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Abstract

This paper discusses two senses in which a hypothesis may be said
to unify evidence. One is the ability of the hypothesis to increase
the mutual information of a set of evidence statements; the other is
the ability of the hypothesis to explain commonalities in observed phe-
nomena by positing a common origin for them. On Bayesian updating,
it is only mutual information unification that contributes to the incre-
mental support of a hypothesis by the evidence unified. This poses a
challenge for the view that explanation is a confirmatory virtue that
contributes to such incremental support; its advocates must ground it
in some relevant difference between humans and a Bayesian agent.
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1 Introduction

Myrvold (2003) identified what was described therein as “one inter-
esting sense” in which a theory can unify phenomena. This consists
of the ability of the theory to render distinct phenomena informative
(or more informative) about each other. Call this Mutual Information
Unification (MIU). This sense lends itself nicely to a probabilistic ex-
plication, and it can be shown that unification in this sense contributes
to incremental evidential support of the theory by the phenomena uni-
fied.
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There is another sense of unification, having to do with hypotheses
that posit a common origin for the phenomena in question, be it a
common cause or some other type of explanation. Call this Common
Origin Unification (COU). As emphasized by Lange (2004), the two
senses are logically independent; neither is a necessary or a sufficient
condition for the other, even though, in a number of interesting cases,
they are concomitants of each other.

The question arises as to the respective roles of these two notions of
unification in theory confirmation. On a Bayesian analysis, the answer
is clear: Mutual Information Unification contributes to incremental
evidential support, and there is no scope, within Bayesian updating,
for Common Origin Unification to add to the evidential support of the
theory (see §4, below).

However, we need not take consideration of a Bayesian agent up-
dating via conditionalization as normative for those of us who are not
such agents, and one might still take an explanationist line, that COU,
instead of or in addition to MIU, ought to be taken into account in
evaluating the bearing of a body of evidence on a hypothesis. If, how-
ever, it is rational, or reasonable, or otherwise well and good for us
to do what is impossible for a Bayesian agent updating its credences
via conditionalization, that is, to regard the explanatory capacity of
a hypothesis as something that contributes to its evidential support,
then this must be grounded in some relevant difference between us and
Bayesian agents. It is incumbent on an explanationist to give an ac-
count of what that difference is. No suggestion about how this might
go will be offered in the present paper; I leave that to proponents of
the explanationist thesis.

In the following, these points are first illustrated by means of a sim-
ple example that, despite its artificiality, shares some salient features
with cases of actual scientific interest. Next, in §3, are presented the
probabilisitic measures of MIU introduced by Myrvold (2003), and in
§4 their impact on evidential support is exhibited. In §5 the question
is raised whether there is still a role for Common Origin Unification
to play in hypothesis assessment, in assessing priors rather than in as-
sessing incremental evidential support (the answer is no). Finally, in
§6 it is shown how Reichenbachian common causes fit into the schema
of Mutual Information Unification.
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2 Two kinds of unification

Consider the following toy example, of no use except for introducing
the issues at hand, though it does share some salient features with a
multitude of real-world cases of genuine scientific interest. You are
about to be presented with two data streams, S1 and S2, each of
which will be sequences of ten Heads or Tails. You know that they
have been produced by coin flipping, but you aren’t sure of exactly
what the procedure used was, or whether the coin or coins involved
are fair.

Suppose that you have nonzero credences in both of the following
hypotheses:

H1: A fair coin was flipped ten times, and the results of this series of
coin flips are reported in both data streams.

H2: Two fair coins were flipped ten times each, and each data stream
reports the results of one of these series of coin flips.

I invite you to consider the effect of the evidence on these two hypothe-
ses. That evidence consists of specification of the two data streams:

S1: HHHTTHTHHT

S2: HHHTTHTHHT

Let E1 be the proposition that S1 is the string given above, and E2

the corresponding proposition about S2.
Now, if you have nonnegligible prior credence that the strings

might have been produced by radically unfair coins, E1 and E2 might
boost your confidence in the fairness of the coins, and hence condition-
alizing on each of E1 and E2, separately, might boost your credence
in both H1 and H2. But, when taken together, E1 and E2 strongly
favor H1 over H2.

There are two features of this example that I would like to draw
your attention to. The first feature is that H1, if true, renders E1

informative about what data stream S2 will be. Conditional on H1,
knowing E1 permits one to anticipate the truth of E2. That is, H1

exhibits Mutual Information Unification (MIU ) with respect to the
evidence set {E1, E2}. A hypothesis has this property, with respect to
a set of evidential propositions, if conditionalizing on that hypotheses
increases the mutual informativeness of the set. Obviously, this is the
sort of thing that comes in degrees; probabilistic measures of this sort
of unification will be introduced below.
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The second feature is that H1 posits a common origin of the two
data streams, and thus is ripe to be the subject of what Janssen (2002)
has called a COI story, for Common Origin Inference. In addition to
MIU, H1 also exhibits Common Origin Unification, COU.

The two concepts are of a manifestly very different sort. One be-
longs to a cluster of concepts involving information, states of knowl-
edge, and the like; the other is related to concepts of cause and ex-
planation.1 As already mentioned, they are logically independent. A
hypothesis can posit a common origin for two (or more) evidential
propositions without making them mutually informative about each
other, as the propositions could be about independent aspects of their
posited common origin, so we can have COU without MIU. Further-
more, once two or more evidential propositions are known, that is,
have been absorbed into one’s background knowledge, they are no
longer informative about each other, though any common origin they
might have remains, and again we have COU without MIU. One can
also trivially construct hypotheses that exhibit MIU without COU.
With respect to our toy example, consider the hypothesis,

H3: Two fair coins were flipped ten times each, each data stream
reports the results of one of these series of coin flips, and the
results of each series of flips just happened to be the same.

This hypothesis, if true, also renders one data stream informative
about the other. Of course, prior to the evidence, one would expect
credence in H3 to be low, lower than credence in H2 by a factor of
1, 024.

Though artificial, our toy example has a multitude of parallels in
actual science. One is the case of heliocentric v geocentric world sys-
tems, discussed by Janssen (2002) and Myrvold (2003). The analog
of H1 is what is called hC by Myrvold (2003), that is, the heliocen-
tric hypothesis that all planets have circular or nearly circular orbits
centred at or near the sun, and the analog of H2 is the bare-bones
geocentric hypothesis hP , which posits that, for each planet, there is
a deferent circle centered near the earth, and that the planet travels on
an epicycle whose center travels on the deferent, with no assumption
made about any connections between the motions of different planets
or between planetary motions and the motion of the sun. The analog
of H3 is the geocentric hypothesis with the added condition that Myr-

1As Glymour (2015) has argued, it would be a grave mistake to take MIU or any similar
notion as an explication of explanatory unification.
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vold calls the sun-planet parallelism condition; this is the hypothesis
that Myrvold calls hSP , or the strengthened Ptolemaic hypothesis.

Another analog, with a wider body of evidence, can be found in
Perrin’s argument for the existence of atoms. Perrin (1913, §119; 1916,
§120) adduces 13 distinct phenomena that, on the atomic hypothesis,
count as measurements of Avogadro’s number. The analog of H1 is
that atoms exist, and hence there is a common origin explanation
of the agreement of these measurements; the analog of H2 would be
the hypothesis that matter is continuously divisible, and the analog
of H3 would be the hypothesis that adds to H2 the stipulation that
Perrin’s 13 phenomena yield values that just happen to agree within
experimental error, even though they are not agreeing measurements
of any physically meaningful parameter. Clearly, one could adduce a
multitude of examples, from many domains of science, with the same
sort of structure.

3 Probabilistic measures of unification

Consider a Bayesian agent whose credences are given by a probability
function Cr. We define the mutual information of a pair of proposi-
tions, {p1, p2}, relative to background b, by2

I(p1, p2|b) = log2

(
Cr(p2|p1b)
Cr(p2|b)

)
= log2

(
Cr(p1 p2|b)

Cr(p1|b)Cr(p2|b)

)
. (1)

If p1 and p2 are probabilistically independent on b, then I(p1, p2|b)
is zero; it is positive if conditionalizing on one boosts credence in the
other, negative, if conditionalizing on one lowers credence in the other.

For a larger set, p = {p1, p2, . . . , pn}, we add up the information
yielded by p1 about p2, the information yielded by p1p2 about p3, and
so on, up to the information about pn yielded by the conjunction of

2A note on notation. We will use concatenation for conjunction, and the overbar p̄ for
the negation of p. We use boldface letters to denote sets of propositions. Note that these
are sets and are not replaceable by a single proposition that is their conjunction. Thus,
{p1, p2} is not the same set as {p1p2,T}. where T is the logically true proposition, though
the conjunction of their members is the same. This matters because we will be concerned
with the mutual informativeness of members of a set of propositions; p1 and p2 may be
mutually informative though the logically true proposition is not informative about their
conjunction or anything else.
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all the others.

I(p1, . . . , pn|b) = I(p1, p2|b) + I(p1p2, p3|b) + . . .+ I(p1 . . . pn−1, pn|b)

=
n−1∑
k=1

I

(
k∧

i=1

pi, pk+1|b

)
. (2)

Although the form of (2) does not make this obvious, this quantity is
independent of the order in which the elements of the set p are taken,
and we have,

I(p1, . . . , pn|b) = log2

(
Cr(p1 p2 . . . pn|b)

Cr(p1|b)Cr(p2|b) . . . Cr(pn|b)

)

= log2

(
Cr(

∧n
i=1 pi|b)

Πn
i=1Cr(pi|b)

)
. (3)

This is the logarithm of the quantity called a measure of similarity by
Myrvold (1996) and taken by Shogenji (1999) as a measure of coher-
ence of a set of propositions; I(e|hb) is the logarithm of the quantity
that McGrew (2003) took as a measure of the degree of consilience of
a hypothesis h with respect to a body of evidence e. With a slight
abuse of notation, we will write I(p|b) for I(p1, . . . , pn|b). We will also
drop, as irrelevant, the base of the logarithm, since changing base is
only a matter of a constant multiplicative factor.

We will say that a hypothesis h MIUnifies a set e = {e1, . . . , en},
relative to background b, if and only if

I(e|h b) > I(e|b). (4)

This suggests a way to measure the degree to which a hypothesis
MIUnifies a set of evidential propositions.3

MIU1(e;h|b) = I(e|h b)− I(e|b). (5)

We might also be interested in whether a hypothesis does a better job
of unifying a set of propositions than its negation. Define

MIU2(e;h|b) = MIU1(e;h|b)−MIU1(e; h̄|b)
= I(e|h b)− I(e|h̄ b). (6)

3This quantity is the logarithm of a quantity that was refereed to as an “interaction
term” in Myrvold (1996), and is called focussed correlation in Wheeler (2009), Schlosshauer
and Wheeler (2011), and Wheeler and Scheines (2013). What we are calling MIU1 was
called U (for unification) in Myrvold (2003). MIU2 was discussed therein, though not
given its own name.
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The two are not ordinally equivalent, and, indeed, need not agree as
to sign. Suppose a hypothesis h unifies a body of evidence, relative to
background b. That is, suppose the evidence is more mutually infor-
mative conditional on hb than on b alone. Then MIU1(e;h|b) is pos-
itive. But whether or not MIU2(e|b) is negative or positive depends
on whether or not h̄ unifies the evidence more. If I(e; h̄|b) is greater
than I(e;h|b), then, even if MIU1(e;h|b) is positive, MIU2(e;h|b) is
negative. In fact, all four combinations of signs of MIU1 and MIU2

are possible, though it is easy to show that, unless e1 and e2 are,
when taken individually, oppositely relevant to h (that is, unless one
of them is positively relevant and the other negatively relevant), if
MIU1(e1, e2;h|b) is positive, MIU2(e1, e2;h|b) is also positive. See
Appendix for details.

Readers are asked to kindly refrain from engaging in a battle of
the intuitions over which of these is the One True Measure of degree
of unification. They are simply measuring different things, and if
you have intuitions that are incompatible with properties that one or
another of these quantities possesses, then your intuitions are about
some other concept.4

4 The evidential value of unification

To some readers, it might seem obvious that what counts when it
comes to confirmation is Common Origin Unification, with Mutual
Information Unification being a poor cousin that hardly merits the
illustrious family surname. This view is expressed by Lange (2004),
who writes,

the examples I have given suggest that insofar as theories
that unify in the stronger,5 ontological-explanatory sense
derive greater support in virtue of the unification they
achieve, they do so not solely in virtue of their achiev-
ing unification in the weaker, creating-mutual-positive rel-
evance sense. The stronger sense of unification is epistemi-
cally significant. In the case of the light-quantum hypoth-
esis, hC and hL both supply unity in the weaker sense,
but Einstein took hL to receive greater support from the

4And if your intuitions find it repugnant to use the word “unification” in connection
with either of these, then feel free to use a different word.

5This is a slip; the two senses are, as Lange emphasizes, logically independent.
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phenomena than hC by virtue of hL’s unifying those phe-
nomena in an ontological-explanatory sense (p. 212).

Here hL is Einstein’s light quantum hypothesis, and hC is the hypoth-
esis that hL is false but nevertheless, by sheer coincidence, light be-
haves as if it were quantized. According to Lange, hL receives greater
support from the phenomena unified than does hC .

It is not entirely clear whether incremental or absolute support
is meant, where incremental support has to do with an increase in
credibility lent to a hypothesis by the evidence, and absolute support
with the credibility of the hypothesis, taking all known considerations
into account. If absolute, this suggests that the case of hC is analogous
to that of our toy example’s H3, which is accorded a low prior because
it posits an improbable coincidence. One the other hand, if the claim
is to be a counterexample to anything in Myrvold (2003), incremental
support must be what is meant. Let us therefore consider the position
that, when it comes to incremental support, it is COUnification, not
MIUnification, that counts.

A Bayesian analysis renders the opposite verdict: when it comes to
incremental support of a hypothesis, it is MIUnification, rather than
COUnification, that matters.

One popular measure of the degree to which an evidential propo-
sition e lends incremental confirmation to a hypothesis h, relative to
background b, is the ratio of posterior probability of h to its prior
probability. This is, of course, ordinally equivalent to its logarithm.
Let us define

R(h; e|b) = log

(
Cr(h|e b)
Cr(h|b)

)
. (7)

Another is the ratio of the posterior odds of h to its prior odds, or,
equivalently, the logarithm of this. Define

W (h; e|b) = log

(
Cr(h|eb)/Cr(h̄|eb)
Cr(h|b)/Cr(h̄|b)

)
= log

(
Cr(e|h)

Cr(e|h̄)

)
. (8)

As Myrvold (2003) pointed out, on either way of measuring incre-
mental confirmation, we have a contribution of unification to confir-
mation.6 The incremental support, as measured by R, of h by e can

6Equations (9) and (10) correspond to equations (12) and (13) of Myrvold (2003). In
that paper, the displayed equations are for two items of evidence, with the generalization
to larger evidence-sets stated in the prose beneath.
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be decomposed into a sum of increments due to the individual mem-
bers of e, plus an additional term that is the degree of MIUnifcation
(positive or negative) of e by h, as measured by MIU1.

R(h;
n∧

i=1

ei|b) =
n∑

i=1

R(h; ei|b) +MIU1(e;h|b). (9)

The result for W takes the same form, with MIU2 in place of MIU1.

W (h;
n∧

i=1

ei|b) =
n∑

i=1

W (h; ei|b) +MIU2(e;h|b). (10)

These relations can be readily verified by the reader.
It would be incorrect to gloss these results as saying that hypothe-

ses that are more unifying receive more confirmation; the MIU-term is
not the only contribution to the increment of confirmation. Although
it would not be incorrect to say that ceteris paribus, a hypothesis that
achieves a higher degree of MIUnification of the evidence is accorded
greater incremental support, this is strictly weaker than what is con-
veyed in equations (9) and (10), and there is no advantage in making
the ceteris paribus claim when it is a trivial matter to say how things
stand when all else is not equal.

Imagine, now, a Bayesian agent that had numerical credences,
which it7 updated by conditionalizing on new items of evidence. Then,
depending on how we measured degree of incremental confirmation,
the confirmational boost accorded to h by a set e of evidential proposi-
tions would be given by either (9) or (10). In each case the additional
confirmational boost, beyond that attributable to the items of evi-
dence taken singly, is given by the MIUnification term.

Applied to our toy example: The fact that H1 and H3 make E1

and E2 informative about each other is reflected in the likelihoods,
Cr(E1E2|H1) and Cr(E1E2|H3), which are higher than Cr(E1E2|H2)
by a factor of 1, 024. Thus, relative to H2, credence in H1 and H3 is
boosted:

Cr(H1|E1E2)

Cr(H1)
=
Cr(H3|E1E2)

Cr(H3)
= 210

Cr(H2|E1E2)

Cr(H2)
. (11)

It doesn’t follow, of course, that H3 gets final credence comparable to
that of H1. Since H3 posits an improbable coincidence, it is accorded

7I say “it,” because a being with precise numerical credences would be far from human.
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a lower prior probability, lower than that of H2 by a factor of 1, 024;
the additional confirmational boost it receives is just enough to bring
it up to posterior credence equal to that of H2 (which, of course, must
be the case, since, given the evidence, H3 is true if and only H2 is).

There is a close parallel between this case and the case of geocentric
v heliocentric world systems, and also the case of the light quantum,
considered by Lange.

In the case of planetary motion, on both the heliocentric hypothe-
sis and the strengthened Ptolemaic hypothesis, features of one planet’s
orbit are informative about features of others (see Janssen 2002 and
Myrvold 2003 for discussion). In the case of the heliocentric hypoth-
esis, HC , these have a common origin in the motion of our vantage
point as observers on earth; for HSP , they are the consequence of the
posited sun-planet parallelism. Against a background that includes
little or no information about observed planetary motions, both of
these get a confirmational boost from the celestial phenomena, due to
the MIU -component of incremental confirmation. It doesn’t follow
that they end up with equal posterior credence. Arguably, HSP , on
that background, should be accorded markedly lower prior credence
than HP , as it posits a relation that HP by itself would not lead one
to anticipate. HC and HSP get the same incremental confirmation on
the evidence. Therefore, posterior credence in HSP will be comparable
to posterior credence in HC only if prior credence in HC is markedly
lower than prior credence in HP .

Something similar can be said in regards to Lange’s case of the
light quantum hypothesis. Let us grant that the light quantum hy-
pothesis plays a unificatory role. Lange asserts that Einstein took
the observed phenomena to lend greater support to the light quan-
tum hypothesis than the hypothesis that, by sheer coincidence, all
observable phenomena are as if the light quantum hypothesis is true.
In order for this assertion to be relevant to the issue at hand, this
must mean that the phenomena lend greater incremental support to
the light-quantum hypothesis than to the coincidence hypothesis. On
the historical point, it seems that the documentary evidence is silent;
there is no textual evidence that Einstein even considered Lange’s hC .
One would suspect that he would have regarded it as so implausible
as to be dismissed out of hand. But this would mean according it a
low prior, which is consistent with the Bayesian account of the virtue
of unification. There is no reason to suspect that Einstein’s failure to
seriously consider the coincidence hypothesis ought to be ascribed to
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his taking the phenomena to lend greater incremental support to the-
ories that achieve MIUnification via positing a common origin than to
theories that merely posit unexplained connections between phenom-
ena.

Bayesian updating leaves no room for an additional confirmatory
boost to be attached to hypotheses with greater explanatory power;
the contribution to incremental support comes via the MIUnification
term. We, however, are not Bayesian agents, and perhaps we should
not take consideration of a Bayesian agent that updated by condition-
alization to be normative for the judgments of human scientists about
incremental support.

If this is right—if one accepts that for the credences of a Bayesian
agent it is MIU and not COU that is relevant to incremental support,
but holds that we humans ought to judge hypotheses that posit a com-
mon origin to receive greater support from the phenomena COUnified
by the hypothesis—then this difference must be grounded in some dif-
ference between us and Bayesian agents. We are certainly different
from Bayesian agents in a number of ways. We do not have precise
numerical degrees of belief; our judgments about how likely or un-
likely a hypothesis is tend to be vague. Moreover, as an abundance
of empirical evidence shows, routinely our qualitative judgments of
the relative credibility of various propositions are not even compat-
ible with the existence of numerical credences satisfying the axioms
of probability, and our changes in credences are often not in accord
with Bayesian conditionalization. There is also experimental evidence
that, it is claimed, “strongly suggest that judgments of the explana-
tory goodness of hypotheses are of crucial importance in updating ...
in a way that is incompatible with the Bayesian doctrine of Strict
Conditionalization” (Douven and Schupbach, 2015, p. 309).8

The usual understanding of facts of this sort is that they are due
to cognitive limitations, and that some of them can be understood as
resulting from usually reliable heuristics, of the sort that any agent
with limited cognitive capacities would be well-advised to employ, as
an alternative to spending excessive time on cogitation. Moreover,
deployment of such heuristics can be regarded as rational, from a

8It would not be surprising if this turned out to be a robust psychological phenomenon.
Though the work reported in Douven and Schupbach (2015) is an interesting first step
towards this, one that will hopefully stimulate further research, further experiments would
be required to make a case for the thesis that explanatory considerations play an important
role in updating beliefs.
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decision-theoretic point of view, when the cost of deliberation is taken
into account—an instance of what I. J. Good (1971, 1976) called “Type
II Rationality.”

If it is not an error for us cognitively limited humans to take Com-
mon Origin Unification to be what counts in regards to incremental
support of a hypothesis by evidence, then this must be due to some
relevant difference between us and a Bayesian agent that updates by
conditionalization. It is hard for me to see how such an account would
go. But I do think that it is incumbent on those who hold an explana-
tionist view, according to which it is explanatory capacity, rather than
(or in addition to) mutual information unification, that is relevant in
updating credences, to provide such an account.

5 A prior preference for unifying hy-

potheses?

We have considered cases (in the toy example, H1 and H3, in the case
of planetary motion, HC and HSP , and in the light quantum case, hL
and hC), in which each of a pair of hypothesis possess the same ability
to render items of evidence informationally relevant to one another,
but do so in different ways. In each of these cases one does it by virtue
of positing a common origin for prima facie unrelated phenomena, the
other, by brute fiat, in positing an unexplained correlation between
the phenomena. In each of these cases, the hypothesis that involves a
common origin is, arguably, less implausible than the one that posits
brute coincidence.

One might be tempted to generalize, positing, that, whenever we
have MIU without COU, there will be a corresponding hypothesis that
achieves precisely the same MIUnification via COUnification, and we
should accord much less prior credence to the hypothesis that exhibits
MIU without COU than to the one that achieves it via COU. This
would mean that there is a role for COU, not in incremental confir-
mation, but in setting priors.

Anything so sweeping would be a mistake, I think. There are
patterns in the world of all sorts, some due to some sort of common
origin, some not, and it is easy to cook up examples of hypotheses
with MIU but not COU. Nature is unified in some respects, disunified
in others, and it is the task of science to find out in which respects
nature is unified.
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Perhaps, then, the generalization should be that, when we do have
a pair of hypotheses that both induce the same informational relevance
relations among a body of phenomena, one doing it via COUnification
and the other by brute fiat, we should attach higher prior credence to
the COUnifying hypothesis. One should be cautious, however, about
overgeneralizing. When we have a case of two hypotheses h1 and h2
of roughly equal prior credibility, and create a third h3 by tacking
on to h2 some conjunct with low prior plausibility, then, indeed, in
such a case, we should place lower credence in h3 than in h1. But
not all cases will be like that, and a COUnifying hypothesis might be
deemed implausible on other grounds. Take, for example, Ptolemy’s
attitude towards heliocentric hypotheses. Since Ptolemy recognized
that in the observed phenomena there was a connection between the
apparent motion of the sun and that of the other planets, he was in
a position to appreciate the COUnifying power of geocentrism. But,
since he accepted Aristotelian physics for terrestrial phenomena, he
thought that terrestrial phenomena ruled out a diurnal rotation of the
earth (see Ptolemy 1984, Bk. I, §7); for him, it was reasonable to place
low credence in heliocentric theories that posited such a rotation.

One can exhibit plenty of hypothesis pairs in which the less unify-
ing, less explanatory hypothesis has less prior credibility, because the
less explanatory hypothesis posits an implausible coincidence. But
the emphasis should be on the credibility-diminishing role of coinci-
dence, rather than any prior conviction that nature is unified. What
H3, the strengthened Ptolemaic hypothesis, and Lange’s hC have in
common is that, in each case, we have a hypothesis to which is tacked
on some additional condition that one would not expect to hold, in
the absence of evidence that it does, and hence we have a hypothesis
that ought to be accorded low prior credence. Rather than a sweeping
preference for COUnification, I suggest that the methodological adage
that underwrites low prior credence in such hypotheses is:

Place little prior credence in things you take to be improb-
able.

This is, I hope, unobjectionable! It is, of course, utterly empty, but I
am skeptical that anything stronger could be defended as a maxim of
more than very limited scope.

It would be a mistake to raise this bland but unobjectionable
maxim into a global rejection of hypotheses that posit coincidences.
Improbable things do happen, after all. Moreover, in some cases it is
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reasonable to accept hypotheses that posit an improbable coincidence.
The evidence available to you in the toy example strongly suggests a
common cause. But, if you were to obtain strong evidence that the two
data streams were the results of independent tosses of two fair coins,
then it would be reasonable to accord high credence to H3. Similarly,
Ptolemy propounded a geocentric system with an unexplained sun-
planet parallelism, because he thought he had strong evidence to rule
out hypotheses that involved a moving earth.

The case of Einstein and the light-quantum hypothesis is interest-
ing, and complex. When Einstein proposed the light-quantum hypoth-
esis in 1905, the suggestion was rather tentative. What he concluded
at the time was that

Monochromatic radiation of low density (within the range
of validity of Wien’s radiation formula) behaves thermody-
namically as if it consisted of mutually independent energy
quanta of size Rβν/N (Einstein 1989, p. 97, from Einstein
1905, p. 143).

For this restricted conclusion Einstein gave a very strong argument
(see Norton 2006). His next step is to propose an investigation: “it
seems reasonable to investigate whether the laws of generation and
conversion of light are also so constituted as if light consisted of such
energy quanta” (Einstein 1989, p. 143–144, from Einstein 1905, p.
98). The next sections, on Stokes’s Rule, on the photoelectric effect,
and on ionization of gases, argue that the conception is consistent with
the observed phenomena, but make it clear that further experimental
work is needed. Pais (1982, p. 377) rightly calls Einstein’s step a bold
one, but it is boldness tempered by caution.

Einstein was not alone in his hesitation about the light quantum
hypothesis, and other physicists were even more sceptical (see Hendry
1980 for some of the history). It was not until a little over a decade
after his first proposal of the light-quantum hypothesis that Einstein
was willing to declare that the basic principles of the light-quantum
theory were “rather certainly proven” and called for, as “almost un-
avoidable,” the development of a proper quantum theory of radiation
(Einstein 1997, p. 232, from Einstein 1916). As Kao (2015) argues, a
case can be made for thinking of the accumulating evidential support
for the quantum hypothesis during the first decades of the twentieth
century in terms of unification in the mutual information sense: since
the quantum hypothesis turns prima facie independent phenomena

14



into agreeing measurements of Planck’s constant, it renders these phe-
nomena informative about each other, much as the atomic hypothesis
turns disparate phenomena into agreeing measurements of Avogadro’s
number.

6 Unification and Reichenbachian Com-

mon Causes

Among unifying hypotheses are those that posit a Reichenbachian
common cause to explain some observed statistical correlation (Re-
ichenbach, 1956, §19). This type of hypothesis fits well within the
schema of the Bayesian account of unification, but, since this might
not be obvious, it is worth showing how it fits.

Consider two sequences of propositions, {Ai, i = 1, . . . , n}, and
{Bi, i = 1 . . . , n}. Let f(A) be the relative frequency of true instances
of the Ai, that is, the number of values of i for which Ai is true, divided
by n, and similarly for f(B), and f(AB). A statistically significant
difference between f(AB) and the product f(A)f(B) is thought to
call for explanation. A Reichenbachian Common Cause of an observed
correlation between A and B is a third sequence Ci that screens off
their correlation. That is,

Pr(AiBi|Ci) = Pr(Ai|Ci)Pr(Bi|Ci);

Pr(AiBi|C̄i) = Pr(Ai|C̄i)Pr(B̄i|C̄i).
(12)

On the assumption that distinct Ais are independent and identically
distributed, and that the same holds for {Bi} and {AiBi}, we can take
the Cis to be independent and identically distributed also.

A hypothesis that there is a common cause of this sort can be
characterized by six parameters:

p = Pr(Ci),

a1 = Pr(Ai|Ci), a0 = Pr(Ai|C̄i),

b1 = Pr(Bi|Ci), b0 = Pr(Bi|C̄i).

(13)

On the supposition of such a hypothesis, we have

Pr(Ai|Hcc) = pa1 + (1− p)a0, P r(Bi|Hcc) = pb1 + (1− p)b0, (14)
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and

Cov(Ai, Bi|Hcc) = Pr(AiBi|Hcc)− Pr(Ai|Hcc)Pr(Bi|Hcc)

= p(1− p)(a1 − a0)(b1 − b0). (15)

Thus, conditional on the hypothesis, the Ais are positively correlated
with the Bis if a1 − a0 and b1 − b0 have the same sign; negatively
correlated if they have opposite sign, and uncorrelated if the Cis are
irrelevant to either the Ais or the Bis, that is, if a1 = a0 or b1 = b0.

We consider a family of such hypotheses, characterized by varying
values of the parameters listed above in (13). Let E1 be a proposition
expressing which of the Ais are true, and which are false. For example,
in our toy example, Ai could be the proposition that the ith element
of S1 is Heads, and E1 would be

A1A2A3Ā4Ā5A6Ā7A8A9Ā10.

Let E2 be the evidence statement specifying the B-sequence. We
inquire into the degree of support lent to common-cause hypotheses,
with various values of the parameters, by the pair {E1E2}.

Given E1, E2, let n(A) be the number of values of i for which Ai

is true, n(B) the number for which Bi is true, n(AB) the number of
values of i for which AiBi is true, and similarly for n(AB̄), and the
other combinations. Let Hcc be some Reichenbachian common-cause
hypothesis. We have, from (9),

R(Hcc;E1E2) = R(Hcc;E1) +R(Hcc|E2)

+MIU1({E1, E2};Hcc). (16)

Since we’re interested in comparing degrees of support for different
hypotheses on a fixed body of evidence, it is useful to compare log-
likelihoods, as, for two different hypotheses, the differences between
their R-values will be the same as the differences between the re-
spective log-likelihoods. The log-likelihoods can be partitioned in a
manner parallel to our partitioning of R:

logPr(E1E2|Hcc) = logPr(E1|Hcc) + logPr(E2|Hcc)

+ I(E1, E2|Hcc). (17)

The first two terms of this are

logPr(E1|Hcc) = n(A) logPr(Ai|Hcc) + n(Ā) logPr(Āi|Hcc);

logPr(E2|Hcc) = n(B) logPr(Bi|Hcc) + n(B̄) logPr(B̄i|Hcc).
(18)
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These are maximized by a hypothesis Hcc that has Pr(Ai|Hcc) =
n(A)/n and Pr(Bi|Hcc) = n(B)/n. That is, these terms are largest
for hypotheses that posit probabilities for the Ais and Bis that are
equal to the observed relative frequencies.

The mutual information of E1 and E2, conditional on a hypothesis
Hcc, is

I(E1, E2|Hcc) = n(A,B)I(Ai, Bi|Hcc) + n(A, B̄)I(Ai, B̄i|Hcc)

+ n(Ā, B)I(Āi, Bi|Hcc) + n(Ā, B̄)I(Āi, B̄i|Hcc). (19)

Once Pr(Ai|Hcc) and Pr(Bi|Hcc) are fixed, this is maximized by tak-
ing

Pr(AiBi) = n(AB)/n. (20)

Thus, in the expression (17) for the log-likelihood, we see that the first
two terms reward hypotheses whose probabilities for Ai and Bi are
close to the observed relative frequencies of these, and the last term,
which corresponds to unification in the Mutual Information sense,
rewards hypotheses with theoretical correlations close to the observed
statistical correlations. What goes for log-likelihoods goes also for the
evidential support R. Thus, when there is a difference between f(AB)
and f(A)f(B), a common-cause hypothesis on which this difference is
expected, by virtue of appropriate values of the parameters, counts as
a MIUnifyng hypothesis, and thereby achieves greater support.

This might seem paradoxical. A common cause screens off the
correlations between the Ais and Bis; how can it be that, at the same
time, there is a confirmational boost associated with rendering them
informative about each other?

The answer to this is: the hypothesized common causes Ci screen
off the correlations, but the hypothesis that there is some such common
cause renders the Ais and Bis informative about each other, relative
to a hypothesis that posits no correlation. There’s no tension between
the Bayesian account of the virtue of unification and Reichenbach’s
thesis that common causes screen off correlations.

The key is that, for appropriate values of the parameters, the hy-
pothesis Hcc affords MIUnification to the evidence statements E1, E2,
even though, in individual cases, the supposition Ci does not render
Ai informative about Bi. This does not prevent Ci from being re-
garded as a common origin of Ai and Bi. To take an example used by
Lange in §3 of his paper, suppose that we take the clinical evidence to
establish that some disease C is a cause of symptoms A and B. Then,
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if we observe A and B in some patient, this will raise our credence
that C also occurs in that patient, even if the symptoms A and B are
independent, conditional on C. In such a case, the support provided
by the symptoms A and B to the hypothesis that the patient has dis-
ease C is just the sum of the supports given to the hypothesis by the
individual items by themselves.

Lange raises the question of whether we should place more credence
in a hypothesis that posits a single disease than in one that posits two
independent origins of the symptoms A and B. Suppose there are two
other diseases D1 and D2, such that A but not B is a symptom of
D1, and B but not A is a symptom of D2, and suppose further that
the chance of a patient with D1 exhibiting symptom A is the same
as that of a patient with C, and that the chance of a patient with
D1 exhibiting symptom B is the same as that of a patient with C.
Then, upon observation of both symptoms, the confirmational boost
afforded to the hypothesis that the patient has C is the same as the
boost afforded to the hypothesis that the patient has both D1 and
D2, and the issue comes down to priors. Is the joint occurrence of D1

and D2 much rarer than the occurrence of C? If the answer is yes—as
would be the case if the three diseases are equally rare, and D1 and D2

uncorrelated—then we should place more credence in the hypothesis
that the patient has C. If not—if the disease C is so rare, and D1 and
D2 so common that more patients contract both D1 and D2 than C—
then our credences should favor the two-disease hypothesis. It would
seem to be clearly a mistake to take the C-hypothesis to receive greater
support from the evidence merely on a preference for common origin
explanations.

7 Conclusion

Mutual Information Unification is not the same as common origin
explanation, and is neither a necessary nor sufficient condition for a
hypothesis to play an explanatory role. Nevertheless, in a host of
interesting cases, MIUnification is a concomitant of common origin
explanation. Moreover, when a hypothesis that renders an otherwise
puzzling coincidence comprehensible by providing a common origin
explanation does receive an incremental confirmational boost from a
body of evidence, beyond that provided by the individual items of
evidence, that boost stems from MIUnification.
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So, at least, is the verdict delivered by a Bayesian analysis; there
is no room in Bayesian conditionalization for an extra confirmatory
boost that is due to Common Origin Unification. A proponent of an
explanationist thesis, to the effect that we ought to take hypotheses
that involve common origin explanations to receive greater incremen-
tal support than hypotheses that achieve the same degree of Mutual
Information Unification without explanation, should be in a position
to explain why what is impossible for a Bayesian agent is rational for
us. I know of no argument that this cannot be done, but, so far, it
has (as far as I know) not been done.

8 Appendix

Given a probability function Pr, and propositions h, e1, e2, define,

U1 =
Pr(e1e2|h)

Pr(e1|h)Pr(e2|h)

Pr(e1)Pr(e2)

Pr(e1e2)
; (21)

U2 =
Pr(e1e2|h̄)

Pr(e1|h̄)Pr(e2|h̄)

Pr(e1)Pr(e2)

Pr(e1e2)
. (22)

Then we have
MIU1(e1, e2;h) = logU1; (23)

MIU2(e1, e2;h) = log (U1/U2) . (24)

Thus, MIU1(e1, e2;h) is positive iff U1 > 1, negative iff U1 < 1, and
zero iff U1 = 1, and MIU2(e1, e2;h) is positive iff U1 > U2, negative
iff U1 < U2, and zero iff U1 = U2.

We want to show that each of the following four alternatives can
be realized by some probability function.

1. MIU1 > 0 and MIU2 > 0; that is, U1 > 1 and U1 > U2.

2. MIU1 > 0 and MIU2 < 0; that is, 1 < U1 < U2.

3. MIU1 < 0 and MIU2 > 0; that is, U2 < U1 < 1.

4. MIU1 < 0 and MIU2 < 0; that is, U1 < 1 and U2 > U1.

It is easy to show (see Lemma 1, below), that, if either e1 or e2
is irrelevant to h, then, if U1 > 1, U2 < 1, and vice versa. Thus, it
is easy to construct examples that satisfy conditions 1 and 4. Take
Pr(e1|h) = Pr(e1). Then, on an any probability function with U1 > 1,
we will have U2 < 1 < U1, and condition 1 will be satisfied. Similarly,
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if Pr(e1|h) = Pr(e1), on any probability function with U1 < 1, we will
have U1 < 1 < U2, and condition 4 will be satisfied.

For condition 2, we need to have both U1 and U2 positive. As is
shown in Lemma 1, below, this is possible only if e1 and e2 are rele-
vant to h in opposite directions; that is, only if R(h; e1) and R(h; e2)
have opposite sign. Here’s one way to do it. Take, for simplicity,
Pr(h) = Pr(e1) = Pr(e2) = 1/2, and take Pr(e1e2) = 1/4. Take
Pr(e1|h) = 0.7, Pr(e2|h) = 0.3, and Pr(e1e2|h) = 0.24. The reader
can readily verify that these are consistent, and that they determine
the full probability function on boolean combinations of {h, e1, e2}.
In particular, they entail that Pr(e1|h̄) = 0.3, Pr(e2|h̄) = 0.7, and
Pr(e1e2|h̄) = 0.26. We thus have U1 = 24/21 and U2 = 26/21, satis-
fying the desired conditions.

For condition 3, we can take the probability assignment described
in the previous paragraph and create a new one by interchanging e2
and ē2. We have, once again, Pr(h) = Pr(e1) = Pr(e2) = 1/2,
Pr(e1e2) = 1/4, Pr(e1|h) = 0.7, and Pr(e1|h̄) = 0.3. We also have
Pr(e2|h) = 0.7, and Pr(e1e2|h) = 0.46. These further entail that
Pr(e2|h̄) = 0.3, and Pr(e1e2|h̄) = 0.04. We thus have U1 = 46/49,
and U2 = 4/9, and so U2 < U1 < 1, and condition 4 is satisfied.

Having shown that all four alternatives are possible, we now prove
the Lemma alluded to above.

Lemma 1. Let {h, e1, e2} be logically independent propositions, and
let Pr be a probability function on the boolean algebra generated by
this set. We assume that the denominators of the relevant fractions
are nonzero, and define U1 and U2 as above.

a) If Pr(h|e1) = Pr(h) or Pr(h|e2) = Pr(h), then, if U1 > 1,
U2 < 1, and vice versa.

b) If U1 and U2 are both less than one, then either e1 and e2 are
both positively relevant to h, or they are both negatively relevant
to h.

c) If U1 and U2 are both greater than one, then one of {e1, e2} is
positively relevant to h, and the other negatively relevant.
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Proof. Let

p = Pr(h); q = Pr(h̄) = 1− p;

α1 = Pr(h|e1)/Pr(h); α2 = Pr(h|e2)/Pr(h);

β1 = Pr(h̄|e1)/Pr(h̄); β2 = Pr(h̄|e1)/Pr(h̄).

(25)

This allows us to write

U1 =
1

α1α2

Pr(e2e2|h)

Pr(e1e2)
; U2 =

1

β1β2

Pr(e2e2|h̄)

Pr(e1e2)
. (26)

Once p, α1, α2, β1, and β2 are fixed, this yields a constraint on U1

and U2:
pα1α2 U1 + q β1β2 U2 = 1. (27)

It is convenient to write this in terms of a weighted average of U1 and
U2. Define

w1 =
pα1α2

pα1α2 + q β1β2
; w2 =

q β1β2
pα1α2 + q β1β2

. (28)

Then (27) becomes,

w1 U1 + w2 U2 =
1

pα1α2 + qβ1β2
, (29)

with
w1 + w2 = 1. (30)

It is instructive to rewrite the right-hand side of (29), using the fact
that pα1 + q β1 = pα2 + q β2 = 1. A bit of algebraic manipulation
yields,

w1 U1 + w2 U2 = 1− pq(α1 − β1)(α2 − β2)
pα1α2 + qβ1β2

. (31)

From (31) it is readily apparent that, if either e1 or e2 is irrelevant to
h—that is, if α1 = β1 or α2 = β2, then

w1 U1 + w2 U2 = 1, (32)

and in such a case, if U1 > 1, then U2 < 1, and vice versa. If we
want to construct a case in which U1 and U2 are both greater than
one, this requires the right-hand side of (31) to be greater than one,
which means that α1 − β1 and α2 − β2 must have opposite sign: one
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of {e1, e2} must be positively relevant to h, and the other negatively
relevant. If we want to construct a case in which U1 and U2 are both
less than one, then α1 − β1 and α2 − β2 must have the same sign: e1
and e2 are either both positively relevant, or both negatively relevant,
to h.

9 Errata and comment

I would like to take this opportunity to correct two errors in the Ap-
pendix of Myrvold (2003), which are to blamed on proofreading lapses
on the part of the author, and not on the editorial staff of Philosophy
of Science. On p. 421, equation (A2) should read,

F (x, y, z) = F (xy, z) + F (x/x, y, y) (33)

and equation (A9) should read,

H(y, 1/y) = K(y) log2(1/y) = − log2(y). (34)

It should also be pointed out that the four conditions from which the
measure of informational relevance are derived are not logically inde-
pendent. Condition (ii) is entailed by the conjunction of conditions
(iii) and (iv), and hence conditions (i), (iii), and (iv) suffice to uniquely
determine the function I(q, p|b).
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