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Abstract

A shift in focus, of the sort recently advocated by David Wallace,
towards consideration of work in nonequilibrium statistical mechanics
has the potential for far-reaching consequences in the way we think
about the foundations of statistical mechanics. In particular, consid-
eration of the approach to equilibrium helps to pick out appropriate
equilibrium measures, measures that are picked out by the dynamics
as “natural” measures for systems in equilibrium. Consideration of
the rationale for using such measures reveals that the scope of their
legitimate employment is much more limited than an appeal to a Prin-
ciple of Indifference would suggest. These points are illustrated by use
of a toy model that I call the parabola gadget.
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1 Introduction

In recent work, David Wallace (2015, forthcoming) has directed the
attention of philosophers working on the foundations of statistical me-
chanics to the rich array of techniques and results in nonequilibrium
statistical mechanics. In my opinion, this move has the potential to be
far-reaching, as it can shed new light on a deep question in the foun-
dations of statistical mechanics, namely, the question of how we are
to think of the probability measures invoked in statistical mechanics.

There has been a tendency in the literature to focus attention on
the fact that systems out of equilibrium tend to equilibrate, and to
offer explanations of this fact that invoke the fact for certain systems,
the equilibrium macrostate is vastly larger in microcanonical measure
than any nonequilibrium macrostate. Even if an explanation of equi-
libration could be extracted from this observation (and considerable
work is required to do so), the task would remain of explaining, not
merely the end-point of the process of equilibration, but the steps
along the way.

Moreover, there are systems that refuse to relax to a state in which
measurable parameters remain constant. Consider, for example, a
Brownian particle suspended in a fluid. Take the velocity of the parti-
cle as an observable quantity that we use, along with other parameters,
to characterize the state of the system. Then the equilibrium condi-
tion is not an equilibrium macrostate in which these parameters have
constant values, but rather, a condition in which the velocity of the
particle fluctuates according to a well-defined probability distribution.
Nonetheless, we have relaxation towards that equilibrium condition.
If, for example, the Brownian particle is introduced into the fluid with
some speed that is greater than its mean equilibrium speed, it will
tend to slow down, due to friction with the fluid, and approach a
condition in which the velocity is well represented by the equilibrium
distribution. This process is governed by the Langevin equation.'

As Wallace has emphasized, explanation of the success of statis-
tical mechanics requires explanation of the success of the Langevin
equation, Fokker-Planck equation, and the like. These are stochastic
equations, yielding probabilities for future values of certain variables
in terms of either their present values or the history of these values.
Though, in principle, the future value of any variable depends on the

1See standard textbooks of nonequilibrium statistical mechanics, e.g. Zwanzig (2001,
§1.2), Mazenko (2006, §1.2).



full state of the system, it turns out that, for a wide variety of sys-
tems, we can focus on a few variables and get autonomous equations
in terms of those variables alone. Those seeking to explain the success
of statistical mechanics should be in a position to explain, not only
the qualitative fact of the approach to equilibrium, but also the suc-
cess of methods such as this used to track the evolution of the system
towards equilibrium.

In what follows, I will make some suggestions as to how this might
work, by reference to a toy example for which it provably does work.
First, though, some remarks about the notion of probability in statis-
tical mechanics.

2 The grand temptation

As mentioned, what is to be explained are probabilistic equations of
motion for macroscopic parameters. Therefore, a few words are in
order about how to think about probabilities in physics.

There’s a persistent temptation to think that the probability of
an event can be defined as the ratio of the number of ways that the
event can occur to the number of ways that the world could be. In his
Philosophical Essay on Probabilities (1814), the great Laplace comes
close to succumbing to this temptation. Therein we find, as the First
Principle of the calculus of probability,

First Principle—The first of these principles is the defi-
nition itself of probability, which, as has been seen, is the
ratio of the number of favorable cases to that of all the
cases possible.

He immediately steps back from the precipice of folly, though.

Second Principle—But that supposes the various cases equally
possible. If they are not so, we will determine first their
respective possibilities, whose exact appreciation is one of
the most delicate points of the theory of chance.

In this little dialogue we find, in miniature, a foreshadowing of much
of the subsequent discussions of the Principle of Indifference: tempta-
tion to regard it, or something like it, as the foundation of probability
theory, followed by critics who warn, correctly, that, unless supple-
mented by some judgment about which partition of events we are to
declare equiprobable, it serves as no guide at all.



When the space of possibilities is a continuum, the temptation is
to define the probability of an event as the ratio of the measure of the
set of ways the event could occur to the measure of all the ways that
the world could be. The same problem arises; choosing a measure is
equivalent to specifying which sets of events are equiprobable. One
might interpret the principle of indifference as enjoining us to choose
a measure as one that has a flat density function, but, as is well
known, a density function that is flat when written in terms of one
set of variables will not remain flat under change of variables. If equal
intervals of a variable x have equal probability, this does not hold (for
example) for 22, and vice versa.

All of this is well-known, and has been for some time. Jeremy But-
terfield has, appropriately, referred to the Principle of Indifference as
“that notorious dead horse of the philosophy of probability” (Butter-
field, 1996, 212). Most people, these days, would readily acknowledge
that it is an illusion that probabilities can be defined, without further
ado, as ratios of possibility-counts.? It is an illusion reminiscent of
the old illusion of Rationalism, that is, the idea that Pure Thought,
without empirical input, can yield substantive knowledge about the
world.

Yet its influence has not entirely been shaken off. Its influence
lingers on in discussions of the foundations of statistical mechanics, in
the idea that a Principle of Indifference uniquely singles out a priv-
ileged class of probability measures. These privileged measures are
uniform in phase space variables, or else, as uniform as possible, sub-
ject to certain macroscopically definable constraints. We should be
asking (as did Gibbs), what is special about a measure that is uni-
form in these variables, rather than some others?

Its influence lingers in approaches to statistical mechanics, such as
the neo-Boltzmannian approach,? that acknowledge the multiplicity of
measures, and hence that a choice of measure must be made in order to
apply Indifference, but nonetheless insist that there is some measure
that is privileged as a typicality measure, a measure introduced by
brute fiat, with no intrinsic connection to the physics of the system in
question. And it lingers in the philosophy of cosmology, in the fine-
tuning problem, and in any argument that concludes that we should
regard it as surprising that the universe started out in a state so far

2For a particularly emphatic rejection of the Principle of Indifference, see Albert 2000,
§3.2.
3See Goldstein (2001) and Price (2002) for statements of views of this sort.



from thermodynamical equilibrium.

If we allow the notorious dead horse to rest in peace, what could
take its place? Here, again, we find, in the history of discussions of
probability, clues as to the right track to take. Bernoulli, in 1713,
spoke of cases that can happen with equal facility.* Which events
those were could, according to Bernoulli, in some cases be judged by
symmetry considerations, but, ultimately, were to be judged a poste-
74071

There is, I claim, a way to make sense of the idea that certain events
occur equally easily, others, more or less easily. This is not based on
static considerations about the structure of the space of possibilities,
but on considerations of dynamics. These considerations have to do
with sensitivity to initial conditions, sensitivity that, for the right
sort of dynamics, tends to wash out differences between probability
distributions over initial conditions, in that very different probability
distributions over initial microstates yield virtually the same proba-
bilities for future values of certain macroscopic variables. There will
(again, for the right sort of dynamics) be probability distributions over
such variables that are stable under dynamical evolution and have the
status of “attractor” distributions, in that other distributions tend to
approach them. For a system of this sort that has been freely evolving
long enough for this convergence to take effect, we can use the attrac-
tor distribution to judge which eventualities occur with equal facility.
It is considerations of this sort, I claim, rather than an appeal to a
Principle of Indifference or any other considerations divorced from dy-
namics, that underwrite the use of standard probability distributions
in statistical mechanics, and, indeed, in many situations in which we
have well-defined probabilities. There is no need for a brute choice of
a typicality measure with no intrinsic connection to the physics.

Considerations of this sort will yield measures that are appropri-
ate, and in some sense natural, for systems that have been evolv-
ing freely long enough for the requisite washing-out of disagreements
among input distributions to have taken place. This means that, in the
statistical-mechanical context, they are appropriate for conditions of
thermodynamic equilibrium. There is no rationale, none whatsoever,
for regarding them as privileged probability distributions for systems
that are far from equilibrium.

4See quotation in §8, below. For the history of locutions of this sort, which were
common during the first century of the development of probability theory, see Hacking
(1971).



However, for systems out of equilibrium, a case can be made for
the employment of measures that are as much like the equilibrium
measure as can be, subject to macroscopic constraints, provided that
local equilibration has taken place (see section 10, below). In this way
we will be able to obtain autonomous probabilistic equations of mo-
tion for certain quantities, equations that yield probabilities for future
values of those quantities in terms of their present and past values.
This, if one reflects on it, is a remarkable thing. If we characterize the
state of a system by assigning values to a set of variables, the future
value of each of these variables may depend on present values of all
of them, and hence, probabilities for any future values of any variable
requires, in the general case, a full probability distribution over the
entire state space. Nevertheless, in nonequilibrium thermodynamics
one often obtains autonomous equations of motion for certain macro-
scopic variables. This may seem prima facie mysterious, perhaps even
impossible. To get a flavour of how it can happen, we will show, ex-
plicitly, how it can occur, in the case of a simple toy example I call
the parabola gadget. The gadget will be introduced in the next sec-
tion, and much of this chapter will be taken up with illustrating how
the claims I wish to make about real systems are realized in this toy
model.

Since the considerations we are invoking require at least partial
equilibration, none of this will be of any avail in assigning a probability
distribution over the initial state of the universe (if there is one). Is
there anything that can do this job, once we have buried the dead
horse? I think not, and that, if we are honest, we should admit that
we really have no idea what to expect the early universe to be like;
all we can do is collect evidence about what it was like and base our
credences on that.

3 The parabola gadget

Consider the device that I call the parabola gadget, depicted in Figure
1. It consists of a board, one meter square, on which is inscribed a
diagonal. Also inscribed in the square is a parabola, which touches
the two bottom corners of the square, and whose peak touches the top
of the square in the middle. There is a ball that starts out on the di-
agonal, and moves according to the following rule. From the diagonal,
it heads vertically (upwards or downwards, as need be) towards the



parabola, until it reaches it. From the parabola, it heads horizontally
(left or right) towards the diagonal, until it reaches it. The process
then reiterates. In Figure 2a is shown one iteration of this process,
and, in Figure 2b, four iterations. Suppose, now, you know that a
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Figure 1: The parabola gadget
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(a) One iteration (b) Four iterations

Figure 2: Evolution of the parabola gadget

parabola gadget has been running for some time, at least ten itera-
tions, and that you are asked which of the two alternatives you regard
as more likely (See Figure 3):
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Figure 3: Alice and Bob’s options

A. The ball is within 10 cm. of the right-hand side.

B. The ball is within 10 cm., on either side, of the center.

I invite you, before proceeding, to give some consideration as to
which you regard as more likely. Given a choice between a reward
(something you like) if A is true, and the same reward if B is true,
which choice would you make?

I imagine two agents, Alice and Bob, who make different choices.
Bob reasons on the basis of a Principle of Indifference, as follows.

I know nothing about the initial conditions, and, even if
I did know something, ten iterations of the gadget would
render that information useless, since small differences in
initial conditions can lead to large differences in outcomes.
In option B the payoff conditions span a range of positions
twice as large as in option A, so option B is clearly prefer-
able.

Alice, on the other hand, regards Bob’s reasoning as seriously prob-
lematic, bordering on incoherence. Here’s her thinking.

Though I am no fan of the Principle of Indifference, suppose
I were to grant Bob the supposition that, at some iteration,
say, the nth, I should regard intervals of equal length as
equally likely. Then I can’t say the same about the next
iteration. It’s clear from inspection of Figure 3 that all
points that, at stage n, are in B, find themselves in A in



the very next iteration. So, the ball’s being in A at stage
n—+ 1 must be at least as likely as its being in B at stage n.

Because of the shallowness of the slope of the parabola near
its peak, points in some interval around the center get sent,
in a single iteration of the machine, into a smaller interval
near the right-hand side, which, on the next step, gets sent
into a small interval near the left-hand side. There’s a
tendency for the ball to be more towards the edges than in
the middle. On the basis of these considerations, A strikes
me as more probable.

At the root of Alice’s deliberations is the fact that, because of the
dynamics of the machine, a probability distribution over the position
of the ball at some time n uniquely determines a probability distri-
bution over the position of the ball at time n + 1, as follows: the
probability that, at time n 4 1, the ball is in a set A is equal to the
probability that, at time n, it was at some point that gets mapped
into a point in A by one iteration of the gadget’s evolution. In this
way, given a law of evolution of the state of some physical system, we
can speak of the evolution of probability distributions over its state
space.

Bob’s favoured distribution is unstable; applying it at some time
n and also at time n + 1 is inconsistent with what Bob knows about
the dynamics of the gadget. Suppose that he applies the uniform
distribution to initial conditions. On this distribution, it is more likely
that the ball will be in A ten iterations down the line than that it will
be in B: on a uniform measure over initial conditions, the set of states
that put the ball into A after 10 iterations is larger than the set of
states that put the ball into B after 10 iterations, by a factor of about
8 to 5. Both of these sets consist of a large number of small pieces,
distributed over the length of the diagonal. For this reason, not only
will a uniform distribution over initial conditions yield measures for
these two sets that are roughly in the ratio 8/5, but the same holds
for any probability distribution over initial conditions that is not “too
wiggly,” in a sense that can be made precise (see appendix).

It turns out that, though Bob’s favoured distribution is unstable
under evolution, there is another probability distribution that is sta-
ble.> Its density function is shown in Figure 4. As Alice has observed,

5There are others, for example, the distribution that attributes probability one to the
ball being exactly at the point of intersection of the parabola with the diagonal. But the
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it favors the regions near the edges. Call this invariant distribution u.
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Figure 4: Density function for the invariant distribution .

If we consider various probability distributions over initial condi-
tions and ask what they entail about probabilities for conditions at
later times, we find that, for a wide class of distributions over ini-
tial conditions, the probabilities ascribed to states of affairs only a
few iterations into the future closely approximate those of the invari-
ant distribution p. For any “sufficiently nice” distribution over initial
conditions, this approximation gets closer, without limit, as one looks
farther into the future.

For example, suppose that Bob adopts a uniform distribution over
initial conditions. The density function for the probabilities this be-
stows on states of affairs 5 iterations into the future is shown in Figure
5(a). In Figures 5(b) and (c) we see the effect of 5 iterations on other
density functions for probabilities of initial conditions.

There’s a theorem here: one can prove that, provided the proba-
bility distribution over initial conditions is represented by a density
function that is not “too wiggly” (again, see appendix for the exact
condition), then, for large n, what it says about the position of the
ball n iterations into the future will be approximated by the invariant
distribution p, and, moreover, one can put bounds on how much it
can depart from g in terms of the wiggliness of the density function
that yields probabilities over initial conditions; see Corollary 1.2 of
Theorem 1 in the appendix.

invariant distribution we’re concerned with is the only one that assigns probability zero
to all sets of Lebesgue measure zero, and hence can be represented by a density function.

11
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Figure 5: The effect of five iterations of the parabola gadget on various input
distributions.

Though we are not invoking a Principle of Indifference to mandate
a unique credences about initial conditions, it is reasonable to expect
that, even if Alice and Bob know little about the process that sets the
initial conditions, they should expect there to be some imprecision in

12



the process. This will be reflected in a credence function that is repre-
sented by a continuous density function that doesn’t vary excessively
quickly as one moves across the diagonal. How quickly is excessively
quickly depends on what a reasonable person could believe about the
sorts of processes that could set initial conditions at the time the gad-
gets are set running.

For a gadget that has been running sufficiently long, probabilities
about the position of the ball are largely independent of what one
takes to be an appropriate measure over initial conditions, and one
can use 4 to calculate these probabilities. In this sense the dynamics
of the gadget pick out yu as a “natural measure” for gadgets that have
been running for a while. This is not because p is singled out as
a natural measure over initial conditions; we might be rather vague
about what to think about initial conditions. It is, rather, because
judgments about probabilities about the state of a gadget that has
been running for a while are largely (though, of course, not entirely)
independent of probabilities of initial conditions.

To adopt Bernoulli’s phraseology: things like the ball being, after
several iterations of the evolution, in a 10 cm. interval near the center
do mot occur with equally facility as the ball being in an interval of
the same length near an edge. On a wide variety of ways of measuring
sizes of sets of input states, including, but not restricted to, a measure
uniform in distance along the diagonal, there is a larger measure of
initial conditions that put the ball 10 cm. from the right edge than of
those that put it in an interval of 10 cm. centered on the midpoint of
the gadget.

4 Sensitive dependence as a source of
predictability

Suppose I have 1,000 gadgets, each of which has been running inde-
pendently for some time. Consider “macrostates” of this system: we
partition the width of the box into intervals of 10 cm., and specify,
for each interval, how many of the balls, out of the 1,000 gadgets, lie
within that interval.

Suppose, now, I ask you to make a prediction about the macrostate.
You get to choose between two propositions about the macrostate.

A’. More of the balls will be in region A than in region B.

13



B’. More of the balls will be in region B than in region A.

A naive application of the Principle of Indifference of the sort favoured
by Bob, on which, for each gadget, equal intervals of the diagonal are
equally likely, yields a measure on which the set of states that make
B’ true is vastly larger than the set that makes A’ true. But, as, we
have seen, we should not use such a measure for gadgets that have
been running for a while.

If you grant the reasoning of the previous section, then you should,
for each of the gadgets, regard A as about 8/5 times more likely than
B. Moreover, the evolution of the gadgets will tend to erase corre-
lations between initial states of distinct gadgets, so you should take
probabilities regarding one gadget to be independent of probabilities
regarding any other gadget. Given probabilities satisfying these con-
ditions, it is virtually certain that the number of gadgets with balls
in A will be close to 8/5 times the number of gadgets with balls in B,
and so you can be virtually certain that more of the gadgets will have
their balls in A than in B. You should regard A’ as overwhelmingly
more probable than B’.

Let M be the probability measure over the set of 1,000 gadgets
on which each gadget is independently endowed with the invariant
measure p. On measure M, the set of states in A’ is vastly larger than
the set of states in B’. Moreover, any measure over initial conditions
that is not too crazy will tend to agree, to a close approximation, with
M about probabilities of states of affairs after a few iterations. This
means that on any measure over initial conditions of the collection
of gadgets that isn’t too crazy, the set of initial conditions that lead,
after 10 or so iterations, to states in A’ is vastly larger than the set
of states that lead to states in B’, and, for any such measure, we can
use M to compute approximately how much larger. Again: this isn’t
because M is favoured as a “natural measure” over initial conditions;
this is a conclusion that is largely (though, of course, not entirely)
independent of choice of measure over initial conditions.

In this way, we get predictability, with near certainty, of certain as-
pects of the state of a system consisting of a large number of parabola
gadgets that have been running for an appreciable time, not in spite
of sensitive dependence on initial conditions, but because of it.

It is common to distinguish between two types of regularity: regu-
larity attributable to deterministic physical laws, and statistical regu-
larity, regularities arising from aggregate behaviour of a large number
of individually unpredictable events. Schrédinger, in What is Life?,

14



argued that all predictability is of the latter sort.

Only in the co-operation of an enormously large number of
atoms do statistical laws begin to operate and control the
behaviour of there assemblées with an accuracy increasing
as the number of atoms involved increase. It is in this way
that the events acquire truly orderly features (Schrédinger,
1992, 10).

He’s right about that. Whenever we make an accurate prediction,
we make use of a miniscule fraction of the variables that in principle
could be relevant to the outcome. Understanding how this happens
requires probabilistic reasoning, even when the underlying physics is
deterministic.

5 Invertibility

So far we have talked only about probabilities over initial conditions,
that is, over the state of the gadget when it is set running, and their
implications for probabilities for future states. Some readers will be
wondering about how things might go in the other temporal direction.

Given what has been said before, readers may be forgiven for think-
ing that, since each position on the diagonal (except the point at which
diagonal and parabola intersect) can be the result of two previous posi-
tions, the evolution of the parabola gadget is not invertible. However,
there is a detail that I have so far not mentioned. In addition to the
moving ball, there is a pointer that shuttles back and forth along the
bottom edge of the gadget. Call the distance (in meters) of the pointer
from the left edge, z. Its value changes as follows. If, at time n, the
ball is to the left of center (or exactly on center), in the next iteration
the value of z is halved; that is, the new position of the pointer is a
distance z/2 from the left edge. If, at time n, the ball is to the right
of center, the position of the pointer is a distance z/2 from the right
edge. Thus, the position of the pointer at time n + 1 carries informa-
tion about the position of the ball at time n. If, at time n + 1, the
pointer is in the right half, then the ball, at time n, was also in the
right half, and, if at time n + 1, the pointer is in the left half or at the
center, the the ball, at time n, was in the left half or at the center.
Each position of the pointer at time n + 1 can be reached from one
and only one position at time n.
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At any given stage of the evolution of the gadget, say, the nth
stage, the value of z (in meters) will be a number between 0 and 1
whose binary expansion is a sequence of 1s and 0s, the first n places of
which encode (starting with the most recent and going backwards) the
ball’s history of being to the right or left of the half mark. Thus, from
precise values of the position of the ball (call it x), and of the pointer,
we can reconstruct the past history of the gadget.® A probability
distribution over the state (x,z) at some time uniquely determines
probabilities for all earlier and later states, so long as the gadget runs
undisturbed during the interim.

Forward evolution of the gadget leads to a situation in which the
probability distribution for x is closely approximated by p, on which
the ball is equally likely to be on either side of the diagonal. Thus,
after sufficiently many iterations, any information about the past of
the gadget gets buried very deeply in the fine details of the distribution
of z, and, for any interval [a, b, the probability that z is in that interval
approaches the length of the interval. The uniform distribution over
z is an attractor distribution.

Let p be the probability distribution on which z is distributed
according to u and z is uniformly distributed, independently of x. This
is an attractor distribution over the state space of the gadget. It can
be proven (see appendix) that any probability distribution that can be
represented by a density function converges towards this equilibrium
distribution, in the sense that, for any measurable subset A of the
unit square, the probability that the state (z,z) at time n will be in
A approaches p(A), as n becomes large.”

Evolution of the gadget does not, however, tend to smooth out
probability density functions for z. Suppose, for example, that you
are sure that initially the ball is to the left of center. Then, one step

6That is, if the ball starts out on the left side, and its history consisting of intitial state
and ten iterations is (writing R for right and L for left) is LRLLRRRLLLL, the value
of z after ten iterations has binary expansion .00001110010. .., with the remaining digits

determined by the initial value of z.

"Resist the temptation to reverse the order of the quantifiers! For any sufficiently nice
input distribution, for any measurable set A and any € > 0, there exists IV such that, for
all n > N, the probability that the state at time n is in A is within ¢ of p(A). However,
if the input distribution differs from p, and there is a set B such that the probability that
the initial state is in B differs from p(B) by some amount §, then, for any n, no matter
how large, there will be some set B, such that p(B,,) = p(B) and the probability that the

state at time n is in B,, differs from p(B,,) by 4.
The convergence of measures we're talking about is called weak convergence.
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in, z will also be to the left of center. After two steps, z must be
in either [0,1/4] or [3/4,1], and after 3, in [0,1/8] or [3/8,5/8] or
[7/8,1]. After a large number of steps, the support of the probability
distribution for z will be highly fragmented, in such a way that any
interval that is not too small will be half-covered by this support.
This is the way that the distribution of z converges towards a uniform
distribution. As proven in the appendix, it tends to go at a slower
rate than the convergence of x towards its equilibrium distribution.

Since the dynamics are invertible, we can also back-evolve proba-
bility distributions. In the reverse direction we also get convergence
towards the equilibrium distribution. The condition for convergence
in the backwards direction is that the density function for z not be
too wiggly.

Whereas forward evolution tends to turn probability density func-
tions over x into ones that closely resemble the density function for u
and tends to complicate density functions for z, backwards evolution
tends to smooth out density functions for z and complicate density
functions for x. For example, consider a probability distribution that
yields certainty, at some time t+n, that the ball is to the left, and ask
what probabilities over states of affairs at time ¢ could lead to such a
thing. Because of convergence towards the equilibrium distribution in
the forward direction, we know that it will have to have a very wiggly
density function for x. Figure 6, shows, by way of example, the den-
sity function that results from back-evolving by 5 steps a distribution
that is uniform in z and, in z, uniform over the left half of the diag-
onal. It is very wiggly, but, on a coarse-grained level, approximates
the invariant distribution u, in that intervals that are not too small
are accorded roughly the same probability by this distributions as by
1, whose density function is also shown in Figure 6, for comparison.

To sum up:

e The measure p is invariant under evolution.

e It is also an attractor distribution in both forward and backwards
directions. Given a probability measure over the state of the
system at some time t:

— As long as the density function for the value of x at time ¢ is
not too wiggly, the probability that the state of the system
being in a set A at later time ¢t + n is approximately equal
to p(A) for large n.

— As long as the density function for the value of z at time ¢ is
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Figure 6: 5-step backwards evolute of a density function uniform over left
half of the diagonal.

not too wiggly, the probability that the state of the system
being in a set A at earlier time t — n is approximately equal
to p(A) for large n.

At first glance, convergence towards an equilibrium distribution in
both forward and reverse directions might seem paradoxical, perhaps
contradictory. Suppose, for example, we have, at time t, a distribu-
tion that is very different from the equilibrium distribution. Evolve
it forward n steps, far enough into the future that the evolved distri-
bution is a good approximation to the equilibrium distribution. If we
back-evolve this n steps, will we not get something that approximates
the equilibrium distribution, instead of recovering the distribution we
started with?

The attentive reader will already know how to resolve this apparent
paradox. The forward-evolved distribution will incorporate detailed
information about the history of the system, and this will be repre-
sented by a very complicated distribution for z. The density function
for z yielded by this forward-evolved distribution will be sufficiently
complicated that it will take more than n steps to back-evolve it into
anything like a uniform distribution.

One can say the same with the temporal orientations reversed, of
course. Suppose you know that at time ¢, the ball is in the left side,
and that the gadget had been evolving freely for a large number n
steps prior to that. This would mean that you are sure that at time
t—mn, the ball was in the highly fragmented subset of states that evolve,
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in n steps, into the left side of the gadget. This would be represented
by a density function over x at time t — n that is so complicated
that forward evolution by n steps is not sufficient to bring it into an
approximation of the invariant distribution pu.

To sum up: if you have detailed knowledge of the past of a time ¢,
of the sort obtained by some other means than taking the state at t
and back-evolving it, it gets encoded in a probability distribution over
the state at time ¢ via a complicated distribution for z, which renders
the backwards convergence result inapplicable. Similarly, if you have
detailed knowledge of the future of a time ¢, of the sort obtained by
some other means than taking the state at ¢ and forward-evolving
it, then this would be encoded in a probability distribution over the
state at time t with a complicated distribution for x, which renders
the forward convergence result inapplicable.

6 Invariant distributions as surrogates

Take a probability distribution over conditions at some time ¢, with
probabilities for x that are represented by a none-too-wiggly density
function. Let n be a number of steps that is sufficiently large that
probabilities for conditions n steps to the future of ¢ are closely ap-
proximated by the equilibrium distribution. If the distribution for
conditions at time t is very different from the equilibrium distribu-
tion, the distribution over z at time ¢ + n will be very complicated
in its details, though it will approximate the equilibrium distribution
at a coarse-grained level. These fine details will, however, be largely
irrelevant for calculating probabilities over conditions at times to the
future of time ¢+ n, and, for the purposes of such calculations, we can
replace the complicated distribution over conditions at ¢ + n by the
equilibrium distribution.

To the extent that, at time ¢t 4+ n, details of the system’s past have
become irrelevant for its future behaviour, we can discard information
about its past and use the equilibrium distribution as a surrogate for
the more complicated one that encodes information about the past.
It would, of course, be a mistake, when making retrodictions, to dis-
card information about the past and to back-evolve a smoothed-out
distribution.

For beings such as ourselves, who have access to records of the
past but, when it comes to predicting the future, typically can do no

19



better than to take the current conditions and forward-evolve them,
there will be an asymmetry in the invocation of convergence results.
We can use a simple distribution as a surrogate for a more complicated
one when it comes to predictions, insofar as the information discarded
is irrelevant for future predictions, but, when it comes to retrodictions,
this would be nothing sort of madness, as we would be discarding
relevant information.

7 Introducing uniform distributions

The dynamics of the parabola gadget pick out a measure that is ap-
propriate to use when making predictions concerning the future of a
gadget that has been evolving freely for some time. Though uniform
in z, it is not uniform in .

Of course, whether or not a distribution is uniform depends on the
variables used to characterize the state. The state of a system may
equally well be represented by a different choice of variables. If one is
enamoured of uniform distributions, one can indicate positions along
the diagonal via a new variable, u, defined by

z = sin? (Tu/2). (1)

On the invariant distribution g, w is uniformly distributed: equally
sized intervals of u have equal probability. As a result, when working
with probability distributions over the state of the gadget, it can be
more convenient to work with (u, z) rather than (z, z).

8 The “empirical way”

In Chapter IV of Part IV of Ars Conjectandi, Jacob Bernoulli, having
shown the reader how to calculate various probabilities using combi-
natorics, given an equiprobable partition of events, remarks,

It was shown in the preceding chapter how, from the num-
bers of cases in which arguments for things can exist or not
exist, indicate or not indicate, or also indicate the contrary,
the probabilities of things can be reduced to calculation and
evaluated. From this it resulted that the only thing needed
for correctly forming conjectures on any matter is to de-
termine the numbers of these cases accurately and then
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to determine how much more easily some can happen than
others. But here we come to a halt, because this can hardly
ever be done. Indeed, it can hardly be done anywhere ex-
cept in games of chance. The originators of these games
took pains to make them equitable by arranging that the
numbers of cases resulting in profit or loss be definite and
known and that all the cases happen equally easily.® But
this no means takes place with most other effects that de-
pend on the operation of nature or on human will (Bernoulli
2006, 326, from Bernoulli 1713, 223).

But all is not lost. There is another way to estimate the chances
of things,

Nevertheless, another way is open to us by which we may
obtain what is sought. What cannot be ascertained a priori,
may at least be found out a posteriori from the results many
times observed in similar situations . . . (Bernoulli 2006, 327,
from Bernoulli 1713, 224).

Suppose that you did not know the exact dynamics of the parabola
gadget, or, even if you did, were unable to show that the distribution
p plays the role of an attractor. Suppose, however, that you strongly
suspected that there was some attractor distribution towards which
any probability distribution over initial conditions that could repre-
sent the credences of a reasonable agent evolved. You wouldn’t know
what that distribution was, but you could gain information about em-
pirically. Let a large number of gadgets evolve for a while. Divide
the diagonal into bins (not too small). Observe the positions of each
of the balls, and count how many balls are in each bin. You know
that the credences of any reasonable agent, evolved forward, would
yield credence close to one that the relevant frequencies of balls in
bins closely matched the probabilities ascribed to the bins by the at-
tractor measure. Presumably, your credences about initial conditions
are those of an agent you regard as reasonable. You should, therefore,
ascribe high credence to the proposition that the observed frequencies
closely approximate the attractor probabilities, and use the evidence
to adjust your credences about what those attractor probabilities are.
In this way, hypotheses about the attractor probabilities can be tested
by experiment.’

8«

..casus hi omnes pari facilitate obtingere possent.”

9See Myrvold (2012) for a Bayesian treatment of this reasoning.
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9 Status of the input distributions

I have claimed, and demonstrate in the appendix, that a wide range of
probability distributions over initial conditions of the parabola gadget
yield convergent probabilities for positions of the ball at later times.
The dynamics map probability distributions at one time to distribu-
tions at other times, but this map requires probabilities as inputs.
With no probabilities in we get no probabilities out. What, then, is
the status of the input distributions we have invoked?

Following a suggestion of Savage (1973), we have been talking as if
these are credences, or subjective degrees of belief. The distributions
that result from evolving credences about states of affairs at time g,
via the actual dynamics of a physical system (dynamics that might be
unknown, or imperfectly known, to an agent, who might not be able
to do the calculation even if the dynamics are known) are things that
partake of both epistemic and physical considerations. There is an
epistemic aspect, as some uncertainty about the state of the system
is required. But they need not be the actual credences of any agent,
because, as mentioned, an agent might not know what the result is
of evolving her credences via the actual dynamics. However, in the
sorts of cases we’re interested in, this evolution will tend to minimize
individual differences between agents’ credences, and the values to
which probabilities converge are determined by the dynamics of the
system. These sorts of probabilities have been called almost objective
probabilities. To emphasize that they have both epistemic and physical
aspects, I have elsewhere called them epistemic chances (Myrvold,
2012).

All we need is some uncertainty, perhaps of a vague degree, in
the agents’ knowledge of initial conditions, plus some (perhaps vague)
sense of a range of credence functions that are reasonable, in light
of that uncertainty, and we’re off and running. This need not be a
purely subjective matter; judgments about what sorts of credences
about initial conditions are reasonable are based on judgments about
what sorts of processes there are that could lead up to those conditions.

For some systems, a classical treatment will be inadequate, and
our discussion will have to be cast in terms of quantum mechanics.
Such a treatment will run in much the same way. We never know
for certain the precise quantum state of system. What we will want
from the quantum evolution will be that it take a wide variety of
initial quantum states into ones whose restriction to macrovariables
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is roughly the same. (Because we're not requiring convergence of
quantum states over the full set of variables, this is possible without
violation of unitarity.) Thus, even if it can be argued that all prob-
abilities in statistical mechanics, even classical statistical mechanics,
have their source in quantum mechanics, convergence results of the
sort we’ve been discussing will play a central role.

If one takes seriously (and I think that we should) the thought that
the fundamental laws of physics are not deterministic, but stochastic,
along the lines of a dynamical collapse theory, then the dynamics alone
will place limitations on how much one could know about the state of a
system that has been evolving for a while, because the dynamics alone
will produce a range of possible states from one and the same initial
state. Nonetheless, if the stochastic dynamics is going to produce
convergence towards certain probability distributions over quantum
states, results of that sort are likely to take the form of examination of
behaviour of a range of quantum states under deterministic evolution,
with the role of the collapse dynamics being that of providing the
requisite uncertainty in the state of the system at a given time.

10 On the way to equilibrium: partial
equilibration and autonomous equations

Consider a probability distribution that is initially concentrated on
some subinterval of the diagonal, such as the one whose density func-
tion is depicted in Figure 7a; this one is confined to the interval
[0.3,0.4], and is uniform, in position along the diagonal, on that inter-
val. It takes several iterations of the gadget to spread this distribution
over the full width of the diagonal. But something interesting hap-
pens in the meantime. Take a look at Figure 7b. There we see the
one-step evolute of the distribution of 7a. It is confined to the in-
terval [0.84,0.96], but, on that interval, it closely approximates the
restriction of u to that interval.

Call this phenomenon local equilibration. The probability distri-
bution is nothing like the equilibrium distribution, as the position is
confined to a sub-interval. But, subject to that constraint, it comes
near to being as much like the invariant distribution as it could be,
while satisfying that constraint. We can, without significant loss, re-
place the probability distribution for xz by one that is the restriction
of the invariant distribution to that interval.
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Figure 7: Local equilibration

The fact that probability distributions for x approach the invari-
ant distribution rapidly has implications for the evolution of the other
variable z, which, as already mentioned, equilibrates more slowly. Sup-
pose we were concerned about tracking the evolution of z, and were
either uninterested in or had no access to the value of . This would
pose a problem. Since the value of z on the (n + 1)th iteration de-
pends, not only on z, but also on x, the probability distribution for z
at the (n + 1)th stage depends on the probability distribution for the
full state (x, z) at the nth stage.

For certain kinds of distributions, however, we can get an au-
tonomous equation that gives probabilities for future values of z in
terms of its present value. If the probability distribution for x is sym-
metric around the mid-point, then, with probability 1/2, 2,11 is z,,/2,
and, with probability 1/2, it is 1 — 2z, /2. This, in turn, permits us to
get an equation that produces a probability distribution for 2,1 from
a distribution for z,.

Not all probability distributions for  have this feature. However,
as we have seen, sufficiently nice probability distributions for x rapidly
approach the invariant distribution, which has the requisite symmetry.
For such initial distributions, after a few iterations, the autonomous
equation that yields probabilities for z,4; in terms of the value of
zn will be a good approximation to what one would obtain using the
probability distribution over the full state space.

What makes this work is separation of time scales. The variable x
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changes its value rapidly—nearby values of x, in one iteration, double
their separation, whereas, for almost any fixed value of x, nearby
values of z approach each other; values of x are unstable, compared
to values of z. As a result, evolution tends to smooth out density
functions for x and complicate density functions for z. The fact that
x is unstable compared to z is reflected in rapid approach towards
the invariant probability distribution for x, compared to the rate of
approach of z towards its invariant distribution.

This has an analog in real physical systems. Consider, for example,
a helium balloon made of rubber. As every child knows, the balloon
is permeable to helium and to air, and after a while, the balloon
will reach an equilibrium state in which the gas inside it is the same
pressure and composition as the atmosphere outside. But this happens
slowly, and, in the meantime, we can treat the system as one in which
there is helium gas at high pressure inside the balloon and ordinary
atmospheric mix of gases outside. If, on a warm sunny day, you take
a balloon that has been outside into an air conditioned building, the
contents of the balloon will rapidly come to the same temperature
as the air in the room, and we will be able, over time scales short
on the time scale of leakage of helium from the balloon, to treat the
gas inside the balloon and outside as each being in a state of thermal
equilibrium, at the same temperature but unequal pressures. This
phenomenon is not uncommon; all is needed is a separation of time
scales, in that some variables equilibrate fairly quickly, others, more
slowly.

A striking example can be found in the treatment of Brownian
motion. As mentioned in the introduction, the standard treatment
invokes the Langevin equation, a stochastic equation for the velocity
of the Brownian particle. The force terms in this equation are the ones
that would result from treating the molecules of the fluid as being in
thermal equilibrium, even if the state of the system as a whole, which
includes the velocity of the Brownian particle, has not had time to
equilibrate. The rationale for this is that equilibration of the fluid
molecules is faster than that of the Brownian particle, which acts,
as it relaxes towards equilibrium, as if it is immersed in a fluid in
equilibrium.

It is a feature of this treatment of Brownian motion that probabil-
ities concerning the future velocity of the particle depend only on the
present velocity, whether the process that gave rise to that velocity
was slowing, through friction, of a higher speed, or via a fluctuation
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from a lower speed. The rationale is that, though the detailed state
of the fluid at any given time will contain traces of the Brownian
particle’s past history, any molecule that interacts with the particle
will soon interact with other molecules and these traces will become
distributed through the fluid in a complicated way, and will become
irrelevant to the future behaviour of the particle, permitting us to
treat it, for purposes of predicting future movements of the particle,
as if it were newly introduced with its current velocity into a fluid in
equilibrium. This treatment yields predictions that are in very good
agreement with experiment, and this, in turn, gives us evidence that
we were correct to think that, whatever traces there may be in the sur-
rounding medium of the Brownian particle’s previous state of motion,
they are largely irrelevant to its subsequent behaviour.

It is considerations such as these that underwrite the method of
projections, discussed in §6 of Wallace (2015). This is used to obtain
an equation governing a probability distribution over a reduced set of
variables, typically a set that falls far short of the full set of variables.
Since, in general, future values of each variable depends on the present
values of all of them, it is not, as Wallace says, immediately clear
how this can be done. The key is local equilibration. If probability
distributions over initial conditions evolve rapidly (compared to the
time scales of interest) into ones that are such that, for the purpose
of studying the evolution of the limited set of variables of interest, the
remaining variables can be treated as if they are distributed according
to some equilibrium distribution, then we can treat the system as if,
at any given time, those remaining variables do have the equilibrium
distribution, and evolve the probability distribution for the variables
of interest accordingly.

We have seen this explicitly in the case of the parabola gadget. A
full probability distribution over the state space will involve compli-
cated relations between the precise value of x and the precise value of
z. However, for the purposes of forward-evolving z, all that is needed
is the current value of z and very limited information about the distri-
bution of z; all that matters is the very coarse-grained probability that
tells us probabilities for x being in the left or right half. Moreover,
initial distributions for x rapidly evolve into ones for which these prob-
abilities are equal, and so we can get an equation that relates future
probabilities of z to present ones.
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11 Prediction and retrodiction

Suppose that, for some physical system with dynamics that are in-
variant under time-reversal, you are convinced that something like
the separation of times-scales discussed in the preceding section is in
operation, and that, for the purposes of prediction of macrovariables,
any reasonable probability distribution can be replaced by one that
is as close to uniform as possible, given the current macrostate. This
conviction might be based on calculation, on empirical evidence, or
on a combination of the two.

Suppose, now, that you run across a system of that type which you
have good reason to believe has been evolving in isolation for some
time, and find it in some nonequlibrium macrostate (you may think, if
you like, of the familiar example of a thermos bottle containing warm
water and some ice cubes). What should you predict, and what should
you retrodict, about the system?

For prediction, we've already said that you are convinced that
taking a distribution that is as close to uniform as possible, given the
current microstate, and evolving it forward, is an effective strategy.
One might be tempted to conclude that reversible dynamics, together
with the effectiveness of the strategy in the forward direction, either
suggests or even requires you to take it to be an effective strategy in the
reverse direction, in which case you should back-evolve the smoothed-
out distribution, and conclude that the system was probably closer to
equilibrium in the recent past.

This is too quick, and, in fact, is justified only if you take the role
of the uniform, invariant distribution to be one that guides your ex-
pectations about what is typical and atypical, instead of the role for
which you have a rationale, namely, as a surrogate for a distribution
that represents your belief state about the system. To see this, let us
undertake a Bayesian calculation. Let E be the evidence that the sys-
tem is, at time tg, in the observed nonequilibrium state. Let H,,, be
the hypothesis that the system was in some nonequilibrium state that
is such that application of the recipe of forward-evolving a smoothed
distribution over that macrostate accords high probability to E: e.g.
a thermos with larger ice cubes and warmer water than observed.
Let H.q be the result of back-evolving the observed macrostate; this
will be a state closer to equilibrium than the observed macrostate,
for instance, a state with smaller ice cubes and cooler water than the
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observed state. Bayes’ theorem tells us that

Pr(Huon|E) _ Pr(E|Huon) | Pr(Huen) @)
Pr(HeE) ~ Pr(E[Hy) = Pr(He)

Since He, and H,,y, are hypotheses about the state at an earlier
time that the observed state involved in F, we can apply the recipe
of forward-evolving a smoothed probability distribution to compute
Pr(E|Hpon) and Pr(E|Hc). By construction the former is large;
the latter will be tiny, as it is the probability of spontaneous heat
transfer from ice to warm water, resulting in spontaneous freezing.
Thus, the first factor on the right-hand side of (2) is huge. There-
fore, Pr(Hpon|E) will be much, much larger than Pr(Hgq|E), and
you should regard it as much more likely that the system reached its
observed state from a further-from-equilibrium state, unless you take
the second factor to be miniscule, that is, unless you take the prior
probability of Hc, to be enormously larger than the prior probability
of Hyon-

That is, if you are convinced, by experience or otherwise, that
evolving a smoothed distribution over the system’s macrostate works
well in the forward direction, you should apply it also in the reverse
direction only if you are already convinced that your priors about
the recent past should be set according to a measure according to
which equilibrium states are typical and nonequilibrium states mind-
boggling improbable.

12 Comparison with real systems

The parabola gadget is a toy model, but it shares relevant features
with real systems.

For an isolated classical system, as is well-known, there is at least
one invariant measure, namely the microcanonical measure. For large,
complicated systems, we expected sensitive dependence on initial con-
ditions; this means that evolution will tend to separate points along
along certain dimensions and, because measure is preserved, there
must be a corresponding compression along other dimensions. That
means that density functions for some variables will tend to smooth
out and others, to become more complicated, just as we have seen in
the parabola gadget.

There is a disanalogy between the parabola gadget and real sys-
tems, in that, unlike most (all?) real systems to which statistical
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mechanics is applied, the dynamics of the gadget are not invariant
under time reversal.!’ This disanalogy is less important than might
seem, as the gadget’s lack of T-invariance plays no role in the equili-
bration result, which, as already mentioned, works in both temporal
directions. Moreover, its dynamics are invariant under a combination
of time reversal and a transformation that swaps the coordinates u
and z. This is reminiscent of the fact that, though, strictly speaking,
fundamental laws are not invariant under time reversal, they are, in
the standard model, invariant under the combination of time reversal,
charge conjugation, and parity inversion (CPT).

The dynamics of the parabola gadget are ergodic and strong mix-
ing. This is not required for the sorts of conclusions we are interested
in, as, for real systems, we will not be interested in convergence in
probability for all degrees of freedom of the system, but only a limited
subset of macroscopically measurable variables. Nor is it sufficient,
for our purposes, that a system be mixing or have some other place
in the ergodic hierarchy, as results of this sort concern only long-run
limiting behaviour, and we are interested in knowing what happens at
finite times.

Unlike the parabola gadget, real macroscopic systems systems have
a large number of degrees of freedom. This makes them hard to deal
with analytically, but allows one to invoke considerations of the be-
haviour of limited subsystems of systems with a large number degrees
of freedom. There are a number of theorems, of some generality, giv-
ing convergence results for systems of this sort. These apply, both
to a large isolated system which is such that we have access only to
a small number of macroscopic variables, and (what amounts to the
pretty much the same thing) to a small system interacting with a large
and complicated environment (take, in such a case, the system’s de-
grees of freedom as a small subset of the degrees of freedom of the
system + environment).

Recent work along these lines has, understandably, focussed on
equilibration of quantum systems, because, ultimately, systems we
treat classically are to be treated in terms of quantum mechanics.
Linden et al. (2009) have shown that, for a very broad class of Hamil-

10The reason for the question-mark is that, when weak-force interactions are taken into
account, we must acknowledge that the fundamental laws are not T-invariant. This, how-
ever, is irrelevant to questions regarding thermodynamic asymmetry, as the fundamental
laws, as we currently have them, are C'PT-invariant, and thermodynamic asymmetries are

also C' PT-asymmetries.
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tonians (namely, those with nondegenerate energy gaps), the reduced
state of a small subsystem of a large quantum system will equilibrate,
provided only that the state of the large system contain a large number
of energy eigenstates. Also of interest is the result due to Goldstein
et al. (2010), which demonstrates approach to macroscopic equilib-
rium for arbitrary initial states and “typical” Hamiltonians. For re-
cent work along these lines, see Goldstein et al. (2015) and references
therein.

13 Conclusion

Taking standard measures as if they are required by a Principle of In-
difference raises several problems. One is the question of justification:
why this measure, rather than some other? If this question could be
satisfactorily answered, this would raise a more severe problem in that,
applied out of equilibrium, the standard measures are spectacularly
wrong, and they give rise to disastrous retrodictions.

Dynamical considerations come to our aid in picking out an ap-
propriate measure. Moreover, when the rationale for the use of this
measure is understood, we see that its legitimate employment is much
more restricted than a Principle of Indifference would suggest. In par-
ticular, we are not obliged to regard the early state of the universe and
virtually everything we see as extraordinarily improbable. As a corol-
lary of this, there is no incentive whatsoever to take the appropriate
measure over the current state of affairs to be one that is invariant
under velocity reversal, and hence do not end up saddled with the
disastrous retrodictions a measure of that sort would engender.

We can apply considerations of this sort, not only to the end point
of the process of equilibration, but also to intermediate steps. What
is required is a difference in time scales of relaxation of input dis-
tributions towards equilibrium distributions. If some variables relax
more quickly than others, we can obtain autonomous equations for
probability distributions of the more slowly changing variables.

Of course, this approach leaves work to do, work that is an ac-
tive area of research in nonequilibrium statistical mechanics: that of
showing that, for something like real systems, the requisite conver-
gence results hold. Rather than simply taking for granted the positive
outcome of this endeavour, philosophers of statistical mechanics would
do well to pay more attention to research along these lines.
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14 Appendix

In this appendix, we make and prove precise the convergence results
alluded to above. For related results, see Engel (1992) (in particular,
Theorem 3.9a and §3.3.6).

Let (zp, z,) be the state of the gadget at stage n of its evolution.
The dynamics specified in the main text gives

Tpgp1 =1 — 4z, —1/2) = 4z,(1 — ). (3)
| z/2, if 2, <1/2;
Al = { 1—2,/2, ifa,>1/2. (4)

Readers familiar with the literature on chaos theory will already have
recognized (3) as the logistic map.

A probability distribution for zy determines distributions for each
Tn, n > 0. Suppose that we have a probability distribution for zg that
has density f with respect to the invariant measure u. That is, for
any measurable subset A of the unit interval,

Pr(zy € A) = /A f(2) dpu(z). (5)

If g is the corresponding density with respect to Lebesgue measure
on the unit interval, the two are related by

f(2) = m/a(1 —2) g(). (6)

Thus, the invariant distribution, which has flat density with respect
to itself, has density, with respect to Lebesgue measure,

1

/(1 —z)

(7)

gu(x) =

which is the function we have seen graphed in Figure 4, above.

However, it is the density f, the density with respect to the invari-
ant measure u, that will be of interest to us, as it is in terms of this
density that we obtains bounds relevant to rates of convergence. This
is a good thing; as is clear from (6), the function f varies less than
the function g, and it is in terms of the variation of f that we will find
our bounds. In particular, we will find bounds for distributions such
that f has finite total variation (see below), but g need not have finite
total variation for such bounds to apply.
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It will be useful to make a change of variables. Define the variable

u by
z = sin? (%) . (8)

This variable is useful because the invariant distribution pu is uniform
in w. That is, for any interval [a, b] within the unit interval,

p{u:u € la,bl}) =b—a. 9)

The evolution (3) induces a corresponding map for wu:
sin? (%> = 4sin® (w) cos? (w) = sin® (T uy,) . (10)
2 2 2
This gives,

2y, Uy < 1/2;
Ung1 = 1= 2Jun = 1/2 = { 2(1n_ Up,) uZ > 1?2. (11)

This is the tent map. It’s easy to work with because it’s piecewise
linear.

The invariant measure p is uniform in v and z. It can be shown
that the evolution is strong mizing with respect to p: that is, for any
measurable sets A, B,

p(An N B) = p(A)p(B) as n — oo, (12)

where A, is the result of applying n iterations of the evolution to A.
Hopf’s proof (1934, §8) that the baker’s map is strong mixing applies
equally well to the evolution of the gadget. From this it follows that
any distribution over initial conditions that has a density with respect
to the invariant measure weakly converges towards this measure. That
proof doesn’t, without further ado, provide information about bounds
on rates of convergence, which we now investigate.

Iteration of the tent map n times produces 2"~ ! copies of the tent,
each supported on an interval of length 2=("~1). Each of these intervals
consists of two subintervals of length 27" that are mapped linearly
onto the unit interval. Let A;, for ¢ = 1,...,2" be the subinterval
(i — 1)/2%,i/2%).

Now, let us consider some measurable subset B of the unit inter-
val, with measure p(B), and consider its inverse image under n-fold
iteration of the tent map; that is, consider the set A that gets mapped
into B. Each of the subintervals A; contains a subset 4; = AN A;

32



of measure p(B)/2". The probability that u, is in B is equal to the
probability that ug is in A, which is the sum of the probabilities of
ug € A; over all the subintervals A;.

Expressed in terms of our original variable x: n-fold iteration of
the logistic map partitions the unit interval into 2”1 intervals of equal
p-measure 2~ (=1 each of which contains two subintervals of measure
27" that get mapped onto the unit interval. For any measurable subset
B, with inverse image A, each of these subintervals contains a subset
of A of measure u(B)/2".

We want to investigate the probability that a distribution with
a given density function f ascribes to A. We will make use of the
following theorem.

Theorem 1. Let x be a random variable that has density f with re-
spect to some measure . Let A be a measurable set with the property
that the range of x can be partitioned into subsets A; such that, for
each 1,

1(Ai N A) = u(A) p(Ad).
Let f;r, fi» be the essential supremum and essential infimum, respec-
tively, of f on A;. Then

|Pr(z € A) — p(A)] < p(A) p(A) Z:M(Ai)(f@-+ = i)

where A is the complement of A.

From this follows a corollary in terms of the total variation of
the density function f. Alpine hikers will find the concept of total
variation intuitive. Imagine walking along the graph of the function
from left to right. The total variation is the total vertical ascent plus
the total vertical descent you have to do. The official definition (which
is found in many textbooks of real analysis; see, e.g., Kolmogorov and
Fomin 1975, §9.32) is as follows.

Definition. Consider a function g : [a,b] — R, defined on some interval
[a,b] of the real line. Take any finite increasing set of numbers a =
ro < x1 < ... < Tpy = b, and consider the quantity

> lg(ar) — gx-1)l-
k=1

The total variation of g, V(g), is defined to be the essential supremum
of this quantity, over all choices of x, ..., T.
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Obviously, a constant function has total variation zero. If a func-
tion has finite total variation, it is said to be of bounded variation. The
density function of the invariant measure u with respect to Lebesgue
measure, given in equation (7), has unbounded total variation, but its
density function with respect to itself is flat and has total variation
zero. A function of bounded variation on [a,b] has a finite derivative
at almost all points in [a, b] (Kolmogorov and Fomin, 1975, 331). If g
is a continuous function of bounded variation, then

b
Vi(g) = / ¢ (@) d.

If g is piecewise continuous, we add to this the sum of the absolute
values of the jumps that ¢ makes at each of its points of discontinuity.
From the above theorem the following corollary is immediate.

Corollary 1.1. Under the conditions of Theorem 1, if f has finite
total variation V (f), and if there exists § such that pu(A;) < 6 for all
i, then
[Pr(z € A) — p(A)] < p(A)u(A) s V(f).
Applied to n-fold iteration of the logistic map: each of the subsets
A; has measure 27". This yields the desired convergence result for
the parabola gadget, regarding distributions of the variable x.

Corollary 1.2. Let {x} be a sequence of random variables related by
the logistic map (3). Let xo have a distribution that has density f with
respect to the invariant measure p, with finite total variation V(f).
For any n, partition the unit interval into 2™ intervals of equal measure
w(A;) =27", and take f;r and f; to be the essential supremum and
infimum, respectively, of f on A;. Let A be a measurable set, with
complement A. Then

Priz, € A)—p(a)] < PABA S

We now prove Theorem 1.
Proof. let x4 be the characteristic function of A,
1, T € A
@ ={ g T (13)
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Let A = p(A).

PrizeA)— A = / F(@) (xa(z) — A) d(z)

Since u(A; N A) = A p(4;) for all 4,

/. Gala) = 2 duta) = 0 (15)
and so, for any numbers {a;},
Prize A)—\= Z/ ) —a;) (xa(x) — N du(z).  (16)
Therefore,
Pr(z € A) — )\\<Z/ (F(2) — i) (xa(@) — Nl dp(z).  (17)
Take
=5 (f+ +£7)- (18)
Then, for almost all z € A,
F@)—ad < 5 (77 7). (19)
and (17) yields,
PrizcA) - A < ; 1) [ @) = Az, (20)

Within A;, the function \XA (x) — Al is equal to 1—\ on a set of measure
A(A;) and to A on a set of measure (1 — A)u(A;). Therefore,

/ xa() — A dpu() = 20(1 — \)u(Ay). (21)

We thereby obtain the result,

|Pr(z e A) — A <A1 —=)\) Z“ ), (22)
which is what was to be proved. O
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We have demonstrated convergence of probability distributions for
z. This means, for any measurable subset A of the unit interval, the
measure of the subset of the state space that consists of all (z,z)
with z € A converges towards p(A). We will now show that we
have convergence of measure, not only for such sets, but for arbitrary
measurable subsets of the state space.

It suffices to show that we have convergence for rectangles [a, b] x
[c,d]. Now, if we partition the z-axis into 2¥ bins of length 2%, then,
after k iterations of the gadget’s evolution, which bin z is in depends
only on the initial value of  and is independent of the initial value of
z. Therefore, for a rectangle of the form [a, b] x [p/2¥, q/2¥], where p
and q are integers, the probability that, at any time after k iterations,
the state is in that rectangle, depends only on the initial value of zx.
Its inverse image is the set of all points such that x is in a set D, where
D has measure u(D) = (b —a)(q — p)/2".

We can say the same of any set that is the set of all (x, z) forz € A
and z € L, where A is any measurable subset of the unit interval and
L is a union of intervals, of total length ||L||, with endpoints that
are integral multiples of 27%. The inverse image of this set under k
iterations is the set of all (x, z) with € D, where D is a set of measure
w(D) = p(Ax L) = p(A)||L||. Thus, for any n, k, (Xntk, 2n+k) € AXL
if and only if x,, € D, and

Pr((xn+k, 2n+k) € AX L) = Pr(zy, € D). (23)
Let A = u(D) = p(A x L). Then

AL - )
SV,

(24)
where f, once again, is the density function, with respect to u, for xg.
This gives us the following convergence result for sets of this form.

|Pr((nak, 2nik) € AXL)—MN = |Pr(z, € D)=\ <

Theorem 2. Let A be any measurable subset of the unit interval, and
let L be a subset of the unit interval that is a union of intervals with
endpoints that are integral multiples of 27%. Let A\ = p(A x L). Then,
forn >k,

(1-2)

Pr((eaz) € Ax ) - <22 2N )

where f is the density function for xo with respect to u.
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We get convergence of the distribution of z by taking A to be the
unit interval.

Corollary 2.1. Let L be a subset of the unit interval that is a union
of intervals with endpoints that are integral multiples of 27%, of total
length X\. Then, for n >k,

(1-2

A
[Priza € L) =\ <28 S 2 V().

where f is the density function for xo with respect to p.

If we coarse-grain both u and z into 2* bins of equal width 2%,
then, for any initial distribution such that f has bounded total vari-
ation, the probability of u, being in a given bin approaches 27% as n
increases, as does the probability of z, being in a given bin, but we
have tighter bounds on the probability of u,, by a factor 2%.

It is easy to extend this convergence result to arbitrary intervals
L = [a, b], to get bounds on the rate of convergence of the distribution
of z. For any interval, and any k, we can find intervals L' = [d/, V'],
L" = [a",1"], whose endpoints are integral multiples of 27%, such that
A" <a<d, V<b<V d-—d <2Fand V- < 27F. Since
L' C L C L”, we must have

Pr(z, € L'y < Pr(z, € L) < Pr(z, € L"). (25)

Let A, X, and )\’ be the lengths of L, L', and L”, respectively. \" and
M\’ are both within 27% of A\. We have, from (25),

Pr(zne L) =N —-A\=XN)<Pr(z,€L)— A\
< Pr(z, e L) =N+ (\"=X). (26)

and hence
— <\Pr(zn eLl)-N|+ 27]“) < Pr(z, € L) — A
<|Pr(z, € L") = N'|+27%. (27)

We can apply Corollary (2.1) to L' and L” ; by taking k and n suf-
ficiently large, we can get bounds as tight as we want on |Pr(z, €
L) — A
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