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A proof is given, at a greater level of generality than previous ‘no-go’ theo-
rems, of the impossibility of formulating a modal interpretation that exhibits
‘serious’ Lorentz invariance at the fundamental level. Particular attention is
given to modal interpretations of the type proposed by Bub.
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1 Introduction

Modal interpretations of quantum mechanics posit that the state vector obeys
linear, unitary evolution at all times, and supplement the state vector with
a set of possessed properties sufficiently rich to account for the occurrence
of definite events at the macroscopic level, including definite outcomes of
experiments, but sufficiently restricted so as to avoid a Kochen-Specker con-
tradiction. The question arises whether this can be done within the restric-
tions imposed by special relativity. In a relativistic context, the notion of an
instantaneous state of a spatially extended system must be replaced by the
notion of a state on a spacelike hyperplane, or, more generally, a spacelike hy-
persurface. Since hyperplanes belonging to distinct foliations will intersect,
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we must ask whether the definite properties assigned to systems on these
intersecting hyperplanes can be made to mesh in a coherent way.

In connection with this question, two important ‘no-go’ theorems must
be mentioned. Dickson and Clifton [1] proved that the answer is negative
for a broad class of modal interpretations. Berndl et al. [2] showed that no
theory that shares with the Bohm theory the attribution of definite positions
at all times to particles can have the probability distributions for these po-
sitions match the quantum-mechanical probability distributions along every
foliation. The Dickson-Clifton proof relies on an assumption concerning the
transition probabilities for possessed values, the assumption they call “sta-
bility,” but, as Arntzenius [3] has pointed out, the stability requirement is
dispensable and the core of the proof concerns the nonexistence of certain
joint distributions yielding the appropriate Born probabilities as marginals.
The proof in the present paper is, in a sense, a generalization both of the
proof of Berndl et al. and of Arntzenius’ version of the Dickson-Clifton proof.

Bub [4] introduced a class of modal interpretations that single out some
observable R as having a definite value at all times; this class includes the
theories discussed by Berndl et al., for which the preferred observable is
position. As Dickson and Clifton [1, p. 36] point out, it is possible for such
an interpretation to evade their argument via a suitable choice of preferred
observable. The existing ‘no-go’ theorems, therefore, leave it open whether a
Bub-type modal interpretation can be relativistically invariant. The question
we want to ask is: for a suitable choice of preferred observable R, can the
attribution of definite values to R be made in such a way that the probabilities
concerning these definite values are given by the Born-rule probabilities yield
by the quantum-mechanical state along every foliation? As will be shown
below, the answer is negative, provided that the preferred properties are local

properties and provided that certain transformations of the quantum state
are possible. No assumptions about transition probabilities for possessed
values will be made.

2 The proof

Consider two systems, Si, i = 1, 2, which, during the times that we are
considering them, are localized (at least within the approximations permitted
by relativistic quantum field theory) within regions that are large compared
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to their Compton wavelengths but small compared to the distance between
them. We do not assume that they are at rest with respect to each other.
Let α and β be two hyperplanes of simultaneity for some reference frame
Σ. Let pi be a small region on α in which the system Si is located, and
let qi be a region on β in which Si located (see Figure 1). We assume that
the two systems are sufficiently far apart that p1 is spacelike separated from
q2, and p2 is spacelike separated from q1. Let γ be a spacelike hypersurface
containing q1 and p2, and let δ be a spacelike hypersurface containing p1 and
q2.
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Figure 1. The hypersurfaces used in the proof.

If S1 and S2 are isolated during the portion of their evolution between α
and β, or if the parts of their environment with which they interact can be
treated as effectively classical and these interactions are local, there will be
unitary operators Ui such that the state of the combined system S1 ⊕ S2 on
β will be related to its state on α by,

ρ(β) = U1 ⊗ U2 ρ(α) U †
1 ⊗ U †

2 . (1)

If the regions p1, p2, q1, q2 are sufficiently small, they may be treated as points,
and we may regard γ and δ as hyperplanes of simultaneity for reference
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frames Σ′, Σ′′, respectively. Let ρ′(γ) be the state according to Σ′ of the
system S1 ⊕ S2 at t′ = t′γ , and let ρ′′(δ) be the state according to Σ′′ at time
t′′ = t′′δ . We want to know how these states are related to the Σ-states.

Someone using Σ as a reference frame will judge that, if a measurement
of an observable B2 is performed on S2 at time t = tα, and a measurement
of an observable A1 is performed on S1 at time t = tβ, the expectation value
of the product of the results of the measurements is

Tr[ρ(α) (U †
1A1U1 ⊗ B2)]. (2)

With respect to Σ′, two such measurements occur simultaneously, at t′ = t′γ .
The two reference frames must agree on the probabilities of the outcomes of
the measurements. The expectation value of the product of the two mea-
surements is, according to Σ′,

Tr[ρ′(γ) A′
1 ⊗B′

2], (3)

where the operators A′
1, B

′
2, are related to A1, B2 via the Lorentz transfor-

mation from Σ to Σ′,

A′
1 = Λ1 A1 Λ†

1

B′
2 = Λ2 B2 Λ†

2

A′
1 ⊗ B′

2 = (Λ1 ⊗ Λ2) (A1 ⊗ B2) (Λ†
1 ⊗ Λ†

2) = Λ (A1 ⊗ B2) Λ†. (4)

(Although the argument here does not depend on the Lorentz transformation
Λ being a factorizable operator, it can be proven [1] that it must, in fact, be
factorizable.)

Since the two reference frames must agree on expectation values, we must
have:

Tr[ρ(α) (U †
1A1U1 ⊗ B2)] = Tr[ρ′(γ) A′

1 ⊗ B′
2] (5)

A bit of algebraic manipulation yields,

Tr[(U1 ⊗ I2) ρ(α) (U †
1 ⊗ I2) (A1 ⊗B2)] = Tr[Λ† ρ′(γ) Λ (A1 ⊗B2)] (6)

Since this must hold for arbitrary A1, B2, we must have,

(U1 ⊗ I2) ρ(α) (U †
1 ⊗ I2) = Λ† ρ′(γ) Λ, (7)

or,
ρ′(γ) = Λ (U1 ⊗ I2) ρ(α) (U †

1 ⊗ I2) Λ†. (8)
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Similarly,
ρ′′(δ) = Λ′ (I1 ⊗ U2) ρ(α) (I1 ⊗ U †

2) Λ′†, (9)

where Λ′ = Λ′
1 ⊗ Λ′

2 is the transformation from Σ to Σ′′.
Now, the Lorentz boost operators Λ, Λ′ merely effect a transformation

from a state given with respect to one reference frame’s coordinates to one
given with respect to another reference frame’s coordinates. In what follows,
it will be more convenient to utilize the coordinate basis of one reference
frame, Σ, for all states, even those on hypersurfaces that are not equal-time
hyperplanes for Σ. We will therefore transform the states ρ′(γ) and ρ′′(δ)
back into Σ’s coordinate basis,

ρ(γ) = Λ† ρ′(γ) Λ = U1 ⊗ I2 ρ(α) U †
1 ⊗ I2 (10)

ρ(δ) = Λ′† ρ′′(δ) Λ′ = I1 ⊗ U2 ρ(α) I1 ⊗ U †
2 (11)

For more general interactions of the system S1⊕S2 with its environment,
the evolution of reduced state of the system will, provided that these inter-
actions are local interactions, have a Kraus representation [5] consisting of
factorizable operators (see [6] for a discussion):

ρ(β) =
∑

m,n

K1m ⊗K2n ρ(α) K†
1m ⊗K†

2n, (12)

where
∑

k

K†
ikKik = Ii. (13)

The corresponding states on γ and δ are given by,

ρ(γ) =
∑

m

K1m ⊗ I2 ρ(α) K†
1m ⊗ I2, (14)

ρ(δ) =
∑

n

I1 ⊗K2n ρ(α) I1 ⊗K†
2n. (15)

Suppose that A1 and A2 are definite properties of S1 and S2, respec-
tively, on α, and B1 and B2 are definite properties on β. If these are local

properties—that is, properties possessed by the system irrespective of con-
siderations of the rest of the universe — then the value of A1 possessed by
S1 at p1 is possessed by it without reference to the hypersurface containing
p1 being considered, and similarly for the other points of intersection p2,
q1, q2. (Indicating a particular outcome is, presumably, a local property of
apparatus pointers. Being 100 km from New York City is not.)
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We will require that the probability distributions for possessed values of
local properties satisfy:

Relativistic Born Rule. For any spacelike hypersurface σ, if the
quantum state of the combined system S1 ⊕ S2 on σ is ρ(σ),
and if X1 and Y2 are local definite properties of S1 and S2 on σ,
then the probability that X1 = x and Y2 = y on σ is equal to
Tr[PX1

(x) PY2
(y) ρ(σ)], where PX1

(x) and PY2
(y) are the projec-

tions onto the eigenspaces X1 = x and Y2 = y, respectively.

Even if our modal interpretation is agnostic about transition probabilities,
if the probabilities regarding the possessed values of the definite observables
are to satisfy the Born rule on all four hypersurfaces, it must be possible for
there to be a joint probability distribution over all four of our observables,
that yields as marginals the Born probabilities on all four hyperplanes. Sup-
pose, then, that there is such a distribution, Pr(a1i, a2j , b1k, b2l), this being
the probability that S1 has A1 = a1i at p1, S2 has A2 = a2j at p2, S1 has
B1 = b1k at q1, and S2 has B2 = b2l at q2. We will make no assumption about
this joint distribution other than that it yield the Born rule probabilities as
marginals on all four hypersurfaces, α, β, γ, δ,

∑

k, l

Pr(a1i, a2j , b1k, b2l) = Tr[PA1
(a1i) PA2

(a2j) ρ(α)]

∑

i,j

Pr(a1i, a2j , b1k, b2l) = Tr[PB1
(b1k) PB2

(b2l) ρ(β)]

∑

i,l

Pr(a1i, a2j , b1k, b2l) = Tr[PB1
(b1k) PA2

(a2j) ρ(γ)]

∑

j,k

Pr(a1i, a2j , b1k, b2l) = Tr[PA1
(a1i) PB2

(b2l) ρ(δ)]. (16)

Because of the relations between the states on the hyperplanes considered,
the existence of such a joint distribution is equivalent to the existence of a
joint distribution yielding, as marginals, the statistics in state ρ(α) for the
observables A1 ⊗ A2, A1 ⊗ C2, C1 ⊗ A2, C1 ⊗ C2, where

Ci = U †
i Bi Ui (17)

in the case of unitary evolution (1); in the case of non-unitary evolution (12),
Ci is the ‘mixed observable,’

Ci =
∑

k

K†
ik Bi Kik. (18)
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It has long been recognized [7] that violation of a Bell inequality entails
the nonexistence of such a joint distribution. If ρ(α) is a state such that
a Bell inequality can be derived for the observables A1, C1, A2, C2, then,
assuming the relativistic Born rule, it cannot be the case that A1 is definite
at p1, A2 is definite at p2, B1 is definite at q1, and B2 is definite at q2.

Let us now apply these considerations to Bub’s modal interpretation,
which selects some observable R as always-definite. Let R1, R2 be always-
definite observables of S1 and S2, respectively, such that the possession of any
definite value of these observables is a local property of the system possessing
it. We will assume that each Ri has at least two distinct eigenvalues, {r+

i , r
−
i }.

Let {|r+

i 〉, |r−i 〉} be corresponding eigenstates.
Suppose, now, that the system is prepared so as to be, on α, in the

Hardy-Jordan state [8],

|ψ(α)〉 =
1

2
√

3

(

|r+

1 〉|r+

2 〉 − |r+

1 〉|r−2 〉 − |r−1 〉|r+

2 〉 − 3 |r−1 〉|r−2 〉
)

. (19)

Let us also assume that it is possible to effect a Hadamard transformation
of the R-eigenstates,

Ui |r+

i 〉 =
1√
2

(

|r+

i 〉 + |r−i 〉
)

Ui |r−i 〉 =
1√
2

(

|r+

i 〉 − |r−i 〉
)

. (20)

Between α and β, we apply a Hadamard transformation to each system
separately. The state on β of the combined system will then be given by

|ψ(β)〉 =
1√
3

(

|r+

1 〉|r−2 〉 + |r−1 〉|r+

2 〉 − |r+

1 〉|r+

2 〉
)

. (21)

The state on γ is

|ψ(γ)〉 = U1 ⊗ I2 |ψ(α)〉

=
1√
6

(

|r−1 〉|r+

2 〉 + |r−1 〉|r−2 〉 − 2 |r+

1 〉|r−2 〉
)

. (22)

The state on δ is

|ψ(δ)〉 = I1 ⊗ U2 |ψ(α)〉

=
1√
6

(

|r+

1 〉|r−2 〉 + |r−1 〉|r−2 〉 − 2 |r−1 〉|r+

2 〉
)

. (23)
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Suppose that, on α, R1 and R2 have the values (r+
1 , r+

2 ). Since R1 is, by
assumption, a local property of S1, S1 must have the same value R1 = r+

1

on the hypersurface δ. The state (23) assigns probability zero to the pair of
values (r+

1 , r
+
2 ), and so, on δ, R2 must, with probability one, have the value

r−2 . Since R2 is a local property of S2, R2 has the value r−2 on β as well. A
parallel argument leads to the conclusion that, if R2 has the value r+

2 on α,
R1 has the value r−1 on β.

We therefore conclude that, if R1 and R2 have the values (r+
1 , r

+
2 ) on α,

they have the values (r−1 , r
−
2 ) on β. But, whereas (r+

1 , r
+
2 ) has probability

1/12 on α, inspection of (21) shows that (r−1 , r
−
2 ) has probability zero on β.

Therefore, it is impossible to satisfy the Born-rule probabilities for possessed
values of R1 and R2 on all four of the hypersurfaces α, β, γ, δ.

The above argument, as it stands, does not apply to those modal inter-
pretations that use the Schmidt biorthogonal decomposition of the state to
pick out the preferred observables. The argument can be made to apply with
a simple modification. Associate with each of the systems Si a second system
Ai, among whose observables is a ‘pointer’ observable with eigenstates |p±i 〉Ai

that can be made to interact with Si in such a way that the values of the
pointer observables become correlated with the values of Ri. Take the state
of the system on α to be the state obtained from (19) by replacing |r±i 〉 by
|r±i 〉Si

|p±i 〉Ai
. It is easy to check that the orthogonal decomposition of the

reduced density operator for Si is nondegenerate on all four hypersurfaces
and yields Ri as definite properties on these hypersurfaces. The argument
requires that we apply a Hadamard transformation to the combined system-
apparatus state,

Ui |r+

i 〉Si
|p+

i 〉Ai
=

1√
2

(

|r+

i 〉Si
|p+

i 〉Ai
+ |r−i 〉Si

|p−i 〉Ai

)

Ui |r−i 〉Si
|p−i 〉Ai

=
1√
2

(

|r+

i 〉Si
|p+

i 〉Ai
− |r−i 〉Si

|p−i 〉Ai

)

. (24)

3 Idealizations relaxed

The above argument presumes that it is possible to keep the system iso-
lated while performing a Hadamard transformation; this must be regarded as
somewhat of an idealization, as no system is ever completely isolated from its
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environment. Bub [9, §5.2] has argued that the preferred observable should
be stable with respect to environmentally induced decoherence. If this is the
case, such decoherence will tend to turn coherent superpositions of distinct
R-values into improper mixtures. Because of this the transformation invoked
in the preceding section, which mixes distinct Ri-eigenspaces, may in practice
be tremendously difficult. The issues with which we are concerned are, how-
ever, matters of principle; a theory that permits violations of the relativistic
Born rule is not a relativistic theory even if situations that mandate such
a violation are difficult to achieve in practice and the natural occurrence of
such situations is extremely improbable. One might contemplate the possi-
bility, however, of there being a limit in principle to the extent to which the
system can be isolated from its environment; the always-definite observable
might, for example, interact with the vacuum fields. We should, therefore,
ask whether a version of argument can survive such an ineliminable envi-
ronmental interaction. We will still require that the relativistic Born rule be
satisfied for arbitrary initial states, but will no longer assume that the system
can be regarded as isolated while a Hadamard transformation is performed.

Suppose that we apply to Si an external potential Hi. If Hi is much larger
than the interaction of the system with its environment, then the evolution
of the system will, for sufficiently short periods of time, be dominated by
this term and will approximate the evolution that would obtain if there were
no environmentally induced decoherence. It is therefore worth pointing out
that a full Hadamard transformation is not necessary for a violation of the
relativistic Born rule, and that this can be achieved, for a suitable initial
state, by an arbitrarily small rotation of the state. To show this, we consider,
not the Hardy-Jordan state, but the singlet state,

|ψ(α)〉 =
1√
2

(

|r+

1 〉|r−2 〉 − |r−1 〉|r+

2 〉
)

. (25)

Apply to the systems S1 and S2 potentials whose effect is to rotate the states
in opposite directions:

H1 = ih̄ω
(

|r−1 〉〈r+

1 | − |r+

1 〉〈r−1 |
)

(26)

H2 = −ih̄ω
(

|r−2 〉〈r+

2 | − |r+

2 〉〈r−2 |
)

(27)

Take the time interval ∆t between α and β to be sufficiently small that the
effects of environmentally induced decoherence are negligible. We will then
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have the states on our other hypersurfaces given approximately by

|ψ(γ)〉 =
1√
2

(

sin φ |r+

1 〉|r+

2 〉 + cosφ |r+

1 〉|r−2 〉

− cosφ |r−1 〉|r+

2 〉 + sin φ |r−1 〉|r−2 〉
)

(28)

|ψ(δ)〉 =
1√
2

(

sin φ |r+

1 〉|r+

2 〉 + cosφ |r+

1 〉|r−2 〉

− cosφ |r−1 〉|r+

2 〉 + sin φ |r−1 〉|r−2 〉
)

, (29)

|ψ(β)〉 =
1√
2

(

sin 2φ |r+

1 〉|r+

2 〉 + cos 2φ |r+

1 〉|r−2 〉

− cos 2φ |r−1 〉|r+

2 〉 + sin 2φ |r−1 〉|r−2 〉
)

, (30)

where φ = ω∆t.
Let R+

i (x) be the proposition that Ri has value r+

i at spacetime point x,
and similarly for R−

i (x) . If there is a joint distribution over the possessed
values of R1 and R2 on α and β, then we should have

0 ≤ Pr[R+

1 (p1) &R−
2 (q2)] + Pr[R−

1 (q1) &R+

2 (p2)]

+ Pr[R+

1 (q1) &R+

2 (q2)] − Pr[R+

1 (p1) &R+

2 (p2)] ≤ 1. (31)

Assuming that these probabilities are given by the Born rule, in our
example this amounts to

0 ≤ cos2 φ+
1

2
sin2 2φ ≤ 1. (32)

This is violated for 0 < |φ| < π/4, and hence for arbitrarily small φ.

4 Lorentz invariance, serious and otherwise

“Zur Elektrodynamik bewegter Körper” [10] opens with the observation that
electrodynamics, as it was understood at the time, leads to asymmetries in
the theoretical description that are not present in the phenomena, in that
the theoretical description distinguishes between bodies in motion and those
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at rest, in spite of the fact that the observable phenomena depend only on
the relative motion of bodies. Such considerations, says Einstein, suggest
that there is in fact nothing corresponding to absolute rest. He goes on in
the paper to show how to reconcile electrodynamics with this suggestion; to
do so involves rejecting the notion also that there is anything corresponding
to absolute simultaneity of spatially separated events. The transformation
between inertial coordinates, as measured by physical rods and clocks, must
be given by the Lorentz transformation.

Now, it is certainly possible to suppose that there is a distinguished state
of absolute rest; provided that this state is defined with respect to the matter
in the Universe or some other physical structure, it is even possible for a
theory that posits such a state to do this while preserving Lorentz invariance
of the formulas of the theory. Similarly, a theory may introduce a preferred
foliation in a Lorentz invariant manner. To do so, however, is to ignore
the reasons why we should be interested in Lorentz invariance in the first
place. The observable phenomena pick out neither a preferred rest frame nor
a preferred relation of distant simultaneity. This is precisely what is to be
expected if there is in reality no preferred state of rest and no distinguished
relation of distant simultaneity, and so we hypothesize that this is, in fact,
the case, and impose Lorentz invariance to ensure that an assumption of a
preferred Lorentz frame is not concealed in our choice of coordinates. To
introduce a preferred foliation in a Lorentz invariant manner is to abandon
what Bell [11, p. 180] calls “serious Lorentz invariance.”

The “Lorentz-Covariant modal scheme” outlined by Dieks [12] evades the
Dickson-Clifton proof by rejecting the Dickson-Clifton stability condition;
it also evades the Arntzenius version of that proof, and the proof of the
present paper, by rejecting the relativistic Born rule; on this scheme, the
Born-rule probabilities do not give the probabilities for possessed values at
all times for all foliations. Similarly, Dürr et al. [13] produce a covariant
trajectory model by introducing, as part of the dynamical structure of the
theory, a foliation with respect to which the “quantum equilibrium” condition
P = |ψ|2 is satisfied. As nothing in the observable phenomena depend on
the particular choice of such a foliation, the distinguished foliation introduces
into the theoretical description an asymmetry not present in the phenomena.
The reasons for rejecting such a move, therefore, are precisely the same as the
reasons for Einstein’s dissatisfaction with a formulation of electrodynamics
that invokes a preferred rest frame.

As Bell points out, we do not have a precise criterion for seriousness of
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Lorentz Invariance. It seems clear, however, that the relativistic Born rule
should be satisfied by any interpretation of quantum mechanics with a claim
to serious Lorentz invariance.
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