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Abstract In this paper we study three-valued simple games as a natural extension
of simple games. We analyze to which extent well-known results on the core and the
Shapleyvalue for simple games canbe extended to this newsetting.Todescribe the core
of a three-valued simple game we introduce (primary and secondary) vital players, in
analogy to veto players for simple games.Moreover, it is seen that the transfer property
of Dubey (1975) can still be used to characterize the Shapley value for three-valued
simple games.We illustrate three-valued simple games and the corresponding Shapley
value in a parliamentary bicameral system.

Keywords Cooperative games · Three-valued simple games · Core · Vital players ·
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1 Introduction

In this paperwe analyze a class of transferable utility games, called three-valued simple
games. The class of three-valued simple games is a natural extension of the class
of simple games, introduced by Von Neumann and Morgenstern (1944) and widely
applied in the literature to model decision rules in legislatures and other decision-
making bodies. In a simple game, a coalition is either ‘winning’ or ‘losing’, i.e., there
are two possible values for each coalition. The concept of three-valued simple games
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goes one step further than simple games in the sense that there are three, instead of
only two, possible values.

Simple games often represent simple voting games in which the way of determining
which coalitions are winning is structured in the sense that each voter has two options:
voting ‘yes’ or voting ‘no’. Felsenthal andMachover (1997) generalized simple voting
games by introducing ternary voting games, which recognizes abstention as an option
next to the ‘yes’ and ‘no’ votes. Ternary voting games are extended by introducing
( j, k) simple voting games (see Freixas and Zwicker 2003) with several levels of
approval in the input ( j levels) and the output (k levels). Note that simple voting
games correspond to the case ( j, k) = (2, 2) and ternary voting games to ( j, k) =
(3, 2). Freixas (2005b) generalized the Shapley–Shubik index (cf. Shapley and Shubik
1954) for ( j, k) simple voting games and provided a characterization for the class of
( j, 2) simple voting games. Other indices for (classes of) ( j, k) simple voting games
are studied in Freixas (2005a) and Freixas (2012). Gibbard (1973) analyzed voting in
a more general setting than ( j, k) simple voting but mainly focussed on the possible
manipulation of voting schemes. Finally, wemention Hsiao and Raghavan (1993) who
in the general framework of multi-choice cooperative games are the first to analyze
input or effort levels on the part of the players in joining cooperating coalitions.

Note that there is a major conceptual difference between ( j, k) simple voting games
and three-valued simple games. Although, of course, every three-valued simple game
can be considered as a (2, 3) simple voting game, the definition of a three-valued
simple game (and in fact of a simple game too) does not require a specification of the
exact structure of how the values of the various coalitions are obtained. In ( j, k) simple
voting games such a specification is provided in the definition. We will illustrate this
conceptual difference in a more concrete example later on, namely Example 3.3.

This paper formally defines the class of three-valued simple games and focuses on
analyzing the core and the Shapley value of these games. We study how the results for
simple games can be extended to three-valued simple games. We extend the notion of
veto players in simple games, to the notion of vital players, primary vital players and
secondary vital pairs in three-valued simple games. It is known that in simple games
the core is fully determined by the veto players. In a similar way, we introduce the vital
core which fully depends on (primary and secondary) vital players. The vital core is
shown to be a subset of the core. We discuss two classes of three-valued simple games
such that the core and the vital core coincide.

Dubey (1975) characterized the Shapley value on the class of simple games. The
essence of this characterization is the transfer property. We will show that the transfer
property can also be used for a characterization of the Shapley value for three-valued
simple games. In order to obtain this characterizationwe introduce a new axiom, called
unanimity level efficiency. We prove that the combination of the axioms of efficiency,
symmetry, the dummy property, the transfer property and unanimity level efficiency
fully determines the Shapley value for a three-valued simple game. Moreover, also
the logical independence of these five axioms is shown. At last, as an illustration,
a parliamentary bicameral system is modelled as a three-valued simple game and
analyzed on the basis of the Shapley value.

The organization of this paper is as follows. Section 2 formally introduces three-
valued simple games. In Sect. 3 the core of three-valued simple games is investigated.
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Section 4 provides a characterization for the Shapley value on the class of three-valued
simple games.

2 Simple and three-valued simple games

In this section we recall the formal definition of simple games and define three-valued
simple games.

With N a non-empty finite set of players, a transferable utility (TU) game is a
function v : 2N → R which assigns a number to each coalition S ∈ 2N , where 2N

denotes the collection of all subsets of N . By convention, v(∅) = 0. Let TUN denote
the class of all TU-games with player set N .

A game v ∈ TUN is called simple if

(i) v(S) ∈ {0, 1} for all S ⊂ N ,
(ii) v(N ) = 1,
(iii) v(S) ≤ v(T ) for all S, T ∈ 2N with S ⊂ T (monotonicity).

A coalition is winning if v(S) = 1 and losing if v(S) = 0. Let SIN denote the class of
all simple games with player set N .

In this paper we investigate a new subclass of TU-games, the class of three-valued
simple games. A game v ∈ TUN is called three-valued simple if

(i) v(S) ∈ {0, 1, 2} for all S ⊂ N ,
(ii) v(N ) = 2,
(iii) v(S) ≤ v(T ) for all S, T ∈ 2N with S ⊂ T (monotonicity).

Let TSIN denote the class of all three-valued simple games with player set N . The
concept of three-valued simple games goes one step further than simple games in the
sense that there are three, instead of only two, possible values. Next to the value 0, we
have chosen the values 1 and 2. Of course, the relative proportion between these two
values may depend on the application at hand and the concept of three-valued simple
games (and its results) can be generalized to three-valued TU-games with coalitional
values 0, 1 or β with β > 1.

3 The core of three-valued simple games

In this section we investigate the core of three-valued simple games. For this, we
extend the concept of veto players in simple games, to the concept of vital players,
primary vital players and secondary vital pairs in three-valued simple games.

The core C(v) of a game v ∈ TUN is defined as the set of all allocations x ∈ R
N

such that
∑

i∈N xi = v(N ) (efficiency) and
∑

i∈S xi ≥ v(S) for all S ⊂ N (stability).
Hence, the core consists of all possible allocations of v(N ) for which no coalition has
the incentive to leave the grand coalition. Consequently, if the core is empty, then it is
not possible to find a stable allocation of v(N ).

Recall that for a simple game v ∈ SIN the set of veto players are those players who
belong to every coalition with value 1, i.e.,

veto(v) =
⋂

{S | v(S) = 1}.
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In addition, the core of v ∈ SIN is fully determined by its set of veto players, namely

C(v) = Conv({e{i} | i ∈ veto(v)}),

where for S ∈ 2N\{∅}, the characteristic vector eS ∈ R
N is defined as

eSi =
{
1 if i ∈ S,

0 otherwise,

for all i ∈ N .
We characterize the core of a three-valued simple game using the concept of vital

players which is similar to the concept of veto players in simple games. Proposition 3.1
below states that only the vital players of a three-valued simple game can receive a
positive payoff in the core, while all other players receive zero. Here, for v ∈ TSIN

the set of vital players is defined by

Vit(v) =
⋂

{S | v(S) = 2} .

Hence, the vital players are those players who belong to every coalition with value 2.

Proposition 3.1 Let v ∈ TSIN . If x ∈ C(v) and i ∈ N\Vit(v), then xi = 0.

Proof Let x ∈ C(v) and i ∈ N\Vit(v). Since i /∈ Vit(v), there exists a T ⊆ N\{i}
with v(T ) = 2. Clearly, since x ∈ C(v), we have x ≥ 0. Then, because of efficiency
and stability of x ∈ C(v),

xi ≤ v(N ) −
∑

j∈T
x j ≤ v(N ) − v(T ) = 0,

so xi = 0. 	

Using the concept of vital players, Proposition 3.2 provides a sufficient condition

for emptiness of the core of a three-valued simple game.

Proposition 3.2 Let v ∈ TSIN . If Vit(v) = ∅ or v(N\Vit(v)) > 0, then C(v) = ∅.1

Proof First, assume Vit(v) = ∅. Suppose C(v) �= ∅ and let x ∈ C(v). Then, from
Proposition 3.1 we know xi = 0 for all i ∈ N . Consequently,

∑
i∈N xi = 0 which

contradicts the efficiency condition of x ∈ C(v).

1 Note that the condition is only a sufficient condition and not a necessary condition. Consider for example
the game v ∈ TSIN , with N = {1, 2, 3}, given by

v(S) =
{
2 if S = N ,

1 otherwise.

Then, C(v) = ∅ but Vit(v) = N �= ∅ and v(N\Vit(v)) = v(∅) = 0.
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Second, assume v(N\Vit(v)) > 0. SupposeC(v) �= ∅ and let x ∈ C(v). Then, from
Proposition 3.1 we know xi = 0 for all i ∈ N\Vit(v) and therefore

∑
i∈N\Vit(v) xi =

0 < v(N\Vit(v)), which contradicts the stability condition of x ∈ C(v). 	

From Proposition 3.2 it follows that only the set of permissible three-valued simple

games may have a non-empty core, where a game v ∈ TSIN is called permissible if
the following two conditions are satisfied:

(i) Vit(v) �= ∅,
(ii) v(N\Vit(v)) = 0.

As a consequence, from now on we focus only on the set of permissible three-valued
simple games and define for every permissible three-valued simple game, a reduced
game where the player set is reduced to the set of vital players. We define this reduced
game in such a way that the core of a permissible three-valued simple game equals
the core of the reduced game, when extended with zeros for all players outside the set
of vital players (see Proposition 3.4).

For a permissible game v ∈ TSIN the reduced three-valued simple game vr ∈
TUVit(v) is defined by

vr (S) = v(S ∪ (N\Vit(v))),

for all S ⊆ Vit(v). The following proposition states that a reduced permissible game
vr is also a three-valued simple game and, interestingly, allows for only one coalition
with value 2.

Proposition 3.3 Let v ∈ TSIN be permissible. Then, vr ∈ TSIVit(v) with

vr (S) ∈ {0, 1},

for all S ⊂ Vit(v).

Proof From the definition of vr it immediately follows that vr ∈ TSIVit(v). Suppose
that there exists an S ⊂ Vit(v) with vr (S) = 2. Then v(S ∪ (N\Vit(v))) = 2
and consequently, using the definition of Vit(v), we have Vit(v) ⊆ S, which is a
contradiction. 	


In a reduced three-valued simple game the number of coalitions with value 2 is
reduced to one, only the grand coalition has value 2, and thus Vit(vr ) = Vit(v). This
property makes it easier to characterize the core of reduced three-valued simple games
compared to non-reduced three-valued simple games.

For a permissible game v ∈ TSIN and for an x ∈ R
Vit(v) we define x0 ∈ R

N as

x0i =
{
xi if i ∈ Vit(v),

0 if i ∈ N\Vit(v).

For a set X ⊆ R
Vit(v), we define X

0 ⊆ R
N as X

0 = {x0 | x ∈ X}.
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Proposition 3.4 Let v ∈ TSIN be permissible. Then,

C(v) = C(vr )
0

Proof (“⊆”) Let x ∈ C(v) and let S ⊆ Vit(v). From Proposition 3.1 we have

∑

i∈S
xi =

∑

i∈S∪(N\Vit(v))

xi ≥ v(S ∪ (N\Vit(v))) = vr (S),

where the inequality follows from stability of x ∈ C(v). Because of efficiency of
x ∈ C(v) and due to Proposition 3.1 we have

∑

i∈Vit(v)

xi =
∑

i∈N
xi = v(N ) = 2 = vr (Vit(v)),

where the last equality follows from Proposition 3.3. Hence, x ∈ C(vr )
0
.

(“⊇”) Let x ∈ C(vr )
0
and let S ⊆ N . Then,

∑

i∈S
xi =

∑

i∈S∩Vit(v)

xi ≥ vr (S ∩ Vit(v)) = v((S ∩ Vit(v)) ∪ (N\Vit(v))) ≥ v(S),

where the first inequality follows from stability of x ∈ C(vr ) and the second inequality
follows from monotonicity of v and the fact that S ⊆ (S ∩ Vit(v)) ∪ (N\Vit(v)).
Because of efficiency of x ∈ C(vr ) we have

∑

i∈N
xi =

∑

i∈Vit(v)

xi = vr (Vit(v)) = 2 = v(N ),

where the penultimate equality follows from Proposition 3.3. Hence, x ∈ C(v). 	

Proposition 3.4 states that the core of a permissible three-valued simple game

follows from the core of the corresponding reduced game by extending the vectors
with zeros for the non-vital players. This proposition is illustrated in the following
example.

Example 3.1 Let N = {1, 2, 3, 4} and consider the game v ∈ TSIN given by

v(S) =

⎧
⎪⎨

⎪⎩

2 if S ∈ {{1, 2, 3}, N },
1 if S ∈ {{1, 2}, {2, 3}, {1, 2, 4}, {2, 3, 4}},
0 otherwise.

Note that v is permissible since Vit(v) = {1, 2, 3} �= ∅ and v(N\Vit(v)) = v({4}) =
0. The corresponding reduced three-valued simple game vr is given in Table 1.
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Table 1 Reduced game vr of
the game v in Example 3.1

S {1} {2} {3} {1, 2} {1, 3} {2, 3} {1, 2, 3}
vr (S) 0 0 0 1 0 1 2

Since

C(vr ) = Conv

⎛

⎝

⎛

⎝
0
2
0

⎞

⎠ ,

⎛

⎝
1
1
0

⎞

⎠ ,

⎛

⎝
0
1
1

⎞

⎠ ,

⎛

⎝
1
0
1

⎞

⎠

⎞

⎠ ,

we have, according to Proposition 3.4, that

C(v) = Conv

⎛

⎜
⎜
⎝

⎛

⎜
⎜
⎝

0
2
0
0

⎞

⎟
⎟
⎠ ,

⎛

⎜
⎜
⎝

1
1
0
0

⎞

⎟
⎟
⎠ ,

⎛

⎜
⎜
⎝

0
1
1
0

⎞

⎟
⎟
⎠ ,

⎛

⎜
⎜
⎝

1
0
1
0

⎞

⎟
⎟
⎠

⎞

⎟
⎟
⎠ .

	

As Example 3.1 suggests, the extreme points of the core of three-valued simple

games have a specific structure which we will describe using the notion of the vital
core. The extreme points depend in particular on the set of vital players that belong
to every coalition with value 1 or 2 in vr and the set of pairs of vital players such that
for every coalition with value 1 in vr at least one player of such a pair belongs to the
coalition. For a permissible three-valued simple game v ∈ TSIN we define the set of
primary vital players of v by

PVit(v) =
⋂

{S ⊆ Vit(v) | vr (S) ∈ {1, 2}} ,

and define the set of secondary vital pairs of v by

SVit(v) = {{i, j} ⊆ Vit(v)\PVit(v) | i �= j, {i, j} ∩ S �= ∅ for all S with vr (S) = 1}.

Using the primary vital players and the secondary vital pairs, the vital core VC(v) of
a permissible game v ∈ TSIN is defined by

VC(v) = Conv({2e{i} | i ∈ PVit(v)}
∪{e{i, j} | i ∈ PVit(v), j ∈ Vit(v)\PVit(v)}
∪{e{i, j} | {i, j} ∈ SVit(v)}).

The vital core2 is a subset of the core as is seen in the following theorem.

2 Note that the concept of the vital core can easily be generalized for three-valuedTU-gameswith coalitional
values 0, 1 or β with β > 1.
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Theorem 3.5 Let v ∈ TSIN be permissible. Then,3

VC(v) ⊆ C(v).

Proof Due to Proposition 3.4 together with the fact that C(v) is a convex set, it is
sufficient to show that 2e{i} ∈ C(vr ) for all i ∈ PVit(v), e{i, j} ∈ C(vr ) for all
i ∈ PVit(v) and j ∈ Vit(v)\PVit(v), and e{i, j} ∈ C(vr ) for all {i, j} ∈ SVit(v).4

Let i ∈ PVit(v) and S ⊂ Vit(v). If i ∈ S, then

∑

k∈S
2e{i}

k = 2 > 1 ≥ vr (S).

If i /∈ S, then vr (S) = 0 and

∑

k∈S
2e{i}

k = 0 = vr (S).

Moreover,
∑

k∈Vit(v) 2e
{i}
k = 2 = vr (Vit(v)). Hence, 2e{i} belongs to C(vr ).

Next, let i ∈ PVit(v), j ∈ Vit(v)\PVit(v) and S ⊂ Vit(v). If i ∈ S, then

∑

k∈S
e{i, j}
k ≥ 1 ≥ vr (S).

If i /∈ S, then vr (S) = 0 and

∑

k∈S
e{i, j}
k ≥ 0 = vr (S).

Moreover,
∑

k∈Vit(v) e
{i, j}
k = 2 = vr (Vit(v)). Hence, e{i, j} belongs to C(vr ).

Finally, let {i, j} ∈ SVit(v) and let S ⊂ Vit(v). If S ∩ {i, j} �= ∅, then
∑

k∈S
e{i, j}
k ≥ 1 ≥ vr (S).

If S ∩ {i, j} = ∅, then vr (S) = 0 and

∑

k∈S
e{i, j}
k = 0 = vr (S).

Moreover,
∑

k∈Vit(v) e
{i, j}
k = 2 = vr (Vit(v)). Hence, e{i, j} belongs to C(vr ). 	


3 This theorem can be generalized for three-valued TU-games with coalitional values 0, 1 or β with β ≥ 2.
4 By the nature of the restricted game vr we should actually write 2e{i}|Vit(v) and e{i, j}|Vit(v) since we

consider the restriction of the vectors 2e{i} and e{i, j} to Vit(v).
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As the following example shows, the vital core and the core coincide for some
three-valued simple games.

Example 3.2 Reconsider the three-valued simple game of Example 3.1. From the
reduced game vr (see Table 1) it follows that

PVit(v) = {2}

and

SVit(v) = {{1, 3}} .

Therefore, the vital core of v is given by

VC(v) = Conv

⎛

⎜
⎜
⎝

⎛

⎜
⎜
⎝

0
2
0
0

⎞

⎟
⎟
⎠ ,

⎛

⎜
⎜
⎝

1
1
0
0

⎞

⎟
⎟
⎠ ,

⎛

⎜
⎜
⎝

0
1
1
0

⎞

⎟
⎟
⎠ ,

⎛

⎜
⎜
⎝

1
0
1
0

⎞

⎟
⎟
⎠

⎞

⎟
⎟
⎠ ,

and, using the results from Example 3.1, we have VC(v) = C(v). 	

The result of the previous example is generalized in Theorem 3.6 below which

shows that the core and the vital core coincide for the class of convex three-valued
simple games. Here a game v ∈ TUN is called convex if

v(S ∪ {i}) − v(S) ≤ v(T ∪ {i}) − v(T ),

for all S, T ∈ 2N , i ∈ N such that S ⊂ T ⊆ N\{i}. From Shapley (1971) and Ichiishi
(1981) it follows that v ∈ TUN is convex if and only if

C(v) = Conv
({mσ (v) | σ ∈ �(N )}) , (1)

where �(N ) = {σ : N → {1, . . . , |N |} | σ is bijective} is the set of all orders on N
and the marginal vector mσ (v) ∈ R

N , for σ ∈ �(N ), is defined by

mσ
i (v) = v ({ j ∈ N | σ( j) ≤ σ(i)}) − v ({ j ∈ N | σ( j) < σ(i)}) , (2)

for all i ∈ N .

Theorem 3.6 Let v ∈ TSIN be convex.5 Then,

C(v) = VC(v).

5 Note that every convex three-valued simple game is permissible because every convex game has a non-
empty core.
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Proof From Theorem 3.5 we already know VC(v) ⊆ C(v), so we only need to prove

C(v) ⊆ VC(v). Together with Proposition 3.4 and the fact VC(v) = VC(vr )
0
, it

suffices to prove

C(vr ) ⊆ VC(vr ).

Note that because v is convex and due to the definition of a reduced game, also vr is
convex. Therefore, because of (1) and because the vital core is a convex set, it suffices
to show that

mσ (vr ) ∈
{
2e{i} | i ∈ PVit(vr )

}
∪

{
e{i, j} | i ∈ PVit(vr ), j ∈ Vit(vr )\PVit(vr )

}

∪
{
e{i, j} | {i, j} ∈ SVit(vr )

}
,

for all σ ∈ �(Vit(v)).6

Let σ ∈ �(Vit(v)). Since vr (S) ∈ {0, 1} for all S ⊂ Vit(v), vr (Vit(v)) = 2 and vr
is monotonic, mσ (vr ) either contains one two with all other coordinates zero (Case 1)
or it contains two ones with all other coordinates zero (Case 2). We thus distinguish
between these two cases.

Case 1: [mσ (vr ) = 2e{i} for some i ∈ Vit(v)]
Set

P = {k ∈ Vit(v) | σ(k) < σ(i)}.

Then, vr (P) = 0 and vr (P ∪ {i}) = 2. Since in a reduced three-valued simple game
there is only one coalition, namely the grand coalition Vit(v), with value 2, we have
P ∪ {i} = Vit(v) and thus P = Vit(v)\{i}. Therefore, from monotonicity it follows
that vr (S) = 0 for all S ⊆ Vit(v)\{i}. Hence, i ∈ S for every S ⊆ Vit(v) with
vr (S) ∈ {1, 2} and thus i ∈ PVit(vr ). Consequently, we have mσ (vr ) = 2e{i} with
i ∈ PVit(vr ).

Case 2: [mσ (vr ) = e{i, j} for some i, j ∈ Vit(v), i �= j]
Without loss of generality assume that σ(i) < σ( j). Set

P = {k ∈ Vit(v) | σ(k) < σ(i)}.

Then, vr (P) = 0 and vr (P∪{i}) = 1. Since vr (P∪{i}) = 1 and j /∈ P∪{i}, we have
j /∈ PVit(vr ). We distinguish from now on between another two cases: i ∈ PVit(vr )
(Case 2(i)) and i /∈ PVit(vr ) (Case 2(ii)).

Case 2(i): [i ∈ PVit(vr )]

6 Note that Vit(v) is the player set in vr . Therefore, in the proof of Theorem 3.6 we write Vit(v) if we talk
about the player set of the game vr and we write Vit(vr ) if we talk about the vital players in the game vr .
However, actually Vit(v) = Vit(vr ). Moreover, note that also (vr )r = vr .
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Then, we have mσ (vr ) = e{i, j} with i ∈ PVit(vr ) and j ∈ Vit(vr )\PVit(vr ).
Case 2(ii): [i /∈ PVit(vr )]
Then, we need to show {i, j} ∈ SVit(vr ). Since {i, j} ⊆ Vit(vr )\PVit(vr ), it remains
to show {i, j} ∩ S �= ∅ for all S ⊂ Vit(v) with vr (S) = 1. Suppose for the sake of
contradiction that there exists a coalition S ⊂ Vit(v)with vr (S) = 1 and {i, j}∩S = ∅.
Then, due to monotonicity and the fact that S ∪ P ∪ {i} �= Vit(v) because j /∈ S and
j /∈ P , we have vr (S ∪ P) = 1 and vr (S ∪ P ∪ {i}) = 1. As a consequence,

vr (S ∪ P ∪ {i}) − vr (S ∪ P) = 0,

while

vr (P ∪ {i}) − vr (P) = 1,

which is a contradiction with vr being convex. Consequently, mσ (vr ) = e{i, j} with
{i, j} ∈ SVit(vr ). 	


An example of a class of convex three-valued simple games is the class of double
unanimity games. Therefore, Theorem 3.6 implies that the core and the vital core
coincide for the class of double unanimity games. For T1, T2 ∈ 2N\{∅}, we define the
double unanimity game uT1,T2 ∈ TSIN by

uT1,T2(S) =

⎧
⎪⎨

⎪⎩

2 if T1 ⊆ S and T2 ⊆ S,

1 if T1 ⊆ S, T2 � S or T1 � S, T2 ⊆ S,

0 otherwise,

for all S ∈ 2N . Note that a three-value simple double unanimity game is a natural
extension of a simple unanimity game uT ∈ SIN , with T ∈ 2N\{∅}, defined by

uT (S) =
{
1 if T ⊆ S,

0 otherwise,

for all S ∈ 2N .
The following example illustrates an interactive cooperative operations research

situation based on a minimum coloring problem [as introduced by Deng et al. (1999)]
that can be modelled as a three-valued simple game. Theorem 3.7 (cf. Musegaas et al.
2016) shows that the core and the vital core coincide for a subclass of minimum
coloring games. Note that minimum coloring games are not necessarily convex and
thus Theorem 3.7 is not a direct consequence of Theorem 3.6.

Example 3.3 Consider a set of agents {1, 2, 3, 4} who all need access to some facility.
However, for some reason, some agents cannot have access to the same facility. The
pairs of agents that are in conflict in this way are assumed to be {1, 3}, {1, 4} and
{2, 4}. This situation can be modelled by the conflict graph in Fig. 1. The total costs
are assumed to be linearly increasing in the number of facilities used, so the aim is to
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Fig. 1 The conflict graph of
Example 3.3 1

2

3

4

find the minimum number of facilities that can serve all agents. Clearly, the optimal
facility allocation uses two facilities: players 1 and 2 have access to one facility, say
facility A, and players 3 and 4 have access to another facility, say facility B.

If we assume that in the initial situation no agents share facilities (and thus four facil-
ities are used), then cooperation in sharing facilities between non-conflicting agents
will lead to cost savings. To analyze how to divide the minimal joint costs among
the agents a minimum coloring game can be defined. In this minimum coloring game
the value of a coalition is equal to the maximal number of facilities a coalition can
save by means of sharing facilities. For instance, in our example, the value of the
grand coalition will be 2, because initially four facilities were used and by means of
optimal cooperation only two facilities are needed. It turns out that the corresponding
minimum coloring game v ∈ TUN is a three-valued simple game and is given by

v(S) =

⎧
⎪⎨

⎪⎩

2 if S = N ,

1 if {1, 2} ⊆ S or {2, 3} ⊆ S or {3, 4} ⊆ S, and S �= N ,

0 otherwise,

for all S ⊆ N .
Note that it is assumed that all players would want to cooperate and thus in the

corresponding three-valued simple game it is analyzed how to divide themaximal joint
cost savings due to cooperation among the agents. In order to find a fair allocation
of these cost savings, the values of the subcoalitions are taken into account. This
illustrates the conceptual difference between three-valued simple games and voting
games, where the focus is more on how decision are made instead of taking into
account the worth/power of subcoalitions. 	


Theorem 3.7 (cf. Musegaas et al. 2016). Let v ∈ TSIN be a minimum coloring game
induced by a perfect graph.7 Then,

C(v) = VC(v).

7 Without going into details, a perfect graph is a graph in which the chromatic number of every induced
subgraph equals the clique number of that subgraph.
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Example 3.4 illustrates that there exist three-valued simple games for which the
vital core is a strict non-empty subset of the core.

Example 3.4 Let v ∈ TSIN be given by N = {1, . . . , 7} and

v(S) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

2 if S ∈ {N\{6}, N\{7}, N },
1 if S /∈ {N\{6}, N\{7}, N } and {1, 3, 5} ⊆ S or {3, 4, 5} ⊆ S or

{1, 2, 3, 6} ⊆ S or {1, 3, 4, 7} ⊆ S or {2, 3, 4, 6, 7} ⊆ S,

0 otherwise.

Note that v is permissible since Vit(v) = {1, 2, 3, 4, 5} �= ∅ and v(N\Vit(v)) =
v({6, 7}) = 0. Hence, vr ∈ TSIVit(v) is given by

vr (S) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

2 if S = Vit(v),

1 if S ∈ {{1, 2, 3}, {1, 3, 4}, {1, 3, 5}, {2, 3, 4}, {3, 4, 5},
{1, 2, 3, 4}, {1, 2, 3, 5}, {1, 3, 4, 5}, {2, 3, 4, 5}},

0 otherwise.

From this it follows that

PVit(v) = {3}

and

SVit(v) = {{1, 4}} .

Consequently,

VC(v) = Conv

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0
0
2
0
0
0
0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1
0
1
0
0
0
0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0
1
1
0
0
0
0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0
0
1
1
0
0
0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0
0
1
0
1
0
0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1
0
0
1
0
0
0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

Note that
(
0, 1

2 ,
1
2 ,

1
2 ,

1
2 , 0, 0

)
belongs toC(v), but does not belong to VC(v) and thus

VC(v) ⊂ C(v). 	


4 The Shapley value for three-valued simple games

In this section we analyze the Shapley value for three-valued simple games. In the
context of simple games and three-valued simple games, a one-point solution concept
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like the Shapley value can be interpreted as a measure for the relative influence of
each player.

A one-point solution concept f on the class GN with GN ⊆ TUN is a function
f : GN → R

N . The Shapley value (Shapley 1953) is a solution concept on TUN

defined by

�i (v) = 1

|N |!
∑

σ∈�(N )

mσ (v),

for all v ∈ TUN , where a marginal vectormσ (v)with σ ∈ �(N ) is as defined in (2). A
characterization of the Shapley value for simple games is provided by Dubey (1975).
The essence of this characterization is the transfer property. A one-point solution
concept f : GN → R

N on a class GN ⊆ TUN such that for all v,w ∈ GN also
max{v,w} ∈ GN and min{v,w} ∈ GN , satisfies

• the transfer property if

f (max{v,w}) + f (min{v,w}) = f (v) + f (w)

for all v,w ∈ GN .8

Dubey (1975) proved that the unique one-point solution concept on SIN that satisfies
efficiency, symmetry, the dummy property and the transfer property is the Shapley
value (Shapley and Shubik 1954). The aim of this section is to see if the transfer
property can also be used for a characterization for three-valued simple games.

First we formulate the properties above to fit on the class TSIN . A one-point solution
concept f : TSIN → R

N satisfies

• efficiency if
∑

i∈N fi (v) = 2 for all v ∈ TSIN .
• symmetry if fi (v) = f j (v) for all v ∈ TSIN and every pair i, j ∈ N of symmetric
players, where players i, j ∈ N are symmetric in v if

v(S ∪ {i}) = v(S ∪ { j}),

for all S ⊆ N\{i, j}.
• the dummy property if fi (v) = v({i}) for all v ∈ TSIN and every dummy player
i ∈ N in v, where player i ∈ N is a dummy player in v if

v(S ∪ {i}) = v(S) + v({i}),

for all S ⊆ N\{i}.
The combination of the four properties efficiency, symmetry, dummy property and
transfer property9 is not sufficient to characterize the Shapley value on the class of

8 The games max{v, w} and min{v, w} are defined by (max{v, w})(S) = max{v(S), w(S)} and
(min{v, w})(S) = min{v(S), w(S)}, for all S ⊆ N .
9 If v, w ∈ TSIN , then both max{v, w} and min{v, w} belong to TSIN too.
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three-valued simple games: see Example A.1 in Appendix A. To obtain a characteriza-
tion of � on TSIN , we introduce an additional fifth axiom: unanimity level efficiency.

A one-point solution concept f : TSIN → R
N satisfies

• unanimity level efficiency if

∑

i∈S
fi (uS,T ) = 1 + 1

2

∑

i∈S
fi (uT,T ), (3)

for all S, T ∈ 2N\{∅} with S ⊂ T .

Unanimity level efficiency intuitively states that in a double unanimity game uS,T

with S ⊂ T the players in S can allocate a payoff of 1 between themselves, while for
the remaining payoff of 1 (assuming efficiency) the players in S and T \S are treated
equally. Formally, the unanimity level efficiency axiom compares the aggregate payoff
of coalition S within a double unanimity game uS,T , with S ⊂ T , to half of the payoffs
to S in the double unanimity game uT,T . Note that the double unanimity game uT,T

is a rescaling of the unanimity game uT and half of the payoffs to S in the double
unanimity game uT,T equals the payoffs to S in the unanimity game uT .

The combination of the axioms of efficiency, symmetry, the dummy property, the
transfer property and unanimity level efficiency fully determines the Shapley value
for a three-valued simple game.

Theorem 4.1 The Shapley value � is the unique one-point solution concept on TSIN

satisfying the axioms efficiency, symmetry, the dummy property, the transfer property
and unanimity level efficiency.10,11

Proof 12 We first prove that, on TSIN , the Shapley value � satisfies the five axioms
mentioned in the theorem. From Shapley (1953) it follows that � satisfies efficiency,
symmetry and the dummy property on TUN . Moreover, from Dubey (1975) it fol-
lows that � satisfies the transfer property on TUN . Hence, � also satisfies efficiency,
symmetry, the dummy property and the transfer property on TSIN , and thus it only
remains to prove that � satisfies unanimity level efficiency on TSIN . Note that, for
S, T ∈ 2N with S ⊂ T , we have

�i (uS,T ) =

⎧
⎪⎨

⎪⎩

1
|S| + 1

|T | if i ∈ S
1

|T | if i ∈ T \S,

0 otherwise,

and

�i (uT,T ) =
{

2
|T | if i ∈ T

0 otherwise,

10 A proof of the logical independence of the five axioms for |N | = 2 can be found in Appendix A.
11 This characterization can be generalized for three-valued TU-games with coalitional values 0, 1 or β

with β > 1.
12 The proof is similar to the proof of Theorem II in Dubey (1975).
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for all i ∈ N . Consequently,

∑

i∈S
fi (uS,T ) − 1

2

∑

i∈S
fi (uT,T ) = |S|

(
1

|S| + 1

|T |
)

− 1

2
|S|

(
2

|T |
)

= 1.

To finish the proof, we show that the five axioms exactly fix the allocation vec-
tor prescribed by the solution concept for every three-valued simple game. Let
f : TSIN → R

N be a one-point solution concept that satisfies efficiency, symmetry,
the dummy property, the transfer property and unanimity level efficiency on TSIN .
Let v ∈ TSIN and define

MWC1(v) = {S ⊂ N | v(S) = 1 and T ⊂ S ⇒ v(T ) = 0},
MWC2(v) = {S ⊂ N | v(S) = 2 and T ⊂ S ⇒ v(T ) ∈ {0, 1}},

and set

MWC(v) = MWC1(v) ∪ MWC2(v).

Observe the following:

(i) If |MWC(v)| = 0, then v = uN ,N . From efficiency and symmetry it follows that

f (uN ,N ) = 2

|N |e
N , (4)

and thus f (uN ,N ) is uniquely determined.
(ii) If |MWC(v)| = 1, then we have either |MWC1(v)| = 0 and |MWC2(v)| = 1, or

|MWC1(v)| = 1 and |MWC2(v)| = 0.
If |MWC1(v)| = 0 and |MWC2(v)| = 1, then v = uT,T for some T ⊂ N . From
efficiency, symmetry, and the dummy property it follows that f (uT,T ) = 2

|T |e
T

and thus f (uT,T ) is uniquely determined.
On the other hand, if |MWC1(v)| = 1 and |MWC2(v)| = 0, then v = uS,N

for some S ⊂ N . From efficiency and symmetry together with unanimity level
efficiency it follows that

∑

i∈S
f (uS,N ) = 1 + 1

2

∑

i∈S
fi (uN ,N ) = 1 + |S|

|N | .

Then, due to efficiency and symmetry, we know f (uS,N ) = 1
|S|e

S + 1
|N |e

N and
thus f (uS,N ) is uniquely determined.

Now let v ∈ TSIN such that |MWC(v)| = m with m ≥ 2. We use induction to
show that f (v) is uniquely determined. Assume that f (w) is uniquely determined
for all w ∈ TSIN with |MWC(w)| < m. Set MWC1(v) = {S1, S2, . . . , Sp} and
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MWC2(v) = {T1, T2, . . . , Tq} with p + q = m. Note that from monotonicity of v it
follows that

Tj � Si ,

for all i ∈ {1, . . . , p} and j ∈ {1, . . . , q}. We distinguish between two cases: q = 0
and q > 0.

Case 1: q = 0, i.e., |MWC2(v)| = 0 and p = m. Define

w = max{uS2,N , . . . , uSp,N } and w′ = min{uS1,N , w}.

Then, w,w′ ∈ TSIN and

w(S) =

⎧
⎪⎨

⎪⎩

2 if S = N ,

1 if there exists an i ∈ {2, . . . , p} such that Si ⊆ S,

0 otherwise,

while

w′(S) =

⎧
⎪⎨

⎪⎩

2 if S = N ,

1 if there exists an i ∈ {2, . . . , p} such that S1 ∪ Si ⊆ S,

0 otherwise.

Consequently, we have MWC1(w) = {S2, S3, . . . , Sp} and MWC2(w) = ∅, and thus

|MWC(w)| = p − 1 = m − 1.

Moreover, MWC1(w
′) ⊆ {S1 ∪ S2, S1 ∪ S3, . . . , S1 ∪ Sp} and MWC2(w

′) = ∅, and
thus

|MWC(w′)| ≤ p − 1 = m − 1.

Since v = max{uS1,N , . . . , uSp,N } = max{uS1,N , w} and by the transfer property, we
have

f (uS1,N ) + f (w) = f (max{uS1,N , w}) + f (min{uS1,N , w}) = f (v) + f (w′),

and thus

f (v) = f (w) + f (uS1,N ) − f (w′).

Since by our induction hypothesis the right-hand side is uniquely determined, f (v) is
uniquely determined.
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Case 2: q > 0, i.e., |MWC2(v)| > 0. Define

w = max{uS1,N , . . . , uSp,N , uT2,T2 , . . . , uTq ,Tq } and w′ = min{uT1,T1 , w}.

Then, w,w′ ∈ TSIN and

w(S) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

2 if there exists an i ∈ {2, . . . , q} such that Ti ⊆ S,

1 if there exists an i ∈ {1, . . . , p} such that Si ⊆ S

and Tj � S for all j ∈ {2, . . . , q},
0 otherwise,

while

w′(S) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

2 if there exists an i ∈ {2, . . . , q} such that T1 ∪ Ti ⊆ S,

1 if there exists an i ∈ {1, . . . , p} such that T1 ∪ Si ⊆ S

and Tj � S for all j ∈ {2, . . . , q},
0 otherwise.

Since Tj � Si for all i ∈ {1, . . . , p} and j ∈ {1, . . . , q}, we have MWC1(w) =
{S1, S2, . . . , Sp} and MWC2(w) = {T2, T3, . . . , Tq}, and thus

|MWC(w)| = p + (q − 1) = m − 1.

Moreover, MWC1(w
′) ⊆ {T1 ∪ S1, T1 ∪ S2, . . . , T1 ∪ Sp} and MWC2(w

′) ⊆ {T1 ∪
T2, T1 ∪ T3, . . . , T1 ∪ Tq}, and thus

|MWC(w′)| ≤ p + (q − 1) = m − 1.

Since v = max{uS1,N , . . . , uSp,N , uT1,T1 , uT2,T2 , . . . , uTq ,Tq } = max{uT1,T1 , w} and
by the transfer property, we have

f (uT1,T1) + f (w) = f (max{uT1,T1 , w}) + f (min{uT1,T1 , w}) = f (v) + f (w′),

and thus

f (v) = f (w) + f (uT1,T1) − f (w′).

Since by our induction hypothesis the right-hand side is uniquely determined, f (v) is
uniquely determined too. 	


Applications of the Shapley value for measuring the power in legislative procedures
are abundant in the literature. For instance, Bilbao et al. (2002) considered the legisla-
tive procedure of the EU-27 Council by means of a combinatorial method based on
generating functions for computing the Shapley value efficiently. Likewise, Hausken
and Mohr (2001) considered the legislative procedure in the European Council of
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Ministers. In particular, they decomposed the Shapley value into a matrix for which
the elements in each row and in each column of the matrix sum up to the Shapley
value of the corresponding player.

Three-valued simple games can be used to more adequately model a bicameral
legislature, in which the legislators are divided into two separate houses, the lower
house and the upper house, and a bill has to be approved by both houses. Example 4.1
shows how a three-valued simple game can be used to model the bicameral legislature
in the Netherlands.

Example 4.1 In the bicameral legislature of the Netherlands, the States General of the
Netherlands, the lower house is called the House of Representatives and the upper
house is called the Senate. The House of Representatives consists of 150 members
and the Senate consists of 75 members. The members of the Senate and House of
Representatives each represent a political party. The members of the House of Rep-
resentatives are elected directly by the Dutch citizens. The members of the Senate,
however, are elected indirectly by the members of the provincial councils, who, in
turn, are elected directly by the Dutch citizens.

The House of Representatives can accept or reject a bill. A bill is accepted by the
House of Representatives only if there is a majority in favor. When a bill is accepted
by the House of Representatives it is forwarded to the Senate. Subsequently the Senate
can also accept or reject a bill, again via majority voting. If the bill is also accepted
by the Senate, then the bill becomes a law.13 Note that the House of Representatives
and the Senate are not symmetric in the sense that the House of Representatives also
has the right to propose or to revise a bill, while the Senate does not have this right.

The party breakdown of the House of Representatives and the Senate in September
2016 can be found in Table 2, where ai and bi denote the number of members in the
House of Representatives and Senate, respectively, for party i .

The legislature of the Netherlands can be modelled by means of the following
simple game w ∈ SIN where the set of players N is the set of parties and the value
w(S) of a coalition S ⊆ N equals:

• 1, if the members of all parties in the coalition form a majority in both the House
of Representatives and Senate,

• 0, otherwise.

Hence, we have

w(S) =
{
1 if

∑
i∈S ai ≥ 76 and

∑
i∈S bi ≥ 38,

0 otherwise,

for all S ⊆ N . Note, however, that this game does not take into account the asymmetry
of the House of Representatives and the Senate.

13 Note that in the current (2016) composition of the States General of the Netherlands, the government
(kabinet-Rutte II, a coalition of VVD and PvdA) forms a majority in the House of Representatives, but not
in the Senate. Hence, in order to accept a bill, the government needs the support of other political parties
as well.
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Table 2 Party breakdown of the
House of Representatives and
the Senate of the Netherlands
(updated to September 2016),
sources: https://www.house
ofrepresentatives.nl/member
s_of_parliament/parliamenta
ry_parties and https://www.
eerstekamer.nl/begrip/english_2

Party ai bi

VVD 40 13

PvdA 36 8

SP 15 9

CDA 13 12

D66 12 10

PVV 12 9

CU 5 3

GL 4 4

SGP 3 2

PvdD 2 2

GrKO 2 0

GrBvK 2 0

50PLUS 1 2

Houwers 1 0

Klein 1 0

Van Vliet 1 0

OSF 0 1

Total 150 75

Alternatively, a three-valued simple game does offer the opportunity to model the
asymmetric bicameral legislature of the Netherlands into a single TU-game. Consider
the three-valued simple game v ∈ TSIN where the set of players N is again the set of
parties. Now, the value v(S) of a coalition S ⊆ N equals:

• 2, if the members of all parties in the coalition form a majority in both the House
of Representatives and Senate,

• 1, if the members of all parties in the coalition form a majority in the House of
Representatives but not in the Senate,

• 0, otherwise.

Hence, we have

v(S) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

2 if
∑

i∈S ai ≥ 76 and
∑

i∈S bi ≥ 38,

1 if
∑

i∈S ai ≥ 76 and
∑

i∈S bi < 38,

0 otherwise,

for all S ⊆ N . For example, since aVVD + aPvdA = 76 ≥ 76 and bVVD + bPvdA =
21 < 38, we have v({VVD,PvdA}) = 1. Hence, the parties VVD and PvdA have a
majority in the House of Representatives, but not in the Senate.

Table 3 provides the rankings according to the Shapley values of the resulting
simple and three-valued simple game. Note that generally speaking there are no major
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Table 3 The rankings of the parties in the bicameral legislature of the Netherlands based on �(w) and
�(v), respectively

Ranking Party Ranking Party

(a) Ranking according to �(w) (b) Ranking according to �(v)

1. VVD 1. VVD

2. PvdA 2. PvdA

3. CDA 3. SP

4. SP 4. CDA

5. D66 5. D66

6. PVV 6. PVV

7. GL 7. CU

8. CU 8. GL

9. SGP 9. SGP

10. PvdD 10. PvdD

11. 50PLUS 11. 50PLUS

12. GrKO 12. GrKO

12. GrBvK 12. GrBvK

14. OSF 14. Houwers

15. Houwers 14. Klein

15. Klein 14. Van Vliet

15. Van Vliet 16. OSF

differences in the resulting rankings. So, in this case, the basic modelling via a simple
game can be seen as a good approximation. 	


Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if changes were made.

Appendix

In order to prove the logical independence of the five axioms efficiency, symmetry,
the dummy property, the transfer property and unanimity level efficiency on TSIN

with |N | = 2, we provide five examples to show the necessity of each of the five
properties. Note that if N = {1, 2}, then there are exactly nine different three-valued
simple games. These games are listed in Table 4.

Since players 1 and 2 are symmetric players in v1, v5, v9 and there are no symmetric
players in the other games, the symmetry property of a solution f is satisfied if and
only if

f1(v1) = f2(v1),
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f1(v5) = f2(v5),

f1(v9) = f2(v9).

Likewise, since player 1 is a dummy player in v3 and player 2 is a dummy player in v7
and there are no dummy players in the other games, the dummy property of a solution
f is satisfied if and only if

f1(v3) = 0,

f2(v7) = 0.

Moreover, the transfer property boils down to the following nine equalities:

f (v2) + f (v4) = f (v1) + f (v5),

f (v2) + f (v7) = f (v1) + f (v8),

f (v3) + f (v4) = f (v1) + f (v6),

f (v3) + f (v5) = f (v2) + f (v6),

f (v3) + f (v7) = f (v1) + f (v9),

f (v3) + f (v8) = f (v2) + f (v9),

f (v5) + f (v7) = f (v4) + f (v8),

f (v6) + f (v7) = f (v4) + f (v9),

f (v6) + f (v8) = f (v5) + f (v9).

Finally, the unanimity level efficiency property boils down to the following two equal-
ities:

f2(v2) = 1 + 1
2 f2(v1),

f1(v4) = 1 + 1
2 f1(v1).

Table 4 All possible
two-person three-valued simple
games

S {1} {2} {1, 2}
v1(S) 0 0 2

v2(S) 0 1 2

v3(S) 0 2 2

v4(S) 1 0 2

v5(S) 1 1 2

v6(S) 1 2 2

v7(S) 2 0 2

v8(S) 2 1 2

v9(S) 2 2 2
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Example A.1 (Necessity of unanimity level efficiency) Consider the one-point solution
concept f , where

f (v1) = f (v2) = f (v4) = f (v5) = f (v9) = (1, 1),

f (v3) = f (v6) = (0, 2),

f (v7) = f (v8) = (2, 0).

Clearly f (v6) �= �(v6) while f satisfies efficiency, symmetry, the dummy property
and the transfer property, but does not satisfy unanimity level efficiency. 	

Example A.2 (Necessity of the transfer property) Consider the one-point solution con-
cept f , where

f (v1) = f (v5) = f (v9) = (1, 1),

f (v2) = ( 1
2 , 1

1
2

)
,

f (v3) = f (v6) = (0, 2),

f (v4) = (
11
2 ,

1
2

)
,

f (v7) = f (v8) = (2, 0).

Clearly f (v6) �= �(v6) while f satisfies efficiency, symmetry, the dummy property
and unanimity level efficiency, but does not satisfy the transfer property. 	

Example A.3 (Necessity of the dummy property) Consider the one-point solution con-
cept f , where

f (v1) = f (v5) = f (v6) = f (v8) = f (v9) = (1, 1),

f (v2) = f (v3) = ( 1
2 , 1

1
2

)
,

f (v4) = f (v7) = (
11
2 ,

1
2

)
.

Clearly f (v6) �= �(v6) while f satisfies efficiency, symmetry, the transfer property
and unanimity level efficiency, but does not satisfy the dummy property. 	

Example A.4 (Necessity of symmetry) Consider the one-point solution concept f ,
where

f (v1) = f (v4) = f (v7) = (2, 0),

f (v2) = f (v5) = f (v8) = (1, 1),

f (v3) = f (v6) = f (v9) = (0, 2),

Clearly f (v6) �= �(v6) while f satisfies efficiency, the dummy property, the transfer
property and unanimity level efficiency, but does not satisfy symmetry. 	
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Example A.5 (Necessity of efficiency) Consider the one-point solution concept f ,
where

f (v1) = f (v2) = f (v4) = f (v5) = f (v9) = (2, 2),

f (v3) = f (v6) = (0, 4),

f (v7) = f (v8) = (4, 0),

Clearly f (v6) �= �(v6) while f satisfies symmetry, the dummy property, the transfer
property and unanimity level efficiency, but does not satisfy efficiency. 	
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