer to the same register. Otherwise
they would encode the same variable and ‘quantifying’ over u8 could possibly
capture u12. This noncoreference of pseudovariables is enforced by A19 and
A20. The first of these ensures that different elements of C cannot assign
coreferring pseudovariables to any two nodes. The second axiom requires the
elements of C to be injective, so that they will assign different registers to
different nodes.

A19 ∀kk′ ρ(k) 6= ρ′(k′), if ρ, ρ′ ∈ C are syntactically distinct

A20 ∀k1k2 [ρ(k1) = ρ(k2)→ k1 = k2], if ρ ∈ C

28Note that for each state i there is a function λv.V (v, i) assigning values to registers.
The converse is not necessarily true and from a formal point of view imposing A18 is
much weaker than requiring that states correspond to the full space of functions from
registers to values. It might seem then that we have not captured enough properties of
assignments here, but in Theorem 1 below we shall see that the essential properties are in
fact captured. The reason is that our requirement that the set of assignmentsA correspond
to the full function space DV is unnecessarily strong. Restricting consideration in (57) to
a set A′ of assignments differing only in finitely many places from a given assignment a,
for example, would not change key notions such as satisfiability and entailment. Of course
in many developments of elementary logic assignments are simply finite sequences or finite
functions from variables to elements of a given domain.

29The idea of having analogues of variables and assignments at the object level is not
new. (Sternefeld 1997) traces it back to (Bennett 1979) and in fact to (Montague 1970).
(Montague did not work with an intermediary logic in EFL, but his infinite sequences of
individuals Aω are essentially assignments.) (Sternefeld 1997) elegantly applies a worked-
out version of Bennett’s theory to reconstruction and connectivity phenomena in an LF-
based framework. The logical part of his theory is closely connected to ours.

37

This requirement on freshness of registers should carefully be distinguished
from the possibility that registers get the same value in a given state. It is
possible e.g. that V (i, u8) = V (i, u3) for some i, even if 8 6= 3. Indeed, A18
requires that such an i exists.

For more information on a set of axioms strongly related to A18–A20 see
(Muskens 1996).

5.3 Embedding Predicate Logic

The axioms considered above essentially allow our logical language to talk
about a form of binding. Can we capture the essentials of the binding ma-
chinery? In order to answer this question we show that it is possible to
embed predicate logic into (the first-order part of) type theory, using regis-
ters and states instead of variables and assignments. Letting δ range over
pseudovariables, we write

(58) R{δ1 . . . δn} for λi.R(V (δ1, i), . . . , V (δn, i)),
δ ≡ δ′ for λi.V (δ, i) = V (δ′, i),
−γ for λi¬γ(i),

γ ⊃ γ′ for λi[γ(i)→ γ′(i)],
Πδ γ for λi∀j[i[δ]j → γ(j)].

These abbreviations mimick the Tarski truth conditions for (in that or-
der) predication, identity, negation, implication and universal quantification.
They should be compared with the clauses in (57). Here are some further
abbreviations that will prove useful.

(59) γ ∩ γ′ abbreviates −[γ ⊃ −γ′]
γ ∪ γ′ abbreviates −γ ⊃ γ′

Σδ γ abbreviates −Πδ−γ

The abbreviations in (59) mimick conjunction, biconditional implication, dis-
junction and existential quantification.

In order to make precise the relation between these abbreviations and or-
dinary predicate logic, let us consider the language described by the following
Backus-Naur Form.

(60) γ ::= R{δ1, . . . , δn} | δ1 ≡ δ2 | −γ | γ ⊃ γ′ | Πδ γ

38

Here the R are taken from some repository of constants (e.g. love, walk,
give,. . .) of types e× · · · × e→ t, while the δs are as before.

Although it is obvious how the fragment defined in (60) corresponds to
predicate logic, we give an embedding translation for concreteness. Let † be
a function such that † bijectively maps the set of pseudovariables onto the
set of variables of type e. Define

tr(R{δ1, . . . , δn}) = R(δ†1, . . . , δ
†
n)

tr(δ1 ≡ δ2) = δ†1 = δ†2
tr(−γ) = ¬tr(γ)

tr(γ ⊃ γ′) = tr(γ)→ tr(γ′)

tr(Πδ γ) = ∀δ† tr(γ)

For any formula ϕ and state variable i, let ϕi be the result of substituting
V (δ, i) for each free δ† in ϕ. That our fragment is really just another incarna-
tion of predicate logic (provided that different node names refer to different
nodes) is the content of the following theorem (see also (Muskens 1999)).

Theorem 1 Let γ be a term of type s → t as defined in (60). Let i be an
arbitrary variable of type s. Let Γ contain all statements n 6= n′ for every pair
n, n′ of syntactically different node names in γ. Then Γ |=G tr(γ)i ↔ γ(i).

The theorem will be proved in an appendix. The requirement on node names
will be met automatically in our applications.

At this point the reader may well wonder what the advantage of defining
a version of predicate logic within classical type logic is. The answer is that
our embedding of the variable binding mechanism a) frees us from technical
difficulties with respect to substitution and b) allows us to incorporate logics
in which variable binding is handled differently from the way it is handled
in classical logic. In order to appreciate a) the reader may note that every
term in the language generated by the Backus-Naur form in (60) is in fact
closed. This means, for example, that the equations in (61a) and (61b)
straightforwardly lead to the equation in (61c), i.e. we can substitute even
while the pseudovariable u1 intuitively ‘gets bound’. On the other hand, the
equation in (61c) is equivalent to the one in (61d) by the previous theorem,
so in a sense we did manage to capture a variable.

(61) a. σ(6) = Πu1[man{u1} ⊃ σ(7)]

39

b. σ(7) = dance{u1}

c. σ(6) = Πu1[man{u1} ⊃ dance{u1}]

d. σ(6) = λi∀x[man(x)→ dance(x)]

The other advantage of our embedding (mentioned in b) above) is that it lib-
erates the grammatical description of binding in natural language from an all
too direct dependency on the binding mechanism in classical logic. Binding
in natural languages and binding in predicate logic share many characteris-
tics but are also different in crucial respects. The present machinery can be
used to capture forms of binding other than the standard one, such as the
one proposed by Kamp and Heim, as was shown in (Muskens 1996). This
line will not be pursued in this paper but will be further explored in future
work.

5.4 Talking about Quantification

Our internalisation of the binding machinery can now be applied to quantifi-
cation in natural language. In particular, we can provide the lexical items
occurring in (54) with a semantics as in (62).

(62) r−

S+

6

Πu1[σ(9)(u1) ⊃ σ(7)]

S−

7

DP+

8

u1

D1

every

NP−

9

NP+

2

λvman{v}

man

S+

10

σ(12)(σ(11))

DP−

11

VP−

12

VP+

13

λvlove{v, σ(14)}

V3

loves

DP−

14

S+

15

Σu4[σ(18)(u4) ∩ σ(16)]

S−

16

DP+

17

u4

D4

a

NP−

18

NP+

5

λvwoman{v}

woman

Reasoning as before, we arrive at a ‘packed’ representation as in (55). But
nodes are now interpreted as in (63).

40

(63) r−

S+
6

Πu1[man{u1} ⊃ σ(7)]
S+

15

Σu4[woman{u4} ∩ σ(16)]

S−
7 S−

16

S+
10

love{u1, u4}

DP

D

every

NP

man

VP

V

loves

DP

D

a

NP

woman

Note the similarity between the upper part of (63) and the ‘Underspeci-
fied Discourse Representation Structure’ in (2b). That the representation in
(2b) is based upon Discourse Representation Structures while the one here
is essentially based upon predicate logic is a superficial difference that will
vanish if we use the embedding of the binding mechanism to arrive at an
embedding of DRT within classical logic as in (Muskens 1996). The differ-
ence that is important here is that (63) is now understood as representing a
phase in the reasoning process of a listener who reasons about the trees and
truth-conditions that are consistent with his perceived input. The dominance
statements in (63) are statements about the structure of the linguistic trees
that are available and have no status independent from syntactic description
as in UDRT.

It is at this point that the free substitution property of our formulas can
be used. The hypothesis that 7 = 10 immediately leads to the equation in
(64a) and therefore to that in (64b), while the hypothesis that 7 6= 10 leads
to (64c) and the equivalent (64d).

(64) a. σ(r) = Σu4[woman{u4} ∩ Πu1[man{u1} ⊃ love{u1, u4}]]

b. σ(r) = λi∃x4[woman(x4) ∧ ∀x1[man(x1)→ love(x1, x4)]]

c. σ(r) = Πu1[man{u1} ⊃ Σu4[woman{u4} ∩ love{u1, u4}]]

41

d. σ(r) = λi∀x1[man(x1)→ ∃x4[woman(x4) ∧ love(x1, x4)]]

It can be concluded that from the input description for every man loves a
woman the disjunction (64b)∨(64d) can be derived.30 But while (64b)∨(64d)
is derivable from the input description it should very much be doubted if such
disjunctions are in fact derived while sentences are being processed, except
perhaps in a minority of cases. Since the number of readings of a sentence
or text in general increases non-polynomially as a function of the length
of that sentence or text, the number of disjuncts here would increase non-
polynomially too. This means that we can say a priori that systematically
generating such disjunctions is not feasible for the hearer.

6 Conclusion

In this paper we have shown how a simultaneous description of syntax and
semantics can be given. The syntactic part of the theory is based on Tree Ad-
joining Grammars, broadly conceived, but uses descriptions as in the D-Tree
Grammars of (Rambow, Vijay-Shanker, and Weir 1995) and adds what we
have called a chemistry of composition that reduces the problem of parsing to
the problem of identifying positively and negatively marked node names in
such a way that tree constraints and category information constraints are re-
spected. The +-nodes and −-nodes in this set-up are strongly reminiscent of
positive and negative occurrences of categories in Categorial Grammar. Al-
though the logic underlying our descriptions is classical and therefore lacks
the inherent resource-sensitivity that we find in Linear Logic or the Lam-
bek Calculus, the logic plus some extralogical axioms nevertheless model the
resource-sensitivity of natural language. We conclude that a shift from clas-
sical logic to Linear Logic or the Lambek Calculus needs motivation over and
above the resource-sensitivity of those systems.

30Note that the disjunction outscopes the two equalities here. There is no implication
that σ(r) is identical to any disjunction or union. A view that seems to be held very often
is that the value of an ambiguous expression can be the disjunction of the values of its
disambiguations. This approach seems attractive when entailments with an ambiguous
sentence as premise are considered. For if A |= B holds and A′ is a disambiguation
of A then A′ |= B will also hold. This is attractive as entailments should presumably
be preserved under disambiguation. A problem arises however when entailments with
ambiguous conclusions are considered, for if A |= B holds and B′ is a disjunct of B,
A |= B′ need not hold.

42

In fact one thing that we hope to have shown here is that predicate logic
does reasonably well as a language formalism if we are willing to axioma-
tise the necessary concepts. In this way it is possible to give a completely
declarative account of linguistic interpretation in the sense that we can give a
theory G consisting of general descriptions and lexical descriptions such that
linguistically relevant properties of any expression (including its possible in-
terpretations) follow from G plus a description I of the observable properties
of that expression. If G + I has more than one model then the expression
described is ambiguous and the language user can try to draw in additional
non-linguistic information to arrive at disambiguation, or at least to obtain
a description with fewer models.

It should be emphasized that while our way to arrive at sets of structures
via descriptions may be a departure from some traditional ways of generating
representations, the resulting structures and the semantic values assigned to
those structures are essentially of the kind that many linguists would accept.
Our plea for a strictly declarative perspective and a move towards descrip-
tions rather than structures as the prime carriers of linguistic representation
has no hidden agenda. The structures that we get in the end are not sig-
nificantly different from those we are used to. We see this as a virtue. The
phenomenon of underspecification forces us to look for alternative ways in
which linguistic information is represented, but it does not in itself force us to
give up the kind of structures that were argued for on independent grounds.

Acknowledgements

This paper started as a joint project with Emiel Krahmer. That project was
finally abandoned, but I would like to thank Emiel for many interesting dis-
cussions and valuable feedback. I also want to thank Kurt Eberle, Barbara
Partee, Stanley Peters and all other participants of the Bad Teinach Work-
shop on Models of Underspecification and the Representation of Meaning
(May 1998) for their comments and criticisms on an earlier version. Paul
Dekker and Noor van Leusen gave detailed comments and encouragement. I
thank them for both.

Finally, I wish to acknowledge a general intellectual debt to my former
teacher and promotor Johan van Benthem. This debt is greater than I will
ever be able to repay. A very preliminary version of this paper was on a CD
given to him on his 50th birthday. The finished product is also gratefully

43

dedicated to Johan.

A Proof of Theorem 1

Let us write [t/x]ϕ for the result of substituting t for each free x in ϕ. It
follows from A18 that, for each δ ∈ U ,

∀i [∀xϕ↔ ∀j [i[δ]j → [V (δ, j)/x]ϕ]].

Moreover, by A19, A20, the definition of i[δ]j and our assumption of non-
coreference of different node names, we have that ∀j [i[δ]j → V (δ′, j) =
V (δ′, i)] if δ and δ′ are syntactically different referents ∈ U . Hence

∀j [i[δ]j → [ϕj ↔ ([V (δ, j)/δ†]ϕ])i]].

Using these two observations, the theorem can easily be proved with the help
of an induction on the construction of γ. We do two cases here, leaving the
other three to the reader. In the following ‘≈’ stands for ‘is equivalent with’.
We start with the case of atomic formulae.

(tr(R{δ1, . . . , δn}))
i ≈

R(δ†1, . . . , δ
†
n)i ≈ (by def. (.)i)

R(V (δ1, i), . . . , V (δn, i)) ≈

R{δ1, . . . , δn}(i)

And here is the more interesting quantification case.

tr(Πδ γ)i ≈

(∀δ† tr(γ))i ≈ (first observation)

(∀j [i[δ]j → [V (δ, j)/δ†]tr(γ)])i ≈

∀j [i[δ]j → ([V (δ, j)/δ†]tr(γ))i] ≈ (second observation)

∀j [i[δ]j → (tr(γ))j] ≈ (induction)

∀j [i[δ]j → γ(j)] ≈

Πδ γ(i)

This ends the proof.

44

References

Backofen, R., J. Rogers, and K. Vijay-Shankar (1995). A First-Order Ax-
iomatization of the Theory of Finite Trees. Journal of Logic, Language
and Information 4, 5–39.

Bennett, M. (1979). Questions in Montague Grammar. Indiana University
Linguistics Club.

van Benthem, J. (1996). Exploring Logical Dynamics. Stanford: CSLI.

Blackburn, P. (1993). Modal Logic and Attribute-Value Structures. In
M. de Rijke (Ed.), Diamonds and Defaults. Dordrecht: Kluwer.

Blackburn, P., C. Gardent, and W. Meyer-Viol (1993). Talking about
Trees. In Proc. of the 6th Conference of the EACL, pp. 21–29.

Blackburn, P. and W. Meyer-Viol (1996). Modal Logic and Model-
Theoretic Syntax. In M. de Rijke (Ed.), Advances in Intensional Logic,
pp. 27–58. Dordrecht: Kluwer.

Borščev, V. and M. Xomjakov (1971). Neighbourhood Grammars and
Translation: An Axiomatic Approach to the Description of Formal
Languages. In Proceedings of the 3rd International Meeting on Com-
putational Linguistics, Debrecen, Hungary, pp. 427–432.

Cooper, R. (1983). Quantification and Syntactic Theory. Dordrecht: Rei-
del.

Copestake, A., D. Flickinger, R. Malouf, S. Riehemann, and I. Sag (1995).
Minimal Recursion Semantics. Manuscript.

Cornell, T. (1994). On Determining the Consistency of Partial Descriptions
of Trees. In Proceedings of ACL-94.

Duchier, D. and C. Gardent (1999). A Constraint-Based Treatment of
Descriptions. In H. Bunt and E. Thijsse (Eds.), Proceedings of the
3rd International Workshop on Computational Semantics (IWCS-3),
Tilburg, pp. 71–85.

Fenstad, J., P.-K. Halvorsen, T. Langholm, and J. van Benthem (1987).
Situations, Language and Logic. Dordrecht: Reidel.

Gardent, C. and B. Webber (1998). Describing Discourse Semantics. In
Proceedings of the 4th TAG+ Workshop, Philadelphia. University of
Pennsylvania.

45

Gazdar, G., E. Klein, G. Pullum, and I. Sag (1985). Generalized Phrase
Structure Grammar. Cambridge MA: Harvard University Press.

Johnson, M. (1991). Logic and Feature Structures. In Proceedings of the
Twelfth International Joint Conference on Artificial Intelligence, Syd-
ney, Australia.

Joshi, A., L. Levy, and M. Takahashi (1975). Tree Adjunct Grammars.
Journal of the Computer and System Sciences 10, 136–163.

Kamp, H. (1981). A Theory of Truth and Semantic Representation. In
J. Groenendijk, T. Janssen, and M. Stokhof (Eds.), Formal Methods
in the Study of Language, pp. 277–322. Amsterdam: Mathematisch
Centrum.

Kamp, H. and U. Reyle (1993). From Discourse to Logic. Dordrecht:
Kluwer.

Kaplan, R. and J. Bresnan (1982). Lexical-Functional Grammar: a For-
mal System for Grammatical Representation. In J. Bresnan (Ed.), The
Mental Representation of Grammatical Relations, pp. 173–281. Cam-
bridge, MA: The MIT Press.

Marcus, M., D. Hindle, and M. Fleck (1983). D-theory: Talking about
Talking about Trees. In Proceedings of the 21st ACL, pp. 129–136.

May, R. (1977). The Grammar of Quantification. Ph. D. thesis, MIT, Cam-
bridge.

Montague, R. (1970). English as a Formal Language. In B. V. et al. (Ed.),
Linguaggi nella Società e nella Tecnica, pp. 189–224. Milan: Edizioni
di Comunità. Reprinted in (Thomason 1974).

Montague, R. (1973). The Proper Treatment of Quantification in Ordinary
English. In J. Hintikka, J. Moravcsik, and P. Suppes (Eds.), Approaches
to Natural Language, pp. 221–242. Dordrecht: Reidel. Reprinted in
(Thomason 1974).

Muskens, R. (1995). Order-Independence and Underspecification. In
J. Groenendijk (Ed.), Ellipsis, Underspecification, Events and More
in Dynamic Semantics, pp. 17–34. DYANA Deliverable R.2.2.C.
Reprinted in H. Kamp and B. Partee (eds.), Context-dependence in
the Analysis of Linguistic Meaning, Elsevier, 2004.

46

Muskens, R. (1996). Combining Montague Semantics and Discourse Rep-
resentation. Linguistics and Philosophy 19, 143–186.

Muskens, R. (1999). Underspecified Semantics. In U. Egli and
K. Von Heusinger (Eds.), Reference and Anaphoric Relations, Vol-
ume 72 of Studies in Linguistics and Philosophy, pp. 311–338. Kluwer.

Nerbonne, J. (1992). Constraint-based Semantics. In P. Dekker and
M. Stokhof (Eds.), Proceedings of the Eighth Amsterdam Colloquium.
Amsterdam: ILLC.

Rambow, O., K. Vijay-Shanker, and D. Weir (1995). D-Tree Grammars.
In Proceedings of ACL-95, Cambridge, MA. MIT.

Reyle, U. (1993). Dealing with Ambiguities by Underspecification: Con-
struction, Representation and Deduction. Journal of Semantics 10,
123–179.

Rogers, J. (1996). A Model-Theoretic Framework for Theories of Syntax.
In Proc. of the 34th Annual Meeting of the ACL.

Schabes, Y. (1990). Mathematical and Computational Aspects of Lexical-
ized Grammars. Ph. D. thesis, University of Pennsylvania.

Sternefeld, W. (1997). The Semantics of Reconstruction and Connectivity.
Technical report, Universität Tübingen. Arbeitspapiere des SFB 340.

Thomason, R. (Ed.) (1974). Formal Philosophy, Selected Papers of Richard
Montague. Yale University Press.

Tomita, M. (1986). Efficient Parsing for Natural Language. Dordrecht:
Kluwer Academic Publishers.

Vijay-Shankar, K. (1992). Using Descriptions of Trees in a Tree Adjoining
Grammar. Computational Linguistics 18, 481–518.

Webber, B., A. Knott, and A. Joshi (1999). Multiple Discourse Connec-
tives in a Lexicalized Grammar for Discourse. In H. Bunt and E. Thijsse
(Eds.), Proceedings of the 3rd International Workshop on Computa-
tional Semantics (IWCS-3), Tilburg, pp. 309–325.

XTAG Research Group (1995). A Lexicalized Tree Adjoining Grammar
for English. IRCS Report 95-03, University of Pennsylvania.

47

