
Underspecified Semantics∗

Reinhard Muskens

1 Introduction

Ambiguities in natural language can multiply so fast that no person or ma-
chine can be expected to process a text of even moderate length by enumer-
ating all possible disambiguations. A sentence containing n scope bearing
elements which are freely permutable will have n! readings, if there are no
other, say lexical or syntactic, sources of ambiguity. A series of m such sen-
tences would lead to (n!)m possibilities. Some alternative scopings may boil
down to the same reading. The relative order in which we scope two exis-
tentially quantified noun phrases, for example, will not matter if no other
material intervenes. But all in all the growth of possibilities will be so fast
that generating readings first and testing their acceptability afterwards will
not be feasible.

This insight has led a series of researchers (e.g. [36, 13, 14, 26, 2, 32,
30, 31, 23, 29, 28]) to adopt a level of representation at which ambiguities
remain unresolved. The idea here is not to generate and test many possi-
ble interpretations but to first generate one ‘underspecified’ representation
which in a sense represents all its complete specifications and then use what-
ever information is available to further specify the result. Some mechanism of
reasoning, presumably a mechanism with a monotonic core but also allowing
‘jumping to conclusions’, must strengthen the original underspecified repre-
sentation of a given sentence until it is either equivalent to a unique reading

∗From: Urs Egli and Klaus von Heusinger, editors, Reference and Anaphoric Rela-

tions, volume 72 of Studies in Linguistics and Philosophy, pages 311-338. Kluwer, 1999.
This paper was written while I was staying at the Universität des Saarlandes (SFB 378–
Ressourcenadaptive Kognitive Prozesse). I wish to thank Manfred Pinkal for inviting me
to the stimulating environment of Saarbrücken’s Computational Linguistics group.

1

for that sentence or until its possible further specifications are within some
otherwise acceptable range.

What is the nature of underspecified semantic representations? The pro-
gram sketched here seems to impose two irreconcilable requirements on them.
On the one hand underspecified representations must be ambiguous, on the
other hand it should be possible to reason with them. In fact there are two
kinds of reasoning that should be possible. The language user must of course
be able to reason about the form of the representations involved, as under-
standing form is a necessary precondition for understanding content. But
reasoning about the form of a representation may very well have to involve
reasoning on the basis of the content of some of its partial specifications.
Given some representation R which has to be evaluated in a context C, for
example, the hearer may conclude that quantifier Q1 cannot scope over quan-
tifier Q2 because the underspecified representation R′ which is equivalent to
‘R + Q1 scopes over Q2’ already follows from C or is inconsistent with C.
If R′ follows from C, or is inconsistent with C, then general Gricean consid-
erations will allow the hearer to conclude that R′ was not what was meant
and in that case R can be strengthened to an underspecified representation
‘R + Q1 does not scope over Q2’. The reasoning crucially involves inference
on the basis of C and R′ and since R′ may still contain ambiguities, even if
it is more specified than R is, the language user must be able to reason on
the basis of ambiguous information.

From this it would seem that we need a logic that can reason with am-
biguous expressions1 and indeed some progress in the direction of defining
such logics was made in [33, 34, 10, 5]. In this paper I shall go another way,
however, and show that it is possible to use a standard logic for underspec-
ified representation provided that we use it for reasoning about the forms
of expressions as well as about their contents. Language users typically do
not only reason about what is the case and whether one sentence follows
from another; they also reason about what was said and which reading was
meant. If the previous reflections are correct, both forms of reasoning are in-

1It is of course possible to define a consequence relation on ambiguous expressions
in terms of the standard consequence relation and all possible disambiguations of the
expressions involved: A follows from B iff any disambiguation of A follows from any
disambiguation of B. However, such a definition cannot serve as the basis of a practical
inference system in view of the number of disambiguations which may be involved. One
criterion a logic of ambiguous expressions has to satisfy is that inference should not require
disambiguation.

2

tertwined. From a theoretical point of view the simplest hypothesis to adopt
is that there is one logical language in which both reasoning processes are
carried out. We shall try to model part of this reasoning process with the
help of classical logic.

One central hypothesis in the paper will be that the relation between an
underspecified representation and its full representations is not so much the
relation between one structure and a set of other structures but is in fact the
relation between a description (a set of logical sentences) and its models.2

This picture, which comes quite natural to logicians, in fact also underlies
the notion of underspecification in syntax, as many researchers have noticed.
Section 2 will review some of the reasons why syntacticians have found it at-
tractive to think of syntactic representations in terms of logical descriptions
and not directly in terms of the structures satisfying those descriptions. Sec-
tion 3 will then give a series of axioms which, together with any description
of one or more surface structures, will admit the possible Logical Forms con-
nected with those structures. It will typically be possible that many Logical
Forms correspond to one surface structure and surface structures will be sub-
structures of the corresponding Logical Forms. In sections 4 and 5, then, we
shall give more axioms which in effect interpret the Logical Forms admit-
ted by our theory and the input surface description. The axioms in section
5 in particular axiomatise the usual interpretation procedure in Montague
Semantics (see [22]). The idea to obtain underspecification in semantics via
descriptions in this way is taken from [23]. In our last section we shall show
how our set-up allows us to draw inferences in some cases, even where the
Logical Forms of some of the premises or the conclusion are not uniquely
described.

2 Descriptions in Syntax

In linguistics, as elsewhere, it is often useful to distinguish between structures
and their descriptions .3 Let us consider the description in (1), a set of atomic

2Since the finite models which we are interested in can be described uniquely, the
relation between an underspecified representation and one of its full specifications also
corresponds to the relation between descriptions D and D′ such that D |= D′ and D′ has
exactly one model.

3This distinction was emphasized with particular clarity in [16, 19, 39, 4].

3

sentences.4 It talks about a certain collection of nodes, referred to with
the constants n1, . . . , n14. The nodes are labeled s, np, vp, . . . and stand
in certain relations, such as proper dominance (✁+) and precedence (≺).
Description (1) expresses, among many other things, that the S node n1

properly dominates the NP node n2 and the VP node n3. The constants
every, boy, adores, etc. refer to the lexical items which label certain nodes.

(1) n1 ✁
+ n2 n5 ✁

+ n11 lab(n1, s) lab(n10, every)
n1 ✁

+ n3 n6 ✁
+ n12 lab(n2, np) lab(n11, boy)

n2 ✁
+ n4 n8 ✁

+ n13 lab(n3, vp) lab(n12, adores)
n2 ✁

+ n5 n9 ✁
+ n14 lab(n4, det) lab(n13, a)

n3 ✁
+ n6 n2 ≺ n3 lab(n5, n) lab(n14, girl)

n3 ✁
+ n7 n4 ≺ n5 lab(n6, v)

n7 ✁
+ n8 n6 ≺ n7 lab(n7, np)

n7 ✁
+ n9 n8 ≺ n9 lab(n8, det)

n4 ✁
+ n10 lab(n9, n)

We are only interested in trees satisfying the description in (1) and for the
sake of definiteness we shall axiomatise collections of trees (or rather forests,
because we shall not impose the condition that our structures be rooted) by
A1–A9 below (see also [9, 3]). Axioms A1 and A2 say that proper domi-
nance is a strict partial order. Axioms A3 and A4 say the same about linear
precedence. A5 (Exhaustiveness) says that nonidentical nodes must either
be in a proper dominance or in a precedence relation. Axioms A6 and A7,
whose conjunction is called Inheritance, state that nodes inherit the prece-
dence properties of their ancestors in the proper dominance relation. A8
requires the labeling relation to be functional and the last axiom demands
that distinct label names denote distinct labels. This excludes the perverse
situation that np and vp, or det and every denote the same label.

A1 ∀k ¬ k ✁
+ k

A2 ∀k1k2k3 [[k1 ✁
+ k2 ∧ k2 ✁

+ k3] → k1 ✁
+ k3]

A3 ∀k ¬ k ≺ k

4We use a many-sorted language which distinguishes between the sort of nodes and the
sort of labels. The variable k will be used to range over nodes; ℓ will range over labels.
In later sections more sorts will be introduced. Consult Table 1 for an overview of the
typographical conventions I have used.

4

A4 ∀k1k2k3 [[k1 ≺ k2 ∧ k2 ≺ k3] → k1 ≺ k3]

A5 ∀k1k2 [k1 ≺ k2 ∨ k2 ≺ k1 ∨ k1 ✁
+ k2 ∨ k2 ✁

+ k1 ∨ k1 = k2]

A6 ∀k1k2k3 [[k1 ✁
+ k2 ∧ k1 ≺ k3] → k2 ≺ k3]

A7 ∀k1k2k3 [[k1 ✁
+ k2 ∧ k3 ≺ k1] → k3 ≺ k2]

A8 ∀k∀ℓ1ℓ2 [[lab(k, ℓ1) ∧ lab(k, ℓ2)] → ℓ1 = ℓ2]

A9 l1 6= l2, if l1 and l2 are distinct label names.

Other axioms may be natural too, such as the requirement that nodes labeled
with a lexical element are terminal (have no successor in the proper domi-
nance relation), but we shall refrain from formalising such extra conditions
here. Two abbreviations will prove useful. We use ✁

∗ for the dominance
relation, i.e., we write n ✁

∗ n′ for n ✁
+ n′ ∨ n = n′. The relation of im-

mediate dominance, ✁, is obtained by writing n✁ n′ as an abbreviation for
n✁+n′∧∀k¬[n✁+ k∧k✁+n′]. Any forest which satisfies the extra condition
of Rootedness, ∃k1∀k2 k1 ✁

∗ k2, is called a tree.

(2) S

NP

Det

every

N

boy

VP

V

adores

NP

Det

a

N

girl

If we are to write down a model for the description in (1) plus A1–A9, we
soon come up with the structure in (2), which satisfies all requirements. It
is clear, of course, that there are many trees and forests besides (2) which
satisfy (1), but (2) has a special position among these, as it is the forest
with fewest nodes satisfying the description. In fact, it is the unique forest
satisfying (1) plus (3), the statement that n1, . . . , n14 are all nodes available.

(3) ∀k (k = n1 ∨ . . . ∨ k = n14)

5

Type Variables Constants

node k n
label ℓ s, np, vp, . . . , e, every, boy, . . .
π v w, h, Tim, Tom, Mary,. . .
e x, y, z tim, tom, mary,. . .
s i, j

node → t surface, quant, island, root
node× node → t link, ✁+, ✁, ✁∗, ≺, par
node× label → t lab

π → t V AR
π × s → e V
node → π ρ
s → t p

π → (s → t) P
e× e → t run, man

e× e× e → t find, B
node× α → t σα, σα

0

Table 1: An overview of variables and constants that will be used

Descriptions such as the one in (1) are not very user-friendly, as we cannot
see at one glance what the domination and precedence relations are. Fortu-
nately, there is an alternative way of interpreting (2), not as the graphical
representation of a certain model, but as a graphically appealing way to write
down the essence of (1). In the next section, we shall make use of this pos-
sibility to interpret graphical representations either way; as descriptions, or
as the kind of structures that can satisfy them.

There are many reasons to think about linguistic representations in terms of
descriptions rather than in terms of structures. Some of these reasons have
to do with the processing of language, in particular the parsing process, some
reasons have to do with syntactic ambiguities, and some concern syntactic
theory itself, the task to characterise which structures are possible. Let us
turn to the reasons that come from parsing theory first. A locus classicus here
is [19], where (4) is considered and where it is noticed that a straightforward
left-to-right deterministic parse of this sentence is impossible if structures are
built in a conventional way. A left-to-right parser generating phrase structure

6

trees will necessarily hypothesise at some point that drove my aunt is a VP
constituent. This means that backtracking will be necessary.

(4) I drove my aunt from Peoria’s car

The solution proposed by [19] is to let the parser create descriptions, not
structures, and to let these descriptions be stated in terms of the relation of
dominance, not immediate dominance.5 After having read I drove my aunt
the ‘Description Theory’ parser discussed in [19] will have created a partial
description containing, among other material, the statements in (5).

(5) n1 ✁
∗ n2 n3 ✁

∗ n5 lab(n3, np)
n1 ✁

∗ n3 lab(n1, vp) lab(n4, det)
n3 ✁

∗ n4 lab(n2, v) lab(n5, n)

A conventional parser at this point would have created a structure which
would not be embeddable in the desired final result, but in the Description
Theory approach it is possible to continue the analysis without destroying
the intermediate description. Reading the rest of the sentence, the parser
will create more statements, such as the ones in (6) for example. These say
that there is material between the VP and NP mentioned in (5), but the
original description is retained. The new statements are consistent with the
previous ones and can simply be added. Unlike in structural approaches,
where part of the structure that has been built up will need to be destroyed
at this point, no earlier analysis need be revoked.

(6) n1 ✁
∗ n6 n7 ✁

∗ n3 lab(n7, det)
n6 ✁

∗ n7 lab(n6, np)

While this example shows how representation by means of descriptions helps
to avoid backtracking during the parsing process, there are also examples
which show how descriptions can provide us with a compact and efficient
way of representing syntactic ambiguity. [19] and [18] consider the sentence
in (7a), which can either be analysed as (7b) or as (7c).6 Parsing (7), one

5The relation of proper dominance, which we are taking as primitive, would work as
well.

6[19] and [18] follow the set-up of [7] in this analysis and allow coordinated constituents
to be ‘stacked’.

7

may well want to leave this ambiguity unresolved, perhaps until extra in-
formation which resolves it becomes available. One certainly does not want
to sum up all attachment possibilities, as the number of these in general is
not polynomial in the size of the input so that any kind of generate-and-test
procedure would make parsing practically impossible.

(7) a. They sell green apples, pears, and bananas from Erie

b. They sell [NP green [N apples], [N pears], [N and bananas] from Erie]

c. They sell [NP green apples], [NP pears], [NP and bananas from Erie]

The Description Theory parser does not generate either of the structures (7b)
or (7c). Instead it provides us with a description which is true of both. The
statements in (8) are part of this description. Note that the constants n3,
n4 and n5 are interpreted as the same NP node in (7b) while they denote
different NP nodes in (7c).

(8) n1 ✁
∗ n2 n5 ✁

∗ n9 lab(n7, n)
n1 ✁

∗ n3 n5 ✁
∗ n10 lab(n4, np)

n1 ✁
∗ n4 lab(n1, vp) lab(n8, n)

n1 ✁
∗ n5 lab(n2, v) lab(n5, np)

n3 ✁
∗ n6 lab(n3, np) lab(n9, n)

n3 ✁
∗ n7 lab(n6, ap) lab(n10, pp)

n4 ✁
∗ n8

The Description Theory approach to syntactic ambiguity is based on the fact
that a description can have any number of models. Even when only models
which are are minimal in some sense are considered7 no unique structure need
result. The idea allows one to give a single representation for a multitude of
syntactic readings.

The reasons for replacing structures with descriptions of structures that
were adduced so far had to do with linguistic processing, not with the task of
characterising all and only those structures which are linguistically possible.
But here the method has advantages too. Sometimes a description is capable
of capturing a generalisation that is missed otherwise. Consider the sentences
in (9), which were taken from [40].

7As we did when we added (3) as an extra condition to (1), or as it is done in Description
Theory when ‘standard referents’ are taken.

8

(9) a. I opened up Michelle a new bank account

b. I opened Michelle up a new bank account

c. I opened Michelle a new bank account up

We could analyse these sentences by enumerating their three possible syntac-
tic structures, as in (10) (we show only the relevant VP and her daughters;
PL is the verb particle).

(10) VP

V PL NP NP

VP

V NP PL NP

VP

V NP NP PL

But by taking the trees in (10) as the relevant representations of the sen-
tences in (9), i.e. by just summing up the various possibilities, we miss the
generalisation that the grammar in fact prescribes no ordering among the
daughter nodes here, except that the lexicalised head (the V) must precede
her sisters. Giving a description which underspecifies the ordering, such as
the one in (11), is a better option.

(11) n1 ✁
+ n2 lab(n1, vp) n2 ≺ n3

n1 ✁
+ n3 lab(n2, v) n2 ≺ n4

n1 ✁
+ n4 lab(n3, np) n2 ≺ n5

n1 ✁
+ n5 lab(n4, np) n3 6= n4

lab(n5, pl)

Here we have a single representation characterising the three relevant possi-
bilities: The structures in (10) are the minimal trees satisfying the description
in (11).

An even better solution would result if the three linear precedence state-
ments in (11) would be derivable as consequences of a global (language-
specific) rule, say “lexicalised heads precede their complements”.8 Once such
rules can be expressed by the description language we are within the ID /
LP (immediate dominance / linear precedence) format of Generalised Phrase
Structure Grammar (GPSG). For an explanation of this format and for more
motivation see [12]. In the present context the main point is that ID / LP

8Depending on one’s theory of features, the inequality n3 6= n4 could probably follow
from incompatible feature assignments to n3 and n4 in a full-fledged approach.

9

rules are an example of the use of underspecification to obtain greater general-
ity and that the formulation of these rules essentially rests upon a distinction
between structures and the descriptions satisfied by those structures.

Trees are by no means the only syntactic structures which can, and
should, be underspecified. Feature structures are another example. Consider
the attribute value matrix in (12). One possible perspective on attribute
value matrices is that they are a convenient way to denote labeled graphs.
The graph corresponding to (12) is given in (13).

(12)

agr 1
[

num sg
]

subj
[

agr 1
]

(13) agr • num • sg

r • agr
subj •

In (14) below we use the first-order language of [15] to write down a descrip-
tion of graph (13). Johnson’s language essentially consists of a three-place
relation symbol arc—with arc(f1, a, f2) saying that f1 and f2 are connected
by an arc labeled a—plus a finite number of individual constants for at-
tributes (agr, subj, num, pers, . . .) and values (sg, pl, 1, 2, 3, +, −,
. . .). We shall assume that there is also a constant r denoting the root of the
graph.

(14) ∃ff ′(arc(r,agr, f)∧ arc(r,subj, f ′)∧ arc(f ′,agr, f)∧ arc(f,num,sg))

Graph (13) and sentence (14) exemplify a duality between finite labeled
graphs that are models for Johnson’s language and the sentences of this
language which are formed from atomic formulas with ∧ and ∃ only (call
these {∧, ∃}-sentences). Given any finite graph G which is a model for the
language, first name all G’s unnamed nodes with distinct variables and then
take the existential closure of the conjunction of all atomic formulas which
are true in G and contain only variables that were used for naming nodes
in G. Call this description D(G). Conversely, given any {∧, ∃}-sentence D,
strip off its existential quantifiers to get a conjunction of atomic formulas D′

and consider the graph which has as its domain all constants of the language
and all free variables in D′ and interprets arc as just those triples which D′

10

says are in the arc relation. Call this graph G(D). It is clear that G(D(G)) is
isomorphic to G and that D(G(D)) is logically equivalent with D. Moreover,
for any D and G, G |= D if and only if G(D) ⊑ G, where ⊑ is the subsump-
tion relation.9 From this it follows by elementary reasoning that G ⊑ G′ if
and only if D(G′) |= D(G), for all G and G′.10

This nice duality between feature graphs and certain first-order descrip-
tions with a very limited syntax allows underspecification of one structure by
means of another. The traditional interpretation of feature structures is that
they may give only partial information about a linguistic object. Supposing
that a feature structure G models all relevant information about some lin-
guistic expression E, we may approximate this information by using feature
structures G′ such that G′ ⊑ G. Such feature structures can be combined
by means of unification and if G′′ ⊑ G′ ⊑ G then G′ is as least as good an
approximation to the information about E as G′′ is. The reason that this
works is that the feature structures G′ approximating G are in a one-to-one
relationship with certain descriptions D(G′) of G, that a description of a
finite structure in a sense is an approximation of that structure and that the
inverse of entailment can function as the relation ‘is no worse approximation
than’.

But the price of such an underspecification of structures by other struc-
tures is in fact a limitation to the {∧, ∃}-fragment of the language and there
is evidence that this limited expressivity is not adequate for saying the things
we would like to be able to say in linguistics. Consider uninflected English
verbs such as work or kiss , for example. Such verbs can either occur in
infinitival form (as in John wanted to kiss Mary), or can be finite (as in I
work in the factory there), but in the latter case they may not be third per-
son singular (*John work in the factory there). Within the framework of

9A model M ′ subsumes a model M , M ′ ⊑ M , if and only if M ′ is homomorphic to
a submodel of M , i.e., if and only if there is a structure-preserving mapping (a homo-
morphism) from the domain of M ′ to the domain of M . For a precise definition of the
homomorphism relation, see [6]; for examples of the subsumption relation in linguistics
and a discussion of its importance in unification theory see [37]. The present statement is
true in view of Proposition 2.1.12 of [6].

10In [15] Johnson considers four axiom schemes, which require, among other things,
the arc relation to be functional. If these axioms are used to restrict the graphs under
consideration the duality between graphs and {∧, ∃}-sentences turns into a duality between
graphs and those {∧, ∃}-sentences which are consistent with the axioms. Moreover, we
have that, for any two graphs G1 and G2, if D(G1) ∧ D(G2) is consistent with Johnson’s
axioms, then G(D(G1) ∧ D(G2)) is just the unification of G1 and G2.

11

Lexical-Functional Grammar (LFG, see [16]) [20] propose to capture these
facts by letting the functional structure f of uninflected verbs be constrained
by the description in (15). A translation of (15) into Johnson’s perspicuous
first-order feature language is given in (16).

(15) ((f inf) = − ∧ (f tense) = pres ∧
¬[(f subj num) = sg ∧(f subj pers) = 3]) ∨ (f inf) = +

(16) (arc(f,inf,−) ∧ arc(f,tense,pres)∧
¬∃g(arc(f,subj, g)∧ arc(g,num,sg) ∧ arc(g,pers, 3)))∨ arc(f,inf,+)

This description clearly does not fall within the {∧, ∃}-fragment of the lan-
guage. In (17) we give three structures in which (16) is true. The first cannot
be unified with either of the other two and although the second graph sub-
sumes the third it also subsumes structures which do not satisfy (16). It is
therefore evident that there is no single structure G such that, for any G′,
G′ |= (16) if and only if G ⊑ G′, as was the case before. The trick that lets
one graph represent all graphs subsumed by it breaks down.

(17)
[

inf +
]

[

inf −
tense pres

]

inf −
tense pres

subj

[

num sg
pers 2

]

This means that using feature graphs as a vehicle for linguistic represen-
tation does not give us enough expressivity but that we can get the extra
expressivity by turning to feature descriptions instead of feature graphs.11

11From a computational point of view there are good reasons to restrict the expressivity
that is gained in this way. [15] proposes to restrict descriptions to those first-order sen-
tences which are equivalent to a sentence of the form ∃x1 . . . xn∀y1 . . . ymϕ, where ϕ does
not contain function symbols. (16) is of this form. This fragment has nice computational
properties and may function as an alternative to the feature logic of [17]. In [4] the author
limits expressivity by using a modal logic to describe linguistic structures. Since most
linguistic structures are graphs and since modal logics are tailored to reason about graphs
(in the guise of Kripke models), this proposal is very natural. The LFG description in
(15) could be rendered as

(〈inf〉 − ∧〈tense〉pres ∧ ¬〈subj〉(〈num〉sg ∧ 〈pers〉3)) ∨ 〈inf〉+

in Blackburn’s poly-modal language. Here inf etc. stand for certain accessibility relations
and −, pres, etc. are propositional constants. Blackburn also proposes to reinterpret
attribute-value matrices as expressions in this poly-modal language, i.e. as descriptions,
not as structures.

12

3 Constraining Logical Form

In the previous section we have seen examples of the use of descriptions in
syntax and the possibility of underspecification that results from this use.
The question now poses itself whether the method can also be used in se-
mantics. There is a tradition within constraint-based linguistics which uses
constraints to describe logical sentences . [11], for example, propose to repre-
sent the formula ∀x kick(j, x) as the attribute value matrix in (18). I.e. the
formula is represented as a certain graph, which can then be underspecified.
This possibility is used in [26] and also lies at the heart of the ‘Minimal
Recursion Semantics’ of [8].

(18)

formula

qp

[

quant ∀
var x

]

formula

rel kick
arg.1 j
arg.2 x

Although some interesting results have been obtained with the help of such
descriptions of logical formulas, I think that, apart from the unwieldiness of
(18) as compared with the simple representation ∀x kick(j, x), there are at
least two reasons to find the procedure unsatisfactory. The first objection is
that linguistic representations should be used to characterise linguistic ob-
jects and that logical formulas do not qualify as such. It is one thing to
assume that a logical formula is adequate for describing the meaning of a
natural language expression but quite another to assume that all aspects of
the particular form of such a formula are linguistically relevant. Representa-
tions like the one in (18) bring historically contingent aspects of our method
to denote logical formulas into linguistic theory. The second objection is that
if we represent formulas with the help of graphs and then describe graphs
with the help of formulas we have something that looks very much like an
epicycle. It would be much simpler to use formulas directly for describing
semantic values.

In this paper I want to show that this can be done if a two-stage procedure
is followed. The first stage consists of describing all Logical Forms which are
connected with a certain surface description and the second stage will be an
interpretation of those Logical Forms. The structures that I have in mind are
close to, but not isomorphic with, the Logical Forms which are to be found

13

(20) S1

NP2

Det3

every4

N5

N6

man7

RC8

NP9

who10

S11

e12 VP13

V14

thinks15

S16

NP17

Det18

each19

N20

girl21

VP22

V23

loves24

NP25

Det26

a27

N28

unicorn29

VP30

V31

eats32

NP33

Det34

a35

N36

fish37

in Chomsky’s theory (see [21]). The main difference between our structures
and the more standard ones arises from the fact that in our set-up surface
structures are always submodels of the Logical Forms connected with them.
Given any Logical Form, we can always arrive at the surface structure it is
connected with by blotting out material.

(19) Every man who thinks each girl loves a unicorn eats a fish

In order to explain how Logical Forms are characterised by surface de-
scriptions we need an example of the latter. Consider the multiply ambigu-
ous sentence (19). Parsing this sentence may give (20), interpreted as a
description. As was mentioned in the previous section there are two ways
to interpret graphical representations: they can be used to denote mod-
els in a user-friendly way, or they can be used as an equally user-friendly
way to write down descriptions. We shall interpret (20) as a description,
with every subscript representing a constant (e.g. the subscript 9 in NP9

refers to n9), every arc representing a proper domination statement (e.g. we
have that n11 ✁

+ n13), every left-right ordering of sisters corresponding to
a precedence statement (e.g. n31 ≺ n33), and every category label, trace or

14

lexical element representing a lab statement (e.g. lab(n22, vp), lab(n19, each),
lab(n12, e)). The dashed arrow between the trace and the element who, which
represents coindexing, is formalised as link(n12, n10). In this way (20) is re-
ally just a convenient representation of a description which would otherwise
be unwieldy and unreadable.

(21) ∀k (surface(k) ↔ (k = n1 ∨ . . . ∨ k = n37))

In analogy with (3) we circumscribe the domain of surface nodes in (21).12

This time, however, we are not assuming that n1, . . . , n37 are all nodes what-
soever; we only stipulate that these are exactly all surface nodes. A limited
set of extra nodes will be allowed and different possibilities of relating these
to the surface tree will result in different Logical Forms. Although only one
tree will be possible on the 37 nodes for which the predicate surface holds,13

these extra nodes and the various possible ways of placing them lead to many
more trees. In order to restrict the number of extra nodes and to restrict the
possibilities for building trees, we impose some more axioms.

A10 ∀k1k2k3 [[link(k1, k2) ∧ link(k1, k3)] → k2 = k3]

A11 ∀k1 [surface(k1) ∨ ∃k2 [surface(k2) ∧ link(k2, k1)]]

A12 ∀k1 [quant(k1) ↔ [lab(k1, np) ∧ ∃k2[k1 ✁ k2 ∧ lab(k2, det)]]]

A13 ∀k1k2 [link(k1, k2) → [surface(k1) ∧ [quant(k1) ∨ lab(k1, e)]]]

A14 ∀k1 [quant(k1) → ∃k2 [link(k1, k2) ∧ lab(k2, s) ∧ ¬surface(k2) ∧
∀k3 [link(k3, k2) → k3 = k1] ∧ ∀k3[[island(k3) ∧ k3 ✁

+ k1] → k3 ✁
∗ k2]∧

∃k3[lab(k3, s) ∧ k2 ✁ k3 ✁
+ k1 ∧ ∀k4[k2 ✁ k4 → k3 = k4]]]]

A15 ∀k1 [island(k1) ↔ [lab(k, np) ∨ ∃k2 [k1 ✁ k2 ∧ lab(k2, conj)]]

Axiom A10 says that the linking relation is functional and A11 states that
each non-surface node is an image of a surface node under the linking re-
lation. This already severely restricts the set of non-surface nodes. Axiom

12This extra statement can be thought of as an additional result of the parsing process.
13That the description (20) + (21) admits of only one surface tree is an inessential

feature of our example. We may allow syntactic underspecification and use descriptions
which are true on more than one surface tree.

15

A12 defines quantified NPs to be NPs which immediately dominate a de-
terminer and A13 postulates that only surface nodes which are quantified
NPs or traces can be in the domain of the linking relation. Axiom A14 is
our equivalent of Quantifier Raising (see [21]). It says that each quantified
NP is linked to a non-surface S node k2; that no other node is linked to k2;
that any scope island properly dominating the NP also dominates k2; that
k2 immediately dominates an S node which properly dominates the NP and
that there are no other nodes which it dominates immediately. As the reader
will have guessed, the extra S node which is created by each quantified NP
will correspond to the place where the NP is quantified-in.14 This leaves us
with the question exactly which nodes are scope islands. Since there is some
evidence that Quantifier Raising obeys Ross’s ([35]) Complex NP Constraint
(CNPC) and Coordinate Structure Constraint (CSC),15 we implement these
in A15.

Let us consider what models (20) + (21) admits, given our axioms. It
is not difficult to see that, apart from the original 37 surface nodes, only
four extra nodes are allowed. Each quantified NP will license an extra node,
which will be labeled S and must be placed just above another S node. The
reader will have no difficulty in recognising that there are in total twelve
possibilities of positioning these four new nodes in the tree. This means that
the theory which consists of our axioms A1–A15 plus the input description
(20) + (21) has twelve models. Each of these twelve models has the same
surface tree as a submodel.

The models of our surface descriptions plus our axioms will be our Logical
Forms. In (22) we have depicted one Logical Form for (20) + (21), the one
where the NP a unicorn scopes over thinks but each girl does not, and where

14The extra S node may be compared to the extra S node that is created as a result of
Chomsky-adjoining NP to S (Quantifier Raising) in Generative Grammar.

15Unfortunately the theory that Quantifier Raising obeys the CNPC also meets with
counterexamples. E.g. [27] gives (1) below, whose only reading requires every minister to
be raised out of the subject NP, while [1] offers (2), which has as a natural reading that,
for each race, the dogs that won it were hungry. In view of such counterexamples we like
to interpret our axiom A15 merely as an example of how, given a theory of scope islands,
such a theory could be formalised within our set-up, not as a definite proposal regarding
restrictions on semantic scope.

1. The slush fund that every minister needs is kept by his private secretary

2. The dogs that won each race were hungry

16

(22) S

S

S

NP

Det

every

N

N

man

RC

NP

who

S

S

e VP

V

thinks

S

S

NP

Det

each

N

girl

VP

V

loves

NP

Det

a

N

unicorn

VP

V

eats

NP

Det

a

N

fish

the subject scopes over the object. The NPs remain in situ syntactically, but
the linking arrows tell where quantifying-in takes place semantically. The
arrows can also be interpreted as telling what movements take place in more
standard theories of Logical Form, but since their existence already provides
enough information for semantic interpretation, we prefer not to let these
movements actually be carried out.

That surface descriptions underspecify Logical Form means that language
users must sometimes use other information in order to narrow down the
range of possibilities. If you need to know exactly what was said, or if you
want a better approximation to what was said than what could be inferred

17

from surface information alone, you need to draw in other sources. Intona-
tional information readily comes to mind, semantic and contextual informa-
tion are obviously very important, and there may also be all kinds of default
assumptions, rules of thumb like ‘each likes wide scope’, ‘NPs are scoped in
surface order if no other information makes that unlikely’ etc.

We assume that this extra information—information which is not derived
from the parsing process proper but from other linguistic sources—comes
in exactly the same form as the information derived from parsing, i.e. as
a series of additional statements in the same classical language as the one
we have been using thus far. We suggest, moreover, that the way such
information is derived from those additional sources is essentially classical
deduction, possibly extended with some mechanism for default reasoning.
Suppose, for example, that a hearer employs contextual reasoning to derive
that the subject of (19) scopes over its object. This can be expressed as
∃k1k2 [link(n2, k1) ∧ link(n33, k2) ∧ k1 ✁

+ k2]. Adding this statement to the
surface description (20) + (21) would not remove all ambiguity, but it would
remove some, as the number of readings would decrease from twelve to six.

4 Internalising Variable Binding

In the next section we shall provide our descriptions with interpretations,
but before we can do so we must remove a technical difficulty. Consider
(20) and the Logical Forms that it admits. If we want to interpret this
description and proceed in a Montagovian way, many of its node names can
be provided with a meaning without any problems. The constant n17, for
example, can be associated with a certain term by finding translations of
each and girl in the lexicon and then using function application to form,
say, each’(girl’). But not all nodes can be treated in this way. Consider
the (nonsurface) S node n that will be linked to n17 in every Logical Form
connected with (20) in view of A14. It is reasonable to assume that the
semantic value associated with n is the result of a quantification: each’(girl’)
must be applied to the result of λx.A, where A is the translation of some
node n′ immediately dominated by n. There will be a free x in A, which
is the direct contribution of n17 to the semantic value of n′. But n will
dominate different nodes n′ in different Logical Forms and hence A will have
different values in those different structures. This means that the value of n′

cannot enter a description of the value of n directly but that it must be left

18

indeterminate. The usual technique for letting things remain indeterminate
is to represent them as variables, but this cannot be done here. Suppose
we would describe the value of the node in question as each’(girl’)(λx.Y),
depending on another description to instantiate the value of Y as A, then
the abstraction λx would be vacuous and substitution of A for Y would not
be possible.

One way to circumvent such difficulties would be the introduction of
metavariables, ranging over formulas, as it is done in [29, 28]. If Y were
such a metavariable we could instantiate it as A no doubt, but the move
would take us away from classical logic. Instead of making such a step we
describe a simple technique which will allow us to interpret trees by means
of closed terms only. Since there are no conditions on substitution of equals
for equals as far as closed terms are concerned, the difficulty described above
will vanish.

The idea is to give, at the object level of the language, a simple axiomati-
sation of the usual machinery that is connected with the binding of variables.
When this is done we no longer need to depend on the standard binding mech-
anism for describing quantification in natural language, but may replace it
with the internalised version. Since I have described the internalisation of
binding in some detail elsewhere (see e.g. [25]), I shall be relatively brief
about it here.

In order to mimick the binding machinery we need objects that stand
proxy for variables as well as objects that stand for assignments. Things of
the first kind will be called registers and those of the second will be called
states. States and registers are primitive objects in our models and are of
types s and π respectively. The letters i, j will typically be used to range
over states and v will be used as a variable over registers. We shall also have
constants w,w1, w2, . . . , h, h1, h2, . . . ,Tom, Mary,. . . for registers, and a
function ρ of type node → π will assign a register to each node.16 Closed
terms of type π will be called referents.

We can think of our registers as the registers in a computer, which may
contain a value in any given state. These values will be objects of type e
in our set-up, entities, for which we use variables x, y, z. A function V of
type π × s → e will assign a value to each register in each state. To make

16The reason why we assign registers to nodes is that this provides us with a mechanism
which will give us a ‘fresh’ register for every quantified noun phrase. The next section will
make this clearer.

19

life simpler we do not make a type distinction between entities proper and
worlds. In particular we think of the value of register w in any state i as
being the current world of evaluation.

If i and j are terms of type s and δ is a term of type π we may write i[δ]j
for ∀v [v 6= δ → V (v, i) = V (v, j)], which expresses that i and j can differ in
value only in register δ. The following axioms17 embody our internalisation of
binding. A16 requires that there be enough states to allow selective updating
of ‘varying’ registers (those registers that correspond to variables, not to
constants); A17 and A18 say that all w’s and h’s and also the values of
ρ are ‘varying’ and hence updatable; A19 and A20 stipulate that all these
registers are pairwise distinct and that ρ is an injection; and A21 makes
the obvious connection between ‘constant’ registers and type e constants.
Referents denoting such ‘constant’ registers will be called specific referents.
We distinguish them from type e constants by using initial capitals for the
former, just small caps for the latter.

A16 ∀i∀v∀x [V AR(v) → ∃j [i[v]j ∧ V (v, j) = x]]

A17 V AR(u), where u ∈ {w,w1, w2, . . . , h, h1, h2, . . .}

A18 ∀k V AR(ρ(k))

A19 u 6= u′ ∧ ∀k u 6= ρ(k), where u and u′ are syntactically different
constants ∈ {w,w1, w2, . . . , h, h1, h2, . . .}

A20 ∀k1k2 [ρ(k1) = ρ(k2) → k1 = k2]

A21 ∀i.V (Tom, i) = tom,
∀i.V (Mary, i) = mary,
∀i.V (Tim, i) = tim, etc., for all names.

These axioms will allow us to embed predicate logic18 into (the first-order
part of) type theory in a very special way: all binding will take place by

17These axioms are slightly different from the ones in [25], the main difference resulting
from our introduction of the function ρ here.

18The technique sketched here is by no means confined to predicate logic. In [25] the
very same trick is used to embed the core part of Discourse Representation Theory into
type logic and it is remarked there that in fact any logic with a decent semantics can be
treated in this way.

20

means of registers. We write

R{δ1, . . . , δn} for λi.R(V (δ1, i), . . . , V (δn, i))

δ1 is δ2 for λi.V (δ1, i) = V (δ2, i)

not γ for λi¬γ(i)

γ ⇒ γ′ for λi [γ(i) → γ′(i)]

all(δ, γ) for λi∀j [i[δ]j → γ(j)]

In fact we have transcribed the usual Tarski truth definition in our logic here,
using states in lieu of assignments and referents in lieu of variables. Some
more abbreviations, in terms of the previous ones, will turn out handy. Write

γ & γ′ for not[γ ⇒ not γ′]

γ ⇔ γ′ for [γ ⇒ γ′] & [γ′ ⇒ γ]

γ or γ′ for not γ ⇒ γ′

some(δ, γ) for not all(δ,not γ)

no(δ, γ) for all(δ,not γ)

We need to show that the definitions here really mimick the usual ones for
first-order logic in the sense that they really express what they are obviously
intended to express. To this end, let us consider the fragment of our logic
which is generated with the help of these definitions. More precisely, let
n1, n2, . . . , nm, . . . be some countable enumeration of constants of type node
and, taking referents u from the set U = {w,w1, . . . , h, h1, . . . , ρ(n1), ρ(n2), . . .},
and referents δ from ∆ = U ∪ {Tim, Tom, Mary, . . .}, consider the set of
s → t terms which is generated by the following Backus-Naur Form.

γ ::= R{δ1, . . . , δn} | δ1 is δ2 | not γ | γ ⇒ γ′ | all(u, γ)

This fragment can be translated into the more usual notation for predicate
logic in the following obvious way. Let x1, . . . , xm, . . . and y, y1, . . . , ym, . . .
and z, z1, . . . , zm, . . . be enumerations of type e variables (all variables pair-
wise distinct). Define w† = y, h† = z and ρ(nm)

† = xm, w
†
m = ym, h

†
m = zm,

for all m, while Tom† = tom, Mary† = mary, etc.. Let

tr(R{δ1, . . . , δn}) = R(δ†1, . . . , δ
†
n)

tr(δ1 is δ2) = δ†1 = δ†2
tr(not γ) = ¬tr(γ)

tr(γ ⇒ γ′) = tr(γ) → tr(γ′)

tr(all(u, γ)) = ∀u†
tr(γ)

21

For any formula ϕ and state variable i, let ϕi be the result of substituting
V (u, i) for each free u† in ϕ. That our fragment is really just another incarna-
tion of predicate logic (provided that different node names refer to different
nodes) is the content of the following theorem.

Theorem 1 Let γ be a term of type s → t as defined above. Assume A16−
A20 and assume that n 6= n′ for every pair n, n′ of syntactically different
node names in γ. Then tr(γ)i is equivalent with γ(i), for any state variable
i.

Proof. Let us write [t/x]ϕ for the result of substituting t for each free x in
ϕ. It follows from A16–A18 that, for each u ∈ U ,

∀i [∀xϕ ↔ ∀j [i[u]j → [V (u, j)/x]ϕ]].

Moreover, by A19, A20 and our assumption of noncoreference of different
node names, we have that ∀j [i[u]j → V (u′, j) = V (u′, i)] if u and u′ are
syntactically different referents ∈ U . Hence

∀j [i[u]j → [ϕj ↔ ([V (u, j)/u†]ϕ])i]].

Using these observations, the theorem can easily be proved with the help of
an induction on the construction of γ. We do two cases here, leaving the
other three to the reader. In the following ‘≈’ stands for ‘is equivalent with’.

• (tr(R{δ1, . . . , δn}))
i ≈ R(δ†1, . . . , δ

†
n)

i

≈ (by A21 and the definition of (.)i)
R(V (δ1, i), . . . , V (δn, i)) ≈ R{δ1, . . . , δn}(i)

• tr(all(u, γ))i ≈ (∀u†
tr(γ))i

≈ (by the first observation above)
(∀j [i[u]j → [V (u, j)/u†]tr(γ)])i ≈ ∀j [i[u]j → ([V (u, j)/u†]tr(γ))i]
≈ (by the second observation)
∀j [i[u]j → (tr(γ))j] ≈ (by induction)
∀j [i[u]j → γ(j)] ≈ all(u, γ)(i)

✷

The theorem’s requirement on different node names will easily be seen to be
fulfilled in the next section.

22

(23) a. all(h1,girl{h1} ⇒ p)

b. dance{h1}

c. all(h1,girl{h1} ⇒ dance{h1})

d. ∀z1 [girl(z1) → dance(z1)]

Our s → t terms just express what can be expressed using predicate logic in
a less roundabout way and the theorem shows that we can reason with them
exactly as we reason with first-order formulas. But the theorem is restricted
to a special subset of terms and as soon as we leave this class there are some
surprises. Since binding is obtained with the help of closed terms, we can do
substitutions which have no direct analogue in the more usual set-up. For
example, since (23b) is a closed term, substitution of (23b) for p (a variable
of type s → t) in (23a) is possible, even though this seems to result in a
form of binding: while h1 does not occur within in some context all(h1, γ)
in (23b), the substituted occurrence is within such a context in (23c), the
result of substitution. Nothing impermissable has occurred however, as the
reader may perhaps want to verify by expanding definitions. Obviously, the
translation of (23c) is (23d). Had we tried to obtain this result by performing
a similar substitution directly on more conventional forms, a clash of variables
would have prevented us.

(24) λv.some(v,man{v})

Another possibility that we certainly do not have with the standard forms
is that we can abstract over ‘binder’ positions. In (24) the variable v oc-
curs three times. The first occurrence is in an ordinary binder which binds
the other two. But the second occurrence is in a position where binding
can be mimicked. If we apply (24) to some referent, ρ(n1) say, we obtain
some(ρ(n1),man{ρ(n1)}), which mimicks ∃x1 man(x1). An expansion of
the definitions involved will show that the ‘binding of a binder’ in (24) is
correct.

5 Constraining Meanings

We can now interpret Logical Forms in the usual way, by telling what the
values of their lexical nodes are and describing values of nonlexical nodes in

23

terms of the values of their daughters and the nodes linked to them. Here is
a very simple lexicon that will serve for purposes of exposition.

John ❀ John

runs ❀ λv.run{v, w}

man ❀ λv.man{v, w}

find ❀ λv′λv.find{v, v′, w}

is ❀ λv′λv.v is v′

believe ❀ λvλp.all(w1, w1 is w ⇒ all(w,B{v, w, w1} ⇒ p))

who ❀ λv′λpλPλv.[v is v′ & P (v′) & p]

every, each ❀ λPλvλp.all(v, P (v) ⇒ p)

a, some ❀ λPλvλp.some(v, P (v) & p)

no ❀ λPλvλp.no(v, P (v) & p)

the ❀ λPλvλp.some(v, all(h1, P (h1) ⇔ h1 is v) & p)

Note that constants such as run, find, etc. come with an argument w, which
refers to the world of evaluation. A sentence ‘John runs’ will be interpreted as
run{John, w}, which is equivalent with λi.run(john, V (w, i)), the propo-
sition which is true at an index i if John runs in the world component of
i. In the present set-up translations of complete sentences are only depen-
dent on the world component of indices, but the technique easily allows for
introducing more components (such as reference time, utterance time, time
of evaluation, situation of utterance, etc.) without a change in type assign-
ment (see [24] for such multicomponent translation). The referent w will
get ‘bound’ in intensional contexts. In (25b), the translation of (25a), for
example, the term run{John, w} is brought into a context where binding of
w is mimicked. Since, in view of Theorem 1, we can reason with our terms
just as if they were ordinary predicate logical formulas, the resulting term
can be simplified to (25c).

(25) a. Mary believes John runs

b. all(w1, w1 is w ⇒ all(w,B{Mary, w, w1} ⇒ run{John, w}))

c. all(w1, B{Mary, w1, w} ⇒ run{John, w1}))

We interpret the relation B as the relation of being a doxastic alternative in
Hintikka’s sense, i.e. B(x, y, y′) stands for ‘world y is a doxastic alternative

24

of x in world y′’, so that (25c) states that ‘John runs’ is true in all Mary’s
doxastic alternatives.

The next seven axioms associate Logical Forms with meanings. In order
to express that a node has a certain meaning we have introduced families
of constants σα and σα

0 of type node × α → t. σα(n,A) says that node
n has meaning A (of type α) and σα

0 is used to store intermediate values.
Axiom A22 assigns lexical meanings to lexical nodes. A23 and A24 give
the standard way in which meanings are inherited from below: nodes with a
single daughter inherit their meaning from that daughter and nodes with two
daughters get their meaning by means of function application. The meaning
that is computed is stored with the help of the relevant σα

0 , butA25 ascertains
that σα(n,A) can be concluded from σα

0 (n,A) in the default case where there
is no link from n or to n. If there is such a link, however, A26 makes sure that
its source node will be interpreted as a certain register (the register which ρ
connects with the target node) while A27 and A28 demand that this very
same register will also enter the interpretation of the target. In the case of
‘moved’ constituents which have left a trace e, the preliminary interpretation
of the moved constituent must be applied to the value of the trace to obtain a
final interpretation and in the case of quantification the final interpretation
of the target S node can be computed from its preliminary interpretation
(the interpretation of its daughter), the preliminary interpretation of the NP
and the register in question.

A22 ∀k [lab(k, a) → σα
0 (k, A)], where a ❀ A is in the lexicon and the type

of A is α

A23 ∀k1k2∀Xα [[k1✁k2∧∀k3 [k1✁k3 → k3 = k2]∧σ
α(k2, Xα)] → σα

0 (k1, Xα)]

A24 ∀k1k2k3∀Fαβ∀Xα [[k1✁k2∧k1✁k3∧∀k4 [k1✁k4 → [k4 = k2∨k4 = k3]]

∧k2 6= k3 ∧ σαβ(k2, F) ∧ σα(k3, X)] → σβ
0 (k1, F (X))]

A25 ∀k1 [¬[∃k2link(k1, k2) ∨ ∃k2link(k2, k1)] → ∀Xα [σ
α
0 (k1, X) →

σα(k1, X)]]

A26 ∀k1k2 [link(k1, k2) → σπ(k1, ρ(k2))]

A27 ∀k1k2∀fπα [[link(k1, k2) ∧ lab(k1, e) ∧ σπα
0 (k2, f)] → σα(k2, f(ρ(k2)))]

A28 ∀k1k2∀Qµ∀p [[link(k1, k2) ∧ quant(k1) ∧ σµ
0 (k1, Q) ∧ σs→t

0 (k2, p)] →
σs→t(k2, Q(ρ(k2))(p))], where µ = π → ((s → t) → (s → t))

25

This axiomatises the process of assigning meanings to trees and, from any
description of a tree we may now draw conclusions about the meaning that
should be associated with its top node, even if no unique meaning can be
isolated. For an example, let us return to the description (20) + (21), which
has twelve Logical Forms according to our axioms. Given this description,
many statements about the meanings of nodes can be inferred. For example,
A22 tells us that (26a) holds, and since it can be shown that n19 is neither
the source nor the target of a link, (26b) holds as well on the basis of A25.
Since n19 is the sole daughter of n18 in any of the Logical Forms admitted by
our theory, it follows from A23 that n19 can be replaced with n18 in (26a).
Continuing this kind of reasoning we may derive (26c).

(26) a. σ
(π→(s→t))→µ
0 (n19, λPλvλp.all(v, P (v) ⇒ p))

b. σ(π→(s→t))→µ(n19, λPλvλp.all(v, P (v) ⇒ p))

c. σµ
0 (n17, λvλp.all(v,girl{v, w} ⇒ p))

What is the σ value of the NP node n17? Since the quant predicate holds
of this node in all models satisfying our theory, the existential statement
(27a) is derivable with the help of A14. In (27b) a witness n38 is taken and
we may conclude, using A26 that σπ(n17, ρ(n38)). In a similar way we may
introduce constants n39, n40 and n41 such that link(n25, n39), link(n2, n40)
and link(n33, n41) and σπ(n25, ρ(n39)), σ

π(n2, ρ(n40)) and σπ(n33, ρ(n41)).

(27) a. ∃k2 [link(n17, k2) ∧ ∃k3[k2 ✁ k3 ∧ ∀k4[k2 ✁ k4 → k3 = k4]]]

b. link(n17, n38) ∧ ∃k3[n38 ✁ k3 ∧ ∀k4[n38 ✁ k4 → k3 = k4]]

c. n38 ✁ n42 ∧ ∀k4[n38 ✁ k4 → n42 = k4]]

d. ∀p [σs→t(n42, p) → σs→t
0 (n38, p)]

e. ∀p [σs→t(n42, p) → σs→t(n38, all(ρ(n38),girl{ρ(n38), w} ⇒ p))]

We can also obtain information about the semantic value of n38, the node
that is linked to n17, but this information must necessarily be hypothetical.
Let us first take a witness n42 for the node which according to (27b) is
immediately dominated by n38, i.e. let us derive (27c). Then we can use
A23 to derive (27d) and, using this last statement, (26c) and A28, derive
(27e). In a similar way we can take witnesses n42, n43 and n44 for the S

26

nodes immediately dominated by n39, n40 and n41 respectively. The first
three items in Table 2 express the values of n38, n39 and n41 in terms of
those of n42, n43 and n45. The value of n40 can also be expressed, but not in
terms of the value of n44 alone. It is clear that in every model of the theory,
the RC node n8 will immediately dominate some node n46 which is different
from the NP node n9 (and that there will be no daughters of n6 other than
these two nodes). The value of n40 can be computed from the values of this
node and n44 with a result as in the Table. The meaning which is attached
to the S node n11 depends in a similar way on the value of the node n47

which is immediately dominated by the VP n13 but not equal to the V. The
Table gives the relevant statement and lists two other sentences which are
also derivable.

We have taken witnesses n42–n47 for various existential statements; but
we also know from A10–A13 that n1–n41 are all the nodes. This means that
n42–n47 must corefer with node names in this last set and, due to various
restrictions on dominance, incompatibility of categorial information, island
constraints etc. there are exactly twelve ways of matching node names. In
(22) the following matching holds.

(28) n42 = n16, n43 = n11, n44 = n41, n45 = n1, n46 = n39, n47 = n38

Combining this information with the statements in Table 2 reveals that in
(22) the sentence (29), which can be simplified to (30), holds.

(29) σ(n40, all(ρ(n40), [ρ(n40) is ρ(n10) & man{ρ(n10), w} & some(ρ(n39),
unicorn{ρ(n39), w} & all(w1, w1 is w ⇒ all(w,B{ρ(n10), w, w1} ⇒
all(ρ(n38),girl{ρ(n38), w} ⇒ love{ρ(n38), ρ(n39), w}))))] ⇒
some(ρ(n41), fish{ρ(n41), w} & eat{ρ(n40), ρ(n41), w})))

(30) σ(n40, all(h40, [man{h40, w} & some(h39,unicorn{h39, w} &
all(w1, B{h40, w1, w} ⇒ all(h38,girl{h38, w1} ⇒ love{h38, h39, w1})))]
⇒ some(h41, fish{h41, w} & eat{h40, h41, w})))

Can we say something in general about the meaning that is connected with
(20) + (21)? Let us write root(n) if n has no predecessors in the proper
dominance relation, i.e. define root(n) to be an abbreviation of ¬∃k k ✁

+ n.
In every possible Logical Form the root will have a certain value, so a sentence

27

∀p [σ(n42, p) → σ(n38, all(ρ(n38),girl{ρ(n38), w} ⇒ p))]

∀p [σ(n43, p) → σ(n39, some(ρ(n39),unicorn{ρ(n39), w} & p))]

∀p [σ(n45, p) → σ(n41, some(ρ(n41), fish{ρ(n41), w} & p))]

∀pp′ [σ(n46, p) → [σ(n44, p
′) →

σ(n40, all(ρ(n40), [ρ(n40) is ρ(n10) & man{ρ(n10), w} & p] ⇒ p′)]]

σ(n16, love{ρ(n38), ρ(n39), w})

σ(n1, eat{ρ(n40), ρ(n41), w})

∀p [σ(n47, p) → σ(n11, all(w1, w1 is w ⇒ all(w,B{ρ(n10), w, w1} ⇒ p))]

Table 2: Some sentences derivable from (20) + (21)

of the form (31) will be derivable from our description. One of the disjuncts
here is given by (30) the result of the matching in (28), the others by the
results of the remaining possible matchings.

(31) ∃k [root(k) ∧ [σ(k, γ1) ∨ . . . ∨ σ(k, γ12)]]

Our theory should be contrasted with attempts to describe ambiguous mean-
ings in terms of disjunctions in a more direct way. In particular, it should be
noted that (32) is not derivable from our input description. Theories which
explain ambiguity by means of disjunction in this way have difficulties with
explaining entailment as the meanings assigned to ambiguous statements
generally are too weak. Suppose we have established that there is no man
who does not eat a fish. Then we should not be entitled to derive (19) in
its full ambiguity, as some of its readings follow, others do not. Additional
information about (19) may reveal that an existential reading was meant
and—as far as the monotonic core of our reasoning system is involved19—we
do not wish to have to revise judgements about entailment. Since we ex-
plain ambiguity along the lines of (31) such dubious entailments will not be
predicted to be valid and we will not have to retract any judgments if more
information about what was meant becomes available.

(32) ∃k [root(k) ∧ σ(k, γ1 or . . .or γ12)]

19We do not mean to preclude nonmonotonic forms of reasoning but it seems reasonable
to demand that the only reason for retracting judgements should be that we have jumped
to a conclusion on the basis of a reliable default rule and that drawing that conclusion has
been somewhat rash. There should be no revisions without default assumptions.

28

The statement (31) is derivable from (20) + (21) in our system, but it should
not be concluded that a hearer who has inferred from the parsing process
that (20) + (21) holds will go on to actually derive it, as his reasoning would
involve an inspection of all possibilities of disambiguation, the very kind of
inspection we have assumed is highly implausible on grounds of efficiency.
A more rational course of action for the hearer is to try to strengthen the
description (draw in conclusions from other sources, ‘jump to conclusions’ on
the basis of rules of thumb) until it is strong enough to provide the informa-
tion she desires to extract.

6 Reasoning with Underspecified Meanings

Let us suppose that our hearer hears the two sentences in (33a). What can
she do in order to establish that the argument is valid? Let us assume that
she parses the sentences and arrives at a simultaneous description of them.
Each model of this description will be a forest consisting of two trees, with
any node of the tree for ‘Every man dances’ ordered before any node of the
other tree. We may assume that our hearer circumscribes the domain of the
forest, so that no model will contain nodes for which there is no evidence.
The first sentence is unambiguous, but the second is sixfold ambiguous, so
all in all there will be six possible Logical Forms. The root node n of the first
tree will get a value along the lines of (33b). For the root node n40 of the
second tree there is no single definite value. Nevertheless, there is information
about the value of this node, for among the statements derivable from the
description that was obtained will be one of the form (33c), which gives the
value of n40 in terms of the value of the embedded sentence.

(33) a. Every man dances. (Therefore) every man who thinks each girl loves
a unicorn dances.

b. σ(n, all(h1,man{h1, w} ⇒ dance{h1, w}))

c. ∀p [σ(n46, p) → σ(n40, all(ρ(n40),
[ρ(n40) is ρ(n10) & man{ρ(n10), w} & p] ⇒ dance{ρ(n40), w}))]

Clearly, whatever value is chosen for the embedded sentence node n46, the
σ value assigned to n40 will follow from the value assigned to n. The hearer
can conclude to the validity of the argument without having to do any dis-
ambiguation.

29

(34) D |=AX ∃k1 [root(k1) ∧ ∀k2 [root(k2) → k2 ≺ k1]∧
∀p [σ(k1, p) → ∀i [∀k2∀p

′ [[root(k2)∧k2 ≺ k1∧σ(k2, p
′)] → p′(i)] → p(i)]]

Formally we can characterise validity in the following way. Given any de-
scription D of a forest, D describes a valid argument if (34) holds (we write
|=AX for entailment given our axioms). This means that, for every possible
choice of Logical Forms for premises and conclusion consistent with D, the
value of the conclusion follows from the values of the premises in the sense
that the conclusion holds for every state for which all premises hold.

Our notion of consequence is rather strict in a sense. For example, it will
not in general support the validity of ‘A, therefore A’ if A is an ambiguous
sentence. An argument is valid if the conclusion follows from the premises
whatever readings we assign to conclusion and premises and in the ‘A, there-
fore A’ case we may choose different readings for the two occurrences of A.
The fallacy is one of Equivocation.

(35) Every man loves a woman. (Therefore,) every man loves a woman.

However, there remains a feeling that (35) should be valid since anyone who
would utter it (for whatever reason) is likely to intend premise and conclusion
to have the same reading. Reyle (see [33, 34]) has argued that such argu-
ments are indeed valid and has accounted for the alleged validity in terms
of correlations between premise and conclusion. The idea is that ambiguous
sentences of the same type have to be disambiguated simultaneously.

I do not wish to deny that there may be correlations between the premises
and the conclusions of an argument which may force disambiguations to take
place in tandem. On the contrary, I think that the correlations in question
are not limited to the expressions we find in arguments but are omnipresent
in natural language and should be headed under the general phenomenon
of parallelism. It does not follow, however, that such correlations should
be made a part of the logic of ambiguous expressions; they are part of the
linguistic data and can be used as extra premises. Let us suppose that our
hearer has some means of recognising parallelism and let us model the fact
that nodes n and n′ are recognised to be parallel as the atomic statement
par(n, n′). The following seem reasonable requirements on the parallelism
relation.

(36) a. ∀k1k2k3k4 [[par(k1, k3) ∧ par(k2, k4) ∧ k1 ✁
+ k2] → k3 ✁

+ k4]

b. ∀k1k2k3k4 [[par(k1, k3) ∧ link(k1, k2) ∧ link(k3, k4)] → par(k2, k4)]

30

We may add these requirements to our list of axioms. The first demands
parallelism to preserve proper dominance while the second says that nodes
linked to parallel nodes are themselves parallel. Now consider a description
D of the argument in (35). We may suppose that the subject of the first
occurrence of ‘Every man loves a woman’ is associated with a node n1 in D,
the object with a node n2, the subject of the second occurence with n3 and the
object with n4. A hearer who recognises that par(n1, n3) and par(n2, n4) may
add these expressions to the description D and get a strengthened description
D′. But in doing so, the hearer has removed some ambiguity. For since the
NPs are parallel, the places where they are linked to are parallel too, and
if one NP outscopes the other in one structure its parallel element must
outscope the other’s parallel element in the other structure. The number
of readings reduces from four to two and D′, unlike D, describes a valid
argument.

7 Conclusion

In this paper we have sketched the outlines of a theory of semantic underspec-
ification which is based on ordinary logic and we have given a characterisation
of the notion of consequence for ambiguous expressions. This characterisa-
tion was also formulated in terms of classical logic and in order to prove an
argument valid we may have to reason about the forms of the expressions
involved as well as about their contents. This, we feel, is exactly what hap-
pens when language is processed and it is wrong to separate the two kinds of
reasoning. As soon as it is recognised that reasoning about form and reason-
ing about content go hand in hand, the mysterious aspects of underspecified
semantic representation disappear. For then it becomes clear that we do not
have to find a completely new logic which uses underspecified forms as its
vehicle of reasoning, but that we can use a well-understood one to reason in
tandem about what was said and what is the case.

References

[1] J. Allen. Natural Language Understanding. Benjamin/Cummings, Red-
wood City, CA, 1995.

31

[2] H. Alshawi and R. Crouch. Monotonic Semantic Interpretation. In
Proceedings of the ACL, pages 32–39, 1992.

[3] R. Backofen, J. Rogers, and K. Vijay-Shankar. A First-Order Axioma-
tization of the Theory of Finite Trees. Journal of Logic, Language and
Information, 4:5–39, 1995.

[4] P. Blackburn. Modal Logic and Attribute-Value Structures. In M. de Ri-
jke, editor, Diamonds and Defaults. Kluwer, Dordrecht, 1993.

[5] J. Bos. Predicate Logic Unplugged. In P. Dekker and M. Stokhof,
editors, Proceedings of the 10th Amsterdam Colloquium, pages 133–142,
Amsterdam, 1995.

[6] C.C. Chang and H.J. Keisler. Model Theory. North-Holland, Amster-
dam, 1973.

[7] N. Chomsky. Some Concepts and Consequences of the Theory of Gov-
ernment and Binding. MIT Press, Harvard, 1982.

[8] A. Copestake, D. Flickinger, R. Malouf, S. Riehemann, and I. Sag. Min-
imal Recursion Semantics, 1995. Manuscript.

[9] T.L. Cornell. On Determining the Consistency of Partial Descriptions
of Trees. In Proceedings of ACL-94, 1994.

[10] J. van Eijck and J. Jaspars. Ambiguity and Reasoning. Technical Report
CS-R9616, Centrum voor Wiskunde en Informatica, 1996.

[11] J.E. Fenstad, P.-K. Halvorsen, T. Langholm, and J. van Benthem. Sit-
uations, Language and Logic. Reidel, Dordrecht, 1987.

[12] G. Gazdar, E. Klein, G. Pullum, and I. Sag. Generalized Phrase Struc-
ture Grammar. Harvard University Press, Cambridge MA, 1985.

[13] J. Hobbs. Representing Ambiguity. In Proceedings of the First WCCFL,
pages 15–28, 1982.

[14] J. Hobbs. An Improper Treatment of Quantification in Ordinary En-
glish. In Proceedings of the ACL, pages 57–63, 1983.

32

[15] M. Johnson. Logic and Feature Structures. In Proceedings of the Twelfth
International Joint Conference on Artificial Intelligence, Sydney, Aus-
tralia, 1991.

[16] R. Kaplan and J. Bresnan. Lexical-Functional Grammar: a Formal
System for Grammatical Representation. In J. Bresnan, editor, The
Mental Representation of Grammatical Relations, pages 173–281. The
MIT Press, Cambridge, MA, 1982.

[17] R. Kasper and W. Rounds. A Logical Semantics for Feature Structures.
In Proc. 24th meeting of the ACL, pages 101–115, 1986.

[18] M.P. Marcus. Deterministic Parsing and Description Theory. In
P. Whitelock, M.M. Wood, H.L. Somers, R. Johnson, and P. Bennett,
editors, Linguistic Theory and Computer Applications, pages 69–112.
Academic Press, London, 1987.

[19] M.P. Marcus, D. Hindle, and M.M. Fleck. D-theory: Talking about
Talking about Trees. In Proceedings of the 21st ACL, pages 129–136,
1983.

[20] J.T. Maxwell III and R.M. Kaplan. A Method for Disjunctive Con-
straint Satisfaction. In M. Tomita, editor, Current Issues in Parsing
Technology, pages 173–190. Kluwer, Dordrecht, 1991.

[21] R. May. The Grammar of Quantification. PhD thesis, MIT, Cambridge,
1977.

[22] R. Montague. The Proper Treatment of Quantification in Ordinary
English. In J. Hintikka, J. Moravcsik, and P. Suppes, editors, Approaches
to Natural Language, pages 221–242. Reidel, Dordrecht, 1973. Reprinted
in [38].

[23] R. A. Muskens. Order-Independence and Underspecification. In J. Groe-
nendijk, editor, Ellipsis, Underspecification, Events and More in Dy-
namic Semantics, pages 17–34. DYANA Deliverable R.2.2.C, 1995.
Reprinted in H. Kamp and B. Partee (eds.), Context-dependence in the
Analysis of Linguistic Meaning, Elsevier, 2004.

33

[24] R. A. Muskens. Tense and the Logic of Change. In U. Egli, E.P. Pause,
C. Schwarze, A. Von Stechow, and G. Wienold, editors, Lexical Knowl-
edge in the Organization of Language, pages 147–183. John Benjamins,
Amsterdam, 1995.

[25] R. A. Muskens. Combining Montague Semantics and Discourse Repre-
sentation. Linguistics and Philosophy, 19:143–186, 1996.

[26] J. Nerbonne. Constraint-based Semantics. In P. Dekker and M. Stokhof,
editors, Proceedings of the Eighth Amsterdam Colloquium. ILLC, Ams-
terdam, 1992.

[27] F.C.N. Pereira. Categorial Semantics and Scoping. Computational Lin-
guistics, 16:1–9, 1990.

[28] M. Pinkal. Radical Underspecification. In Proceedings of the Tenth
Amsterdam Colloquium, pages 587–606, 1996.

[29] M. Pinkal. Comments on Muskens: Constraints for Semantic Under-
specification. In H. Kamp and B. Partee, editors, Context-dependence
in the Analysis of Linguistic Meaning, Proceedings of the workshops in
Prague, February 1995 and Bad Teinach, May 1995, pages 155–166.
Stuttgart University, 1997.

[30] M. Poesio. Ambiguity, Underspecification and Discourse Interpretation.
In H. Bunt, R.A. Muskens, and G. Rentier, editors, Proceedings of the
First International Workshop on Computational Semantics, pages 151–
160, Tilburg, 1994. ITK, Tilburg University.

[31] S.G. Pulman. A Computational Theory of Context Dependence. In
H. Bunt, R.A. Muskens, and G. Rentier, editors, Proceedings of the
First International Workshop on Computational Semantics, pages 161–
170, Tilburg, 1994. ITK, Tilburg University.

[32] U. Reyle. Dealing with Ambiguities by Underspecification: Construc-
tion, Representation and Deduction. Journal of Semantics, 10:123–179,
1993.

[33] U. Reyle. On Reasoning with Ambiguities. In Proceedings of the EACL-
95, Dublin, 1995.

34

[34] U. Reyle. Co-indexing Labelled DRSs to Represent and Reason with
Ambiguities. In S. Peters and K. van Deemter, editors, Semantic Am-
biguity and Underspecification. CSLI, Stanford CA, 1996.

[35] J. Ross. Constraints on Variables in Syntax. PhD thesis, MIT, 1967.

[36] L.K. Schubert and F.J. Pelletier. From English to Logic: Context-
free computation of conventional logic translation. American Journal
of Computational Linguistics, 8:165–176, 1982.

[37] S.M. Shieber. An Introduction to Unification-based Approaches to Gram-
mar. CSLI Lecture Notes. Chicago University Press, Chicago, 1986.

[38] R. Thomason, editor. Formal Philosophy, Selected Papers of Richard
Montague. Yale University Press, 1974.

[39] K. Vijay-Shankar. Using Descriptions of Trees in a Tree Adjoining
Grammar. Computational Linguistics, 18:481–518, 1992.

[40] XTAG Research Group. A Lexicalized Tree Adjoining Grammar for
English. IRCS Report 95-03, University of Pennsylvania, 1995.

35

