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There is a difference between knowing something and just happening 
to be right about it. The nature of this contrast is hard to explain, but its 
sheer existence is somehow easy to recognize. In Plato’s Meno, when 
Socrates sketches a theory of knowledge as a state of mind chained 
to its cause, he downplays that theory as mere conjecture. “And yet,” 
Socrates states emphatically, “that knowledge differs from true opinion 
is no matter of conjecture with me. There are not many things which I 
profess to know, but this is most certainly one of them.”1

Socrates’s certainty on this matter is striking, but it does not take his 
philosophical vision to spot a difference between knowledge and mere 
true opinion. This distinction is also drawn by ordinary people without 
philosophical training, across genders and cultures;2 indeed, there is 
evidence that nonhuman primates also distinguish knowledge from 
coincidentally correct judgment.3

What is not so clear is why we are naturally registering this contrast, or 
how. For practical purposes, as Plato observes, true opinion might seem 
to fit our needs exactly. When you come to a fork in the road on your way 
to Larissa, it could seem no better to have the right path pointed out by 
a knowledgeable expert than to have the same direction endorsed by a 
superficially similar guesser.4 If a veridical hallucination leads a desert 
traveler to water in the valley ahead, his thirst ends up being quenched 
every bit as well as if he had known that there was water there.5 It is 
easy to see why we care about the difference between truth and falsity, 
and easy to see how the world supplies us with feedback about the 
truth value of judgments. It is harder to explain exactly what we are 
gaining from tracking the stronger condition of knowledge, or how we 
are doing so.
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Contemporary epistemology has zeroed in on a possible clue to this 
puzzle: whatever else it may involve, the difference between knowledge 
and mere true opinion seems to have a modal dimension. A landmark 
paper of Ernest Sosa’s argued that the modal core of knowledge is a 
safety condition, according to which, when you know, “you would so 
believe only if your belief were true.”6 Unlike the person who knows 
the way, the guesser could easily have been wrong about which path 
to take; unlike the person who actually sees water, the hallucinator 
could easily have been wrong about where to find a drink. This general 
idea of knowledge demanding safe judgment, or the avoidance of 
error in sufficiently similar cases, has been embraced by contemporary 
epistemologists of various persuasions.7 However, ongoing debates 
over safety raise notoriously difficult questions about what exactly it 
means to “so believe,” or to have a sufficiently similar case to the case 
at hand. Meanwhile, the necessity of safety for knowledge has been 
challenged,8 and indeed Sosa himself turned against the safety condition 
for a time,9 only to return to it later in a more elaborate form.10 Naive early 
theories about safety seem vulnerable to simple counterexamples,11 
and as theories have grown more sophisticated, they have been tested 
by increasingly exotic scenarios. One much-discussed case involves a 
grandfather clock, intermittently controlled by an invisible demon who 
wants to ensure that a subject forms a particular belief about the time.12 
A more recent article introduces a variant of an earlier case involving 
a costume party at a house that is hard to find, hosted by someone 
with an aversion to one potential guest; in the latest version, guests 
who almost decide to get dressed up as each other need to pass by a 
crossroads with an automatic device that may or may not direct them 
to their destination, depending on their apparent identity.13 Alert to 
the threats posed by all these counterexamples, sophisticated recent 
theories have started to invoke powerful terms such as “competence,”14 
whose epistemic character is rich enough to generate worries that one 
mystery is being explained in terms of another, and possibly in a manner 
that incorporates some problematic circularity. Meanwhile, inventive 
counterexamples have arisen to challenge the extensional adequacy of 
these newer theories as well.15

It is puzzling that a contrast so readily grasped intuitively puts up so much 
resistance to being captured reflectively, in readily stated principles. 
As explicit theories of safety have grown more complex, it has become 
increasingly mystifying how we could naturally calculate the presence 
of knowledge in real time, if knowledge does indeed demand safety. 
It has also become increasingly mysterious what we would ever gain 
from doing so: Why on earth should we care so much about what 
would have happened if things had been slightly different? At the same 
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time, we may find ourselves with methodological worries about our 
epistemological speculations, worries that may be heightened when 
strangely baroque scenarios either fail to generate clear intuitions in us, 
or generate intuitive responses whose legitimacy we are hard-pressed 
to explain.

If philosophers have not been gaining ground through a direct search 
for high-level explicit principles about safety, strategically navigating 
between stock examples and counterexamples, perhaps it is time to 
try a fresh approach. In what follows, I approach the problem of safety 
from below, focusing on a concrete cognitive capacity of ours, and 
looking at what its actual workings can tell us, first about the nature of 
epistemic safety, and then about the functional value of securing and 
tracking it. My chosen capacity is face recognition, in part because this 
is a fairly uncontroversial source of knowledge—we don’t ordinarily 
doubt that a typical person can know at a glance that a good friend 
of theirs has entered the room—and in part because it still affords a 
useful variety of problem cases, for example, cases involving secret 
twins, plastic surgery, or one person mistaken for another at a distance. 
Having noted the existence of these problem cases, and having perhaps 
experienced a brief moment of fear that they will conspire to make true 
safety impossible, we will start with a focus on how face recognition 
works when all goes well. A clear sense of the good case will be useful 
in situating epistemic safety in the ordinary workings of this capacity, 
before turning to tackle problem cases and safety failures.

An interesting feature of face recognition is that we lack introspective 
access into its operations; although we can tell at a glance that the person 
immediately facing us is some particular close friend, we are hard-
pressed to formulate any explicit description that uniquely selects that 
individual, or to state any high-level theoretical principles that generally 
structure our facial identifications. After reviewing how face recognition 
works, and explaining how it incorporates epistemic safety, I will argue 
that there is an important parallel between the recognition of a familiar 
face, and the recognition of knowledge itself. Indeed, the reason why we 
are unable to introspect our competence in face recognition turns out 
to be essentially the same as the reason why we are unable to provide 
a reductive analysis of knowledge. The concluding section of this paper 
tackles the higher-level question of human knowledge of knowledge, 
but to approach this problem from below, we will start on the ground 
floor, reviewing ordinary human knowledge of faces.
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1. AN OVERVIEW OF FACE RECOGNITION

It has been estimated that the average adult can recognize the faces 
of roughly five thousand people, encompassing both personal 
acquaintances and celebrities.16 Knowing a face does not require knowing 
a name: researchers count a face as known when the experimental 
subject can produce some appropriate identifying description (“the 
President of China”; “my favorite barista”), or, in some studies, when the 
subject simply responds to various different photos of the individual, 
interspersed amid distractors, by consistently judging that this person is 
familiar. A photo of a familiar person sparks an immediate and distinctive 
neural response, starting just 140ms after presentation,17 and it generally 
takes less than a second to identify the person seen, assuming their 
face is known.18

It is remarkable that an average human can recognize so many people in 
this way.19 Human faces are broadly similar in their basic configuration, 
so distinguishing individuals from one another requires subtle sensitivity 
to small differences, where combinations of anatomically realistic 
perceivable differences define a space of trillions of theoretically 
distinguishable faces.20 To complicate matters further, photographs or 
percepts of a single individual exhibit large differences due to changing 
facial expressions, hairstyles, aging, blemishes, makeup, facial hair, 
illumination, angle of view, distance, and partial occlusion. A double 
challenge therefore confronts us: we need to explain “not only how we 
tell people apart, but also how we tell people together.”21

The difficulty of telling people apart is well known, but the difficulty of 
“telling people together” may need to be spelled out. When a person is 
unfamiliar, it can be hard to judge that different pictures of them in fact 
depict the same person. This problem was often skimmed over in the 
early literature on face recognition, not least because many early studies 
started by minimizing the variation in their stimuli, for example by taking 
studio portraits of a series of individuals with neutral expressions, under 
uniform lighting, viewpoint, and pose. More naturalistic approaches to 
real-life face recognition need to use images taken from various angles, 
and in various conditions. In one study aiming to capture this kind of 
variability, researchers scraped twenty “ambient” images of each of 
two blonde Dutch celebrities from the internet, and printed them in 
greyscale onto laminated cards. British experimental participants were 
given the shuffled deck of forty images and instructed to sort them by 
identity into any number of groups, where the photos in each group 
were all to be of the same person. Not one of the twenty participants 
solved the puzzle correctly. It was rare for participants to lump photos of 
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the two different women into the same pile (on average less than one 
such mistake per participant, mode 0, range 0–3). The main problem 
was in the other direction: the median number of perceived identities 
was between seven and eight, and the overall range was between three 
and sixteen. The researchers concluded: “This pattern indicates that the 
problem is primarily one of integrating dissimilar images. It is difficult to 
find commonalities among photos of the same face that justify grouping 
them together. At the same time, it is easy to find differences that justify 
grouping them separately.”22

One might worry that these photos were atypically diverse in appearance 
(one of the celebrities was an actress, the other a model and TV star in 
multiple roles), or that the greyscale photos were simply too poor in 
quality to support accurate face identification. Twenty Dutch participants 
were recruited to perform the same task with those forty cards, and 
almost all of them did so perfectly (median 2, mode 2, range 2–5).23 
It is familiarity with a face that enables the recognition of its identity 
across variation. This is a robust result, confirmed across a variety of 
experimental procedures. When, and only when, people are familiar 
with an individual, they can easily recognize that person on a brief, low-
quality, black-and-white security camera video feed, picking their photo 
out of an array presented just afterwards.24 For unfamiliar faces, it can be 
hard even to match a target face to a simultaneously presented lineup 
of ten photos, with no advantage when the unfamiliar target is not just 
another photograph but present as a live actor currently in front of the 
subject.25 Even passport officers show surprisingly poor performance 
identifying whether or not an unfamiliar live person facing them is the 
same as the person whose photograph they are currently viewing on 
screen.26

The capacity to recognize an individual face is a many-to-one mapping 
from a domain of possible percepts (approximated by photos) to a 
target identity. It is important for the capacity to cover possible percepts: 
face recognition is not simply a matter of memorizing a stock of actual 
photos or percepts and then retrieving the correlated identity when 
we encounter some exact member of that stock. In order to select the 
correct underlying identity when we encounter someone in the wild, or 
see a new photo of them, we need to be equipped to deal with novel 
combinations of expression, viewpoint, aging, lighting, fluctuation 
in weight, hairstyle, and so forth. Somehow, past experience informs 
a model in us that is applicable to new data, and the telling-people-
together problem suggests that the formation of this model is subtly 
individualized for each identity. There is no single recipe for converting 
a frontal view to a profile, or for predicting the dynamic changes 
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incurred by shifts between various neutral and emotional expressions. 
In the words of one review, “the ways in which one person’s face varies 
are different from the ways in which someone else’s face will vary. To 
recognise Angela Merkel from any image of her, then, our brains need 
to have learned how to take into account this idiosyncratic, Merkel-
specific variability.”27

If the exact variations in the full set of a single person’s possible images 
are unique to her, this is not to say that there are no general patterns 
to be detected: all variations happen within bounds set by the genetic 
determination of human face shapes, the physiological course of aging, 
and so forth. For any given face, experience with similar faces is helpful. 
Across all variations, face recognition is enhanced for the types of face 
with which an individual has most contact: people are generally more 
accurate in recognizing the faces of people of their own ethnicity,28 with 
improved performance in recognizing faces of other ethnicities where 
there is greater cross-ethnic exposure.29 Three-year-old children are 
better at distinguishing the faces of people who are the age of their 
caregivers, but above the age of five, children and adults of all ages 
are more accurate at recognizing the faces of their own age cohort.30 
Enhanced sensitivity to what individuates certain types of faces is 
driven not just by the quantity of contact, but also by social conditions 
motivating attention and depth of processing; performance with 
members of a group is improved by a need to track individual identities, 
as opposed to tracking mere group membership.31

The various differences in physiognomy that are used to distinguish and 
reidentify faces can be taken to structure a multidimensional Euclidean 
“face space” with a zone for each face, defined by its value for each 
of the dimensions, where this space is ultimately anchored either on 
some point of origin representing the average of all dimensions, or on 
some set of known face exemplars.32 The dominant exemplar model is 
now expressed in terms of a Voronoi diagram (see Figure 1), in which 
each face defines a recognition zone or cell anchored on a prototype, 
divided from other cells by bisecting the distance along each dimension 
between this prototype and its nearest neighbours.33 Any point within 
the recognition zone for a known face is closer to the prototype for 
that face than to the prototype for any other face. We can recognize 
the same person through changes such as aging, as long as these 
transformations do not render them more similar to another person 
than to the original. The overall structure of the “face space” that each 
person uses in recognizing others is biased by their own experience 
of faces, enabling finer-grained distinctions along dimensions that 
mark differences among more of the individuals one has encountered, 
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where the selection of these most 
discriminating dimensions can 
vary by ethnicity and age.

The puzzle of identifying the 
relevant dimensions of facial 
variation is a difficult one. To see 
the depth of the problem, it will 
help to run through a quick history 
of efforts to solve it in artificial 
intelligence, as applied to all 
three of the standard applications 
of face recognition: verification 
(deciding whether two photos are 
of the same individual), clustering 
(sorting images by identity), and 
identification (matching a new 
image to a specific identity).

2. FACE RECOGNITION IN ARTIFICIAL INTELLIGENCE

Early approaches aimed to extract a relatively compact set of parameters 
that would together demarcate the individuality of faces, structuring 
“face space.” Bruce and Young’s Principal Components Analysis model, 
for example, sought a simplified code of the significant dimensions 
of facial variation. In this model, “a familiar face is represented by an 
interconnected set of descriptions—some describing the configuration 
of the whole face, and some describing the details of particular 
features.”34 The “face recognition unit” for each known face was 
taken to include both “view-centered descriptions and more abstract, 
expression-independent descriptions of the features and relations 
between them”;35 incoming percepts or photographs were taken to 
have their relevant structural features encoded to align with this stored 
structural unit. Matching over some threshold would activate the “person 
identification node” for the relevant individual, which could in turn 
trigger name generation, retrieval of biographical details, and so forth. 
(This person identification node could also be activated in other ways, 
for example by voice or gait recognition, and is connected with broader 
cognitive systems; indeed, one might have a person identification node 
for a recognized individual such as a composer or author whose face 
would be unfamiliar.) It might seem inevitable that any computationally 
tractable model of face recognition would have to work along these 
lines, but decades of experimental work failed to extract the crucial set 

Figure 1. A two-dimensional Voronoi 
Diagram. Voronoi diagrams can 
be composed of polygons of any 
dimensionality, with all points inside 
each polygon closer to their own anchor 
point than to the anchor point of any 
other polygon.
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of descriptive dimensions that could individuate faces in general. What 
was established was that any such approach would require a very large 
set of dimensions. For example, a model that begins by identifying 
twenty-seven facial landmarks through their distinctive local texture 
might still need to track 100,000 sets of relationships among these 
in order to achieve results that still fall short of human performance; 
sparser adaptations of such a model can ease the computational cost, 
but only with some loss of accuracy.36

A new approach emerged with the application of deep learning to large 
datasets such as Facebook’s Social Face Classification (SFC) dataset, 
in which many individuals have multiple pictures of themselves, taken 
over some span of time, with different settings and expressions. To train 
one important model (“DeepFace”), researchers were able to use 4.4 
million SFC face images from 4,030 people who each had 800–1,200 
posted photos of themselves, exempting the most recent 5 percent 
of these images for use in the testing phase.37 Rather than attempting 
to specify the crucial characteristic dimensions in advance, DeepFace 
is simply driven to find whatever patterns it can extract from these 
images to optimize its performance in identifying the corresponding 
individuals. An initial stage prepares uniform 152 x 152-pixel images 
of the millions of faces, resizing and cropping raw photos on the 
basis of simple facial landmarks, and rotating all faces into a uniform 
frontal alignment with some warp to save perspectivally distinctive 
characteristics. Each standardized image is then fed through a nine-
layer deep neural network, in which early layers pick out low-level 
characteristics like edges and textures, and hierarchically organize them 
into patterns, which are fed into three locally connected middle layers, 
to support specialization in detecting local patterns found in different 
facial regions. Two fully connected final layers reintegrate the results to 
take advantage of larger relationships in the whole face, and deliver a 
probability distribution over the possible identities in the dataset. The 
input layer has 69,312 nodes or neurons (152 squared, multiplied by the 
three RGB pixel color values); the output layer has 4,030 neurons for the 
4,030 identities in the dataset, each of which gets a real number value, 
expressing something like the input image’s degree of resemblance 
to that identity. Those output-layer real numbers are then converted to 
a probability distribution over the set of identities. There is enormous 
computational power between these small input and output layers: the 
model as a whole has 120 million parameters or connections between 
its layers, parameters whose values are adjusted upwards or downwards 
in the course of learning, to send a stronger or weaker activation signal 
to the next layer. 
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It would in some sense be ideal for the model to select the correct 
identity for each input photo with perfect certainty. DeepFace learns by 
failing to do so: in the course of its supervised learning, the error signal 
(or “loss”) of the model is the negative log of the output probability 
assigned to whatever was in fact the correct identity. This error signal 
drives a backpropagation algorithm that runs down the layers of the 
model in stochastic gradient descent, successively updating the 
parameters to minimize the loss in each iteration of training. As a result, 
after each training step, DeepFace tunes its 120 million parameters in 
the direction of ideal certainty about the truth, more radically when the 
model had delivered a lower probability for the correct identity than 
when it had come closer to certainty. When there are two close rival 
identities for an image (for example, because there are two people who 
look alike from a given angle), the model will correct itself after error 
feedback to heighten its reliance on whatever characteristics pushed 
it towards the correct identity for that image and decrease its reliance 
on the characteristics supporting the rival. The parameters start out as 
a blank slate, and evolve blindly to fit the goal of assigning as high 
a probability as possible to the correct identity for each image. Other 
than breaking up the middle layers to focus on different image regions 
(which roughly correspond to different facial zones because of the initial 
alignment step), the architecture of the model does nothing to dictate in 
advance what characteristics of an image will be used to identify it; the 
purely reactive updating process will simply end up amplifying reliance 
on whatever characteristics in fact support successful identification 
during training. 

One final characteristic of the model deserves close attention: its 
capacity to generalize well to new faces seen after training is supported 
by a special feature of its penultimate fully connected layer. Known as 
“dropout,” this feature randomly switches off the output of about half 
of the neurons in that layer (on each training cycle, each neuron has an 
independent 0.5 probability of being silenced). The researchers who 
originally developed this technique explain it as follows: “The neurons 
which are ‘dropped out’ in this way do not contribute to the forward 
pass and do not participate in back propagation. So every time an input 
is presented, the neural network samples a different architecture, but 
all these architectures share weights. This technique reduces complex 
co-adaptations of neurons, since a neuron cannot rely on the presence 
of particular other neurons. It is, therefore, forced to learn more robust 
features that are useful in conjunction with many different random 
subsets of the other neurons.”38 Adding 50 percent dropout to a 
model roughly doubles the training time required for it to converge on 
ideal performance with its training set, but models trained in this way 
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generally perform better when they shift from training to test. Dropout 
addresses a vulnerability introduced by the sheer computational power 
of neural networks: because they have so many parameters, they are 
at risk of explosively overfitting their data during training, using their 
vast computational power to memorize the right answers for training 
set images on the basis of spurious correlations. To take a (somewhat 
unrealistic39) toy example, if all and only photos of Robert Redford 
in the training data happen to have a particular color combination of 
two particular pixels, an overfit model could use that coincidence to 
recognize him, and collapse during the test phase when presented 
with new photos. If roughly half of the final-layer neurons are randomly 
dropped on each training cycle, then identifications will tend to be made 
in some more robust way, and only genuine patterns should contribute to 
identification.40 Dropout is one of dozens of “regularization” techniques 
applied in deep learning to improve a model’s ability to generalize to 
unseen data; other common methods include randomly adding a bit of 
noise to the inputs, and cutting off training early, before the model has 
approached perfection on its training set.41 Overfit models are brittle: 
by adding those two stray Redford pixels to a picture of someone else, 
we could induce an overfit model to misidentify him as Redford. To 
judge in that way is to judge in a manner that could easily err; a well-
regularized model will be impervious to small changes in its inputs that 
are irrelevant to the target phenomenon, generalizing well from past 
experience to new cases.42

DeepFace generalizes well. Whatever characteristics it extracts in the 
course of its training to recognize faces, these characteristics do seem 
to have broader validity when applied to face verification problems 
involving new faces not encountered in training. Faces captured on video 
stills are generally harder to judge than those in photographs. However, 
a version of DeepFace set up for verification tasks43 could classify pairs 
of new (untrained) faces from YouTube videos as the same or different 
at an accuracy level of 91.4 percent, where previous state-of-the-art 
systems were all below 80 percent accuracy.44 DeepFace’s verification 
performance on the easier “Labelled Faces in the Wild” (LFW) dataset 
hits 97.0 percent,45 close to the human level of 97.5 percent accuracy for 
the same task.46

A slightly simpler deep learning model trained on a larger dataset does 
even better, by directly exploiting the “face space” framework. Google’s 
FaceNet was trained on dataset of 200 million images drawn from 8 
million identities.47 This model skips the step of rotating faces to frontal 
view; each image is minimally prepared by tightly cropping a square 
around the face in its original orientation, and bringing it to a uniform 
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size. The model is organized in 22 layers with 140 million parameters. The 
input layer takes a cropped image (220 x 220-RBG pixels), and the final 
output layer delivers a 128-dimensional embedding, a mathematical 
vector abstractly representing that image in face space. The goal of the 
model is to refine these output vectors so that they cluster in identities: 
the vector for a brightly lit frontal view of some individual needs to be 
closer to the vector for a dimly lit side view of that very person than it is 
to the vector of a brightly lit frontal view of anyone else, even someone 
who superficially resembles the target. Training is driven by a “Triplet 
Loss” procedure, in which each anchor image of a person X is compared 
to a distinct positive image of X and a negative image of some other 
person Y; the loss function minimizes the Euclidean distance between 
the vectors for the anchor and positive while maximizing the distance 
between the vectors for the anchor and negative.48 When supplied with 
a large enough series of appropriately challenging triplets, FaceNet 
learns to produce vectors that capture some deep underlying invariance 
behind various images of a person. The recognitional capacity for a 
person sends all images of that person, with any viewpoint, pose, 
expression or illumination, into a distinct region of “face space,” duly 
separated from the image zones of others. Given enough data, the triplet 
loss procedure will drive the model towards creating a tessellation of its 
128-dimensional face space in which the vector for every image is closer 
to vectors for other images of that person than to vectors for anyone 
else. This model outperforms DeepFace, and indeed outperforms 
humans, verifying pairs of faces in the LFW dataset with an accuracy of 
99.63 percent.49

It is not hard to locate epistemic safety in FaceNet. Given the model’s 
success in testing, its 128-dimensional vectors compose a set of 
similarity spaces that work well to pick out individuals. Following training 
on photographs from a domain of suitably facially distinctive individuals, 
an image can be recognized (known to be of some particular individual) 
when its vector lies closer to the vectors of other images of that individual 
than to any vector of an image of anyone else, so that slight deviations 
from the existing image would still be correctly identified. To judge an 
image’s identity in this manner is to judge in a way that could not easily 
err. We can also see how, part way through training, judgments could 
be unsafe near the not-yet-sharply drawn borders between zones for 
different individuals, even when judgments on central cases are already 
safe, just as you might recognize the identity of a minor celebrity in a 
clear frontal image, knowing who it is when seen that way, even if you 
cannot reliably pick him out from a dimly lit side view.50 For this partially 
known face, even a correct identification in that fringe zone is not safely 
correct, as a slight deviation in the image would map to another identity. 
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However, safety failures at the blurred boundaries between individuals 
do not entail that no judgments are safe.

The core idea of tessellating face space is not a new one; what is new 
is that the dimensions of the tessellation are not calculated strategically 
or supplied in advance, but rather allowed to evolve in the massive 
set of model parameters, in response to massive data, through simple 
local calculations. The triplet loss procedure pushes the model towards 
a Voronoi tessellation: to the extent that training converges on this 
outcome, the resultant face recognition zones have some powerful 
properties. In particular, they will satisfy the Convexity criterion that 
Peter Gärdenfors and Igor Douven have argued is a feature of natural 
concepts: when a region is convex, for any two points in that region, 
every point on the line between those points also lies in that region.51 
As Douven and Gärdenfors point out, when convexity holds, there is 
an immediate payoff in learnability: if you learn, of a few vectors, that 
they all map onto Tom Hanks, then you have automatically learned that 
everything between those vectors also maps onto him, defining a rich 
space of possible percepts. 

The success of the big data approach makes sense, given the complexity 
of facial recognition. Trillions of theoretically possible faces might be 
compared with each other in any number of ways, and there are no 
simple laws dictating which dimensions will best separate the faces one 
actually encounters. It is only on the basis of the particular distinctive 
characteristics these faces actually display that the most successful 
artificial neural networks learn how to tell them apart, and these networks 
are able to do so because the plasticity of their millions of parameters 
enables them to adapt to the actual complexities of face space, at least 
when driven by a loss function optimized for successful discernment. 

3. THE BASIC STRUCTURE OF HUMAN FACE RECOGNITION 

If big-data models occasioned a breakthrough to human-level 
performance in artificial intelligence, it does not follow trivially that 
human face recognition itself involves similar strategies. There are 
several ways in which big-data approaches in artificial intelligence might 
be expected to differ fundamentally from whatever is happening in us. 
FaceNet and DeepFace had supervised training on millions of images; 
ordinary humans will tend to see fewer photos of each known person 
than DeepFace, fewer total people than FaceNet, and only rarely have 
people’s names stipulated when they are seen. Artificial neural networks 
start with blank-slate parameters, but humans might start with some 
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naturally selected genetic tuning to detect faces. Lastly, the superhuman 
performance of recent models might look like another sign that their 
learning is unlike ours. However, a closer look at the differences here 
will show that they are not as deep as they might initially seem, while 
simultaneously showing us that lessons learned from face recognition 
apply more broadly to other kinds of human knowledge.

It is certainly not typical for us to learn to recognize someone by looking 
at a thousand labeled photos of them. However, we do not have to meet 
someone a thousand times to have equivalent exposure. In each live 
meeting (or viewing of a video clip) we see a given face moving through 
multiple expressions, often from multiple viewpoints, with the fact that 
these varied presentations are of a single individual given to us by 
the context. As Cameron Buckner has pointed out, we benefit not only 
from the provision of live motion over static images (he estimates the 
relevant human visual frame rate at ten to twelve images per second), 
but also from our capacity to mull over images in memory, dreams and 
daydreaming.52 Meanwhile, in attaching an identity to a percept, we 
do experience some supervised learning. New personal acquaintances 
often introduce themselves by name on first encounter, or are introduced 
by knowledgeable others, and we have ongoing practice with the name 
in conversational interactions. Celebrity images are often broadcast in 
contexts where they are named, for example in news reports or in film 
credits. More subtly, we are kept on track by unsupervised learning (also 
known as “self-supervised” learning), in which we generate predictions 
about identity over time and space, using faces as a marker of identity, 
and receive corrective prediction error feedback from the actual course 
of our sensations. As you scan the face of someone turning towards 
you, previous acquaintance generates expectations which may be 
satisfied by recognition, or create the learning opportunity of evident 
misrecognition. After you have met him, you do not need to know your 
waiter’s name to have perceptual expectations as he turns back to face 
your table, and from a different angle you can now see what you know 
from context to be the same face, in a new light. Even without explicit 
labeling, we can learn the faces of others through the ongoing practice 
of anchoring multiple views to a single identity in social interaction. 

We might also wonder about the human starting point in face recognition. 
Progress in deep learning has in some way made this worry more vivid. 
Earlier approaches to identifying the significant dimensions of facial 
variation could not secure human-level performance even by positing 
100,000 such dimensions. Newer models are much more compact: 
when judging an identity, DeepFace ultimately relies on no more than 
4,096 dimensions, and in practice roughly 1,000. FaceNet boils things 
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down to a 128-dimension vector, which can be quantized to one byte 
per dimension by the end of training, without loss of accuracy.53 These 
128 dimensions are not characteristics directly describable in natural 
language (they are more like high-level geometrical abstractions than 
say, which of eight major nose shapes or eye colours someone has); yet 
somehow, the set of these specifications is enough to individuate human 
faces as well as humans can. The compactness of this representation 
might make us wonder whether humans could have some innate ability 
to discern such a set of dimensions, naturally selected for its social value. 
When it seemed that more than 100,000 pre-engineered dimensions 
were needed to specify a face, it was harder to see how our genome 
could have encoded the corresponding set of dimensions in our face 
recognition area; now that it has been demonstrated that the task of 
discerning faces can be executed more economically, the question has 
been reinvigorated. 

This question is part of a larger set of questions about the extent to 
which the human capacity to discern faces is shaped by experience as 
opposed to being genetically hardwired. The primate cortex has some 
areas that are selectively activated by the sight of faces, particularly in 
the inferotemporal cortex (IT). Face recognition is just one specialization 
within the IT; other areas with corresponding characteristic locations 
across primates include areas responsive to places, buildings, tools, 
hands, and bodies; literate humans also have an area for text (the “Visual 
Word Form Area”), activated by written words, but also by braille, and 
by fingerspelling for those who know sign language. Evidence for these 
localizations comes from fMRI activation and from studies of selective 
impairments caused by lesions in the brain.54

The fact that there is cortical specialization for face recognition in a similar 
location in humans and other primates might suggest that this must 
be genetically specified; however, advocates of genetic explanations 
need to explain the existence of similar stereotyped areas for buildings, 
tools, and text, which emerged too recently in our history to have had 
an inherited impact. One recent review examines the options here.55 
According to the “neuronal recycling” theory, primates have genetically 
determined zones to recognize naturally important categories, and 
novel categories such as printed text settle opportunistically into 
whatever natural zone is visually closest, perhaps branching structures 
in the case of text.56 Other theories contend that local specialization is 
driven by the timeline of development, with faces ending up where they 
do because of their prevalence in the early experience of infants,57 or 
that objects end up in locations appropriate to the degree of complexity 
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they present.58 A final class of theory suggests that the ratio between 
curvature and rectilinearity is crucial in localization.59

Hypotheses about the importance of developmental timing and visual 
shape have been tested with experiments on groups of monkeys, who 
were exposed to different textual symbol systems (a blocky set and an 
alphanumeric set) at different ages. The monkeys did develop distinct 
and localized visual sensitivity to these unnatural symbol systems, and 
these localizations were driven by stimulus shape, rather than the age 
of exposure.60 Evidence for an underlying shape-based architecture 
also comes from the observation that face domains in IT are somewhat 
activated by similarly shaped non-face objects, such as apples and clock 
faces.61

A deeper understanding of the relationship between face specialization 
and experience came from a study in which three macaques were 
deprived of early face experience, initially hand-raised for several months 
by human carers wearing welders’ masks, in an otherwise stimulating 
and visually rich environment.62 For ordinary control macaques, the 
face domain is naturally formed by five to six months of age, at which 
point there is strong, consistent activation for faces as opposed to other 
objects, localized in a stereotyped patch of the superior temporal sulcus 
(STS). However, face-deprived monkeys did not show the typical pattern 
when presented with images of faces at six months; there was very weak 
or absent activation in those typical face areas (and elsewhere) for face 
stimuli, although there was ordinary specialization for the perception of 
scenes and bodies, and indeed enhanced recognition of hands. Even 
more strikingly, the face-deprived monkeys did not show preferential 
looking towards faces in images. Preferential looking actually precedes 
the formation of the face area in normal monkeys: as early as ninety 
days, normal monkeys will look preferentially at faces, but the face-
deprived monkeys displayed no signs of this. Arcaro and colleagues 
concluded that even preferential looking towards faces is learned rather 
than innate. “We propose that IT domains develop as follows: very early 
in development, reinforcement affects how infants interact with their 
environment, including what they look at.”63

Assuming that there is some reward for detecting faces, sensitivity for 
faces is not genetically predetermined beyond the proto-organization 
for shape: it is driven and shaped by the set of faces that you see, or 
to quote the subtitle of Arcaro’s 2019 review, “what you see is what 
you get.” So, rather than being the product of some idiosyncratic innate 
module, face recognition works like the recognition of anything else: “the 
development of face processing is guided by the same ubiquitous rules 
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that guide the development of cortex in general.”64 The basic statistical 
learning engine of the cortex works to make whatever discriminations 
will generate reward, developing whatever categorizations of objects 
and events can prove their value in the animal’s pursuit of its ends. 

The superhuman performance of models like FaceNet marks another 
possible point of contrast with human face recognition, but this 
performance is no doubt raised above ours by its exposure to eight 
million identities in its training data. Restrictions in large data work to 
create human-like limitations: for example, in a version of the own-
ethnicity-bias, models show poorer performance in verification tasks on 
ethnicities that were under-represented in their training data.65 It has 
been proposed that models intensively trained on about five thousand 
identities should show human-like performance;66 as far as their basic 
structure is concerned, systems like FaceNet are considered to be “a 
promising model of neurally-inspired face representations in high-level 
visual cortex.”67

4. OVER-PARAMETERIZATION, OVERFITTING, AND DIRECT FIT

One thing that we have in common with systems like DeepFace and 
FaceNet is a wealth of parameters: they have 120–140 million, and 
we doubtless have more, given overall estimates of the number of 
neurons in our brains.68 This raises a puzzle, most obviously in the cases 
of DeepFace and FaceNet, whose parameters and data can easily be 
counted: they are clearly “over-parameterized,” in the sense of having 
more parameters than training data points. Because these models could 
simply use their vast resources to memorize the labels for their training 
data, there is a mystery about how they succeed in generalizing so well.69 

Classical methods impose considerable restraint in adding parameters 
to a model. A first-order polynomial (two parameters) will draw a straight 
(perhaps sloped) line through a noisy cloud of data; a second-order 
polynomial (three parameters) will draw a parabolic curve, which might 
in some cases come closer to capturing the shape of the cloud. We can 
keep adding parameters, raising the degree of the linear function until 
it oscillates as much as needed to come arbitrarily close to each of the 
given data points; however, if there is noise in this initial data, the high-
degree polynomial that laces its way through all those noisy data points 
will have very weak predictive power both between and beyond these 
points. The complex theory represented by our high-degree polynomial 
will also be unstable, requiring radical revision each time a new data 
point is added (with its measure of random noise needing to be captured 
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by the addition of further parameters, plus extensive adjustments to the 
coefficients of existing parameters). To avoid such “explosive overfitting,” 
traditional statistical methods restrict the number of parameters to 
make the model less sensitive to peculiarities such as noise in the data: 
optimally, traditional models have just enough parameters to ensure 
that their expressive power matches the complexity of the phenomenon 
being modelled. With too few parameters, the model will underfit the 
data, missing the subtlety of the phenomenon (this is the problem of 
‘bias’); with too many parameters, the model will overfit, sidetracked 
by irrelevant characteristics of the given data in a way that will make 
it a poor representation of the underlying phenomenon, and a poor 
predictive guide to future data (this is the problem of “variance”). It 
was traditionally thought that a trade-off between bias and variance 
was inevitable, and best balanced by adding parameters to reduce 
bias just until the point where variance starts to rise (“ideal fit”). The 
mystery is how massively over-parameterized models avoid problematic 
overfitting, especially given that they are in practice trained to achieve 
virtually zero error on their training data.

The answer to this puzzle seems to be that the trade-off between bias and 
variance holds only up to a point, and something interesting happens 
on the far side of that point, when very complex models meet very large 
data.70 Assuming a fixed set of data and some set of dimensions the 
learning model must uncover, expanding the complexity of the model 
by adding parameters will at first improve its performance (as the 
model becomes complex enough to express the regularities in those 
dimensions), and then worsen it (as the model becomes too complex, 
overfitting noise). However, if we continue to increase the complexity 
of the model enormously, past the point at which its parameters can 
perfectly fit all the training data (a point known as the “interpolation 
threshold”), then both bias and variance can sink, and then keep sinking: 
“increasing model complexity past the interpolation threshold can 
actually result in an increase in model performance without succumbing 
to overfitting.”71

On the far side of the interpolation threshold, adding parameters is 
no longer improving the model’s fidelity to its training data points, as 
these can already be captured perfectly. Instead, in an appropriately 
designed model, additional parameters enable better sampling of the 
dimensions of the phenomenon that the model is intended to capture. 
This big-data, big-model strategy has no special value where that 
number of dimensions is small because the underlying phenomenon is 
simple. Wherever the observational data is generated by some natural 
phenomenon which actually has the simplicity of a quadratic equation, 
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the “ideal fit” three-parameter model will be perfect, and big data will 
not make things better. However, when the underlying phenomenon is 
very complex, and we have data rich enough to reflect this complexity, 
over-parameterization becomes attractive.

Uri Hasson and colleagues call the iterative optimization of neural 
networks a process of “direct fit” (as opposed to ideal fit). In their terms, 
an ideal-fit model “learns the underlying generative or global structure 
of the data by exposing a few latent factors or rules”; such a model 
has the power to extrapolate from a narrow region of data points to the 
rest of reality.72 In this kind of modeling, a simple equation (such as 
e=mc2) can be found to hold very broadly on the basis of restricted local 
observations. By contrast, a direct-fit model “uses local computations 
to situate novel observations within the context of past observations; 
it does not rely on explicit modeling of the over-arching generative 
principles.”73 Direct-fit models interpolate well between their training 
data points by means of generic low-level methods such as averaging 
and nearest-neighbor computations; while they can capture extremely 
complex patterns within this sampled area, they do not extrapolate 
meaningfully beyond it.

An ideal-fit model for face recognition would need to incorporate all 
the laws giving rise to perceptible human facial variation, including 
laws of genetics, epigenetics, physiology, optics, even sociological 
rules about facial expressions and cosmetics. To complicate matters 
further, faces can be nearly replicated in twin formation, or scarred 
in hard-to-predict accidents. If some ideal-fit model is even possible, 
from a God’s-eye perspective, it would seem to demand a God-like 
computational capacity: to generate a formula predictive of human 
facial variation, it seems one would have to simulate a massive array 
of causes that interact in a nonlinear fashion. A direct-fit model for 
face recognition, by contrast, can be shaped simply by encountering 
multiple faces with enough variation to make them serviceable guides 
to the rewarding goal of differentiating individuals. Generative ideal-
fit models work by identifying the laws behind a small patch of data, 
and extrapolating them to unseen data; by contrast, direct-fit models 
work by densely sampling a larger range of data and interpolating well 
within that field, despite not extrapolating well outside it.74 Where ideal-
fit models sample a small zone of data and work well to predict simple 
phenomena that occur uniformly both within that zone and beyond it, 
direct-fit models are like sheets of fabric spread over a wide range of 
data points in some immensely convoluted landscape, pulled tighter to 
that complex topology by the optimization of their excess parameters.
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The adaptive character of direct-fit models makes them sensitive to local 
complexities. To distinguish two people, I do not need a consciously 
available list of characteristics separating possible percepts of them; 
I just have to have an adequate level of experience of their faces, 
under conditions where I independently know who is who. What will 
count as an adequate level of experience with a face is not settled by 
its intrinsic character alone, but also by the context of other available 
faces: for example, if a person has a twin, one will typically need to have 
much more extensive experience with the pair of them before one can 
tell safely them apart. Those familiar with twins can have heightened 
sensitivity to their small facial asymmetries and skin markings without 
needing to apply that particular sensitivity to every other face they 
encounter; driven by local calculations, direct-fit models enable tailored 
strategies for different identities.

The local flexibility of direct-fit models is attractive, but it should be 
underscored that it does not constitute an advance guarantee of their 
success in any particular case. Given limits on our vision and processing, 
some very similar faces may remain indistinguishable for some of us, no 
matter how much data we gain. If our face recognition works along the 
lines of a Voronoi tessellation of face space, it is a tessellation in which 
some anchor points may effectively coincide. In addition, new anchor 
points may need to be added to the map as we go along, but again, 
thanks to the local character of direct-fit models, the need for these new 
anchor points does not compromise the safety of our identification of 
individuals further away in face space.

Despite occasional encounters with indistinguishable faces, the learning 
rule behind human face recognition seems to presuppose that for 
each new person we encounter, there is some many-to-one mapping 
defining a zone of percepts that can come only from this individual. 
Learning what Idris Elba looks like, or coming to be able to recognize 
his face, going forward, is not the same as matching a single picture of 
him to the label; it is mapping this distinctive larger zone of possibilities 
for him. The very idea that there is such a distinctive zone assumes that 
there is a type of percept that can only come from the face of Idris 
Elba. Classical approaches to face recognition assumed that we needed 
to start by defining some set of dimensions adequate to support the 
construction of a set of these types, one for each individual we might 
encounter. Direct-fit approaches work by first presuming that there is a 
type unique to each individual, and using this presumption to drive the 
development and use of a set of dimensions powerful enough to map 
the contours of this type with the given data. Even if in some cases (truly 
indistinguishable twins) the presumption fails, as long as it is generally 
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successful enough, it will continue to be applied. In a learning context 
where Idris Elba is independently labeled, it may not matter whether 
we can recognize him on the basis of his facial characteristics; however, 
in more interesting test contexts, Idris Elba will not be independently 
labeled, and it is exactly because we keep facing such test contexts that 
we develop the capacity for face recognition. Given the importance of 
distinguishing individuals, together with the facts about actual human 
facial distinctiveness, it pays off over time to identify individuals this 
way, and as we discover through trial and error that we are largely able 
to do so, this reinforces our tendency to seek to differentiate people 
according to the rule that there is a type of percept that can only come 
from the face of each individual. Because we learn from prediction error, 
the fact that we sometimes get it wrong drives learning of the specifics 
of faces and the dimensions individuating them, rather than dissuading 
us from continuing to apply the rule.

This system incorporates some strong presuppositions: human face 
recognition would collapse in a world with chaotic faces, suddenly 
rampant use of latex masks, or genetic changes leading to a 
population of faces whose individual differences were all too subtle 
for us to perceive. Ultimately, it is a somewhat contingent fit between 
characteristics of human faces and human cognition that enables the 
kind of safely individuating judgements of which humans are generally 
capable. Making a safe judgment of identity on the basis of some 
percepts is a matter of being sufficiently well-adapted to local faces that 
these percepts fall within the zone uniquely picking out this identity, but 
again, because safety is a local matter, it is not threatened by the merely 
hypothetical possibility that there might fail to be such a zone for this 
individual, or indeed for any individual, under imaginative extrapolation 
to different circumstances.

5. RECOGNIZING KNOWLEDGE

There is a parallel between the recognition of a face and the recognition 
of knowledge. Knowledge can be uniquely characterized as the most 
general factive mental state; on this view, to know is to be in the type 
of mental state whose distinctive character is that it can only be held 
towards truths.75 Learning the distinctive contours of this type gives 
us predictive power, going forward: with sufficient experience, we 
can encounter a new case of this type and recognize the subject as 
knowing. In a learning context in which it is independently stipulated 
that the proposition p that the subject judges to be the case is in fact 
true, there may be no exciting practical difference (with respect to p) 
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in recognizing that the subject knows that p, as opposed to simply 
happening to be right that p. However, in more interesting test contexts, 
the key proposition’s truth value will not be independently supplied to 
us, and it is exactly because we keep facing these test contexts that 
we develop the capacity for knowledge recognition: it pays off over 
time to recognize situations in which people have a state of mind of a 
type that one can only have to truths, and as we discover through trial 
and error that we are largely able to do so, this reinforces our tendency 
to seek out signs of these truth-anchored mental states in each other. 
Crucially, we can detect not only knowledge that p is the case, where p 
is independently known to be true, but we can also detect knowledge-
wh. So, for example, from where you are now seated, you can see me 
as knowing whether this coin I am looking at is heads or tails, because 
I instantiate a familiar pattern of perceptual access. This is a clear and 
central enough case that you do not need to know the precise visual 
input I am receiving to make this determination; you can see me as 
close enough that small variations in that input will not disrupt my lock 
on the truth. 

As the coin example illustrates, the capacity to differentiate patterns of 
knowledge and ignorance in our fellow agents enables us to exploit their 
epistemic access to those parts of reality for which their vantage point is 
better than ours. If you want to know which way the coin in my palm is 
facing, you know you can ask me. While many primates show selective 
social learning from peers recognized as knowledgeable, humans show 
exceptionally active use of the knowledge of their peers,76 guided by 
an exceptionally well-developed sense of what others do and do not 
know, a sense informed by continual feedback from conversational 
exchanges77 and extra-conversational encounters with reality.

This system incorporates some strong presuppositions. Our systematic 
tendency to attribute knowledge presupposes that there really is a 
type of state of mind that subjects can only have only to truths. This 
presupposition would collapse in a world with too much variation either 
in objective reality or in the cognitive capacities of the subjects who 
surround us; as it is, the objective and cognitive regularities in our world 
enable us to have, and subsequently to detect in each other, patterns 
of knowledge, or successful cognitive adaptation to reality. We can be 
mistaken about whether someone is successfully adapted on a given 
point, just as we can be mistaken in identifying someone who turns out 
to have a secret twin. But because we learn from prediction error, the fact 
that we sometimes get knowledge attributions wrong drives learning of 
the specifics of types of interactions between agents and our shared 
environment, and the dimensions separating types of ignorance from 
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ways of knowing, rather than dissuading us from continuing to apply the 
rule that there is some type of state subjects can have only to truths.

Our capacity for face recognition is not introspectable because face 
recognition is a high-dimensional problem that we solve through intuitive 
visual processing rather than reportable operations on consciously 
available contents. Face recognition is a subtle capacity, mastered for 
creatures like us only by grappling with an appropriately massive body of 
data. But face recognition itself is a type of knowledge. As a consequence, 
the problem of detecting knowledge inherits the complexity of the 
problem of detecting faces. Meanwhile, face recognition is just one of 
a great variety of human ways of knowing: we have all kinds of other 
perceptual and inferential capacities. We should not expect the contours 
of this zone to be discoverable in advance through any simple set of rules 
or hand-engineered features that we could state in a reductive analysis. 
At the same time, there is an important similarity between examining 
multiple cases of knowledge and examining multiple views of the same 
face: something about the actual shape of the target domain becomes 
clearer as we see many instances of it.

I want to close on the question of what we can still learn from tricky 
hypothetical cases. I believe there is a difference between extrapolation 
and interpolation here: if my understanding of knowledge recognition 
is correct, then the most helpful cases are importantly realistic, like 
Plato’s case of Theodorus mistaken for Theaetetus at a distance,78 or 
Sosa’s case of his knowledge of his own marital status.79 If cases start 
to get extrapolative, lying far outside the zone within which our natural 
understanding of knowledge is anchored, then I am far from certain that 
they have the same instructive value. However, the boundary of that 
zone is itself something we may only be able to learn from trial and error, 
an ongoing process in which even the most speculative epistemology 
has much to contribute.

NOTES
1. Plato, Meno, 98b.

2. Machery et al., “Gettier Across Cultures”; Nagel, San Juan, and Mar, “Lay Denial 
of Knowledge for Justified True Beliefs.”

3. Horschler, Santos, and MacLean, “Do Non-human Primates Really Represent 
Others’ Ignorance?”; Kaminski, Call, and Tomasello, “Chimpanzees Know What 
Others Know, But Not What They Believe.”

4. Plato, Meno, 97ab.

5. Dharmottara, c. 770CE, as reported in Dreyfus, Recognizing Reality, 292.

6. Sosa, “How Must Knowledge Be Modally Related to What Is Known?” 381.



PROCEEDINGS AND ADDRESSES OF THE APA, VOLUME 97

208

7. E.g., Greco, “Safety, Explanation, Iteration”; Pritchard, Epistemic Luck; Williamson, 
Knowledge and Its Limits.

8. Comesaña, “Unsafe Knowledge”; Neta and Rohrbaugh, “Luminosity and the 
Safety of Knowledge”; Zhao, “Knowledge Without Safety.”

9. Sosa, A Virtue Epistemology; Sosa, Reflective Knowledge.

10. Sosa, Judgment and Agency; Sosa, Epistemic Explanations.

11. E.g., Lackey, “What Luck Is Not.”

12. Kelp, “Knowledge and Safety.”

13. Grundmann, “Saving Safety from Counterexamples.”

14. Sosa, Judgment and Agency; Sosa, Epistemic Explanations.

15. Hirvelä and Paterson, “Need Knowing and Acting Be SSS-Safe?”

16. Jenkins, Dowsett, and Burton, “How Many Faces Do People Know?”

17. Barragan-Jason, Cauchoix, and Barbeau, “Neural Speed.”

18. Tanaka, “The Entry Point of Face Recognition.”

19. Average competence seems to admit of fairly wide variance: the study estimating 
average recognition of 5,000 faces aimed just to come within the right order of 
magnitude, finding a standard deviation of about 2,000 around that mean, but with 
their twenty-five participants all falling within the 1,000–10,000 range (Jenkins et 
al., “How Many Faces Do People Know?”). In what follows, I focus on neurotypical 
performance, setting aside both congenital and acquired prosopagnosia (face-
blindness); however, section 3 will argue that the general points about safety do 
not rely on any peculiarity of face recognition. Similar pattern-detecting capacities 
such as voice identification (generally unimpaired in those with prosopagnosia: 
Liu et al., “The Processing of Voice Identity in Developmental Prosopagnosia”) 
have the same basic structure as face recognition, so the epistemic lessons here 
apply broadly.

20. Lucas and Henneberg, “Are Human Faces Unique?”

21. Jenkins et al., “Variability in Photos of the Same Face,” 321.

22. Jenkins et al., “Variability in Photos of the Same Face,” 315.

23. Jenkins et al., “Variability in Photos of the Same Face,” Experiment 2.

24. Burton et al., “Face Recognition in Poor-Quality Video.”

25. Megreya and Burton, “Matching Faces to Photographs.”

26. White et al., “Passport Officers’ Errors in Face Matching.”

27. Young and Burton, “Are We Face Experts?” 106.

28. Malpass and Kravitz, “Recognition for Faces of Own and Other Race.”

29. Chiroro and Valentine, “An Investigation of the Contact Hypothesis.”

30. Rhodes and Anastasi, “The Own-Age Bias in Face Recognition”; Wiese, Komes, 
and Schweinberger, “Ageing Faces in Ageing Minds.”

31. Sporer, “Recognizing Faces of Other Ethnic Groups.”

32. Valentine, “A Unified Account.”

33. Lewis and Johnston, “Effects of Caricaturing Faces.”



209

SOSA PRIZE LECTURE – CENTRAL DIVISION

34. Bruce and Young, “Understanding Face Recognition,” 308.

35. Bruce and Young, “Understanding Face Recognition,” 311.

36. Chen et al., “Blessing of Dimensionality.”

37. Taigman et al., “Deepface.”

38. Krizhevsky, Sutskever, and Hinton, “Imagenet Classification with Deep 
Convolutional Neural Networks,” 88.

39. Intended just to be illustrative, the example is unrealistic because even without 
applying an explicit regularization technique such as dropout, a model with 
DeepFace’s architecture would not end up overfitting so crudely when trained on 
a dataset with the rich structure of a stack of human face photos, not least because 
stochastic gradient descent itself works as a form of implicit regularization (on 
this point, see Ma, Bassily, and Belkin, “The Power of Interpolation”).

40. Reliance on genuine patterns in the data depends on the actual availability of 
those patterns. Even with explicit regularization methods such as dropout, it is 
still possible for a model the size of DeepFace to simply memorize its input, 
having vastly more parameters than data points in its training set: whether a 
model actually works by identifying generalizable features of its data depends 
on the relationship between the level of structure in the data, the architecture, 
and the learning algorithm of the model (Zhang et al., “Understanding Deep 
Learning (Still) Requires Rethinking Generalization”).

41. Kukačka, Golkov, and Cremers, “Regularization for Deep Learning.”

42. The question of what constitutes a small change in input is a complex one. 
Changes that appear small to humans (to the point of being invisible to the naked 
eye) may be large for image classification models, for example because of their 
heavier reliance on texture rather than overall shape in classifications. Together 
with label noise, this disparity drives the problem of adversarial examples 
(Goodfellow, Shlens, and Szegedy, “Explaining and Harnessing Adversarial 
Examples”), a problem beyond the scope of the current paper. For arguments 
that adversarial examples may reflect epistemic strengths as well as weaknesses, 
and do not necessarily point to a fundamental difference between human and 
machine learning, see (Buckner, “Black Boxes or Unflattering Mirrors?”; Zhou and 
Firestone “Humans Can Decipher Adversarial Images”; Ilyas et al., “Adversarial 
Examples Are Not Bugs, They Are Features”).

43. This version will remove the final classification layer with the specific identities 
of the training set, but retain the core layers of the model that extract whatever 
characteristics successfully differentiated those originally trained identities.

44. Taigman et al., “Deepface,” Table 4.

45. Taigman et al., “Deepface,” section 5.3.

46. Huang et al., “Labeled Faces in the Wild.”

47. Schroff, Kalenichenko, and Philbin, “Facenet.”

48. Schroff et al., “Facenet,” 817.

49. Schroff et al., “Facenet,” 822.

50. For a visualization of this effect, see O’Toole et al., “Face Space Representations 
in Deep Convolutional Neural Networks,” Figure 3.

51. Douven and Gärdenfors, “What Are Natural Concepts?” 320.

52. Buckner, “Black Boxes or Unflattering Mirrors?”



PROCEEDINGS AND ADDRESSES OF THE APA, VOLUME 97

210

53. Schroff et al., “Facenet,” 821.

54. Reviewed in Arcaro, Schade, and Livingstone, “Universal Mechanisms and the 
Development of the Face Network.”

55. Arcaro et al., “Universal Mechanisms and the Development of the Face Network.”

56. Dehaene and Cohen, “Cultural Recycling of Cortical Maps.”

57. Quartz and Sejnowski, “The Neural Basis of Cognitive Development.”

58. Gauthier and Palmeri, “Visual Neurons.”

59. Nasr, Echavarria, and Tootell, “Thinking Outside the Box.”

60. Srihasam et al., “Behavioral and Anatomical Consequences”; Srihasam, Vincent, 
and Livingstone, “Novel Domain Formation.”

61. Tsao et al., “A Cortical Region Consisting Entirely of Face-Selective Cells.” This 
shape-based explanation on its own does not cover all forms of specialization 
within IT; specifically, it does not cover the shared localization of visual text, 
Braille and fingerspelling for the Deaf. However, Arcaro and colleagues argue that 
the shape-based (or scale and curvature-driven) localization of visual objects is 
itself an instance of a more general principle about computational requirements 
determining localization. In their view, the key commonality among the various 
forms of text recognition that are handled in the Visual Word Form Area is that 
they require rapid and repetitive fine-grained computation, so that ultimately, 
“these results on cross-modal plasticity indicate commonalities in general 
computational requirements rather than commonalities in what the computations 
are used for” (“Universal Mechanisms,” 364).

62. Arcaro et al., “Seeing Faces Is Necessary for Face-Domain Formation.”

63. Arcaro et al., “Seeing Faces Is Necessary for Face-Domain Formation,” 1411.

64. Arcaro et al., “Universal Mechanisms,” 341.

65. Wang et al., “Racial Faces in the Wild.”

66. Hasson, Nastase, and Goldstein, Direct Fit to Nature,” 421.

67. O’Toole et al., “Face Space Representations,” 807.

68. The width of those estimates and the varying density of neurons and synapses 
in different brain regions make it hard to estimate the number of parameters 
devoted to face recognition with any precision (Azevedo et al., “Equal Numbers 
of Neuronal and Nonneuronal Cells Make the Human Brain an Isometrically 
Scaled-up Primate Brain”; Lent et al., “How Many Neurons Do You Have”).

69. It has been demonstrated that similarly sized models can simply memorize 
similarly sized training data, despite having explicit regularization measures: 
Zhang and colleagues (“Understanding Deep Learning (Still) Requires Rethinking 
Generalization”) were able to train a generally successful image recognition 
model using completely random image labels, reducing its training error to zero. 
Trained this way, the model of course cannot generalize beyond its training set; 
however, when trained with the same set of images with correct labels, the very 
same model architecture generalizes well.

70. Belkin, Hsu, and Mitra, “Overfitting or Perfect Fitting?”; Loog et al., “A Brief 
Prehistory of Double Descent.”

71. Rocks and Mehta, “Memorizing without Overfitting,” 14.

72. Hasson et al., “Direct Fit to Nature,” 418.



211

SOSA PRIZE LECTURE – CENTRAL DIVISION

73. Hasson et al., “Direct Fit to Nature,” 418–19.

74. Hasson et al., “Direct Fit to Nature,” Figure 1.

75. Williamson, Knowledge and Its Limits, ch. 1.

76. Tomasello, Becoming Human.

77. Westra and Nagel, “Mindreading in Conversation.”

78. Plato, The Theaetetus of Plato, 193b.

79. Sosa, “The Analysis of ’Knowledge that p’,” 3.

REFERENCES

Arcaro, M. J., P. F. Schade, and M. S. Livingstone. “Universal Mechanisms and the 
Development of the Face Network: What You See Is What You Get.” Annual Review of 
Vision Science 5 (2019): 341–72. 

Arcaro, M. J., P. F. Schade, J. L. Vincent, C. R. Ponce, and M. S. Livingstone. “Seeing 
Faces Is Necessary for Face-Domain Formation.” Nature Neuroscience 20, no. 10 
(2017): 1404–12.

Azevedo, F. A., L. R. Carvalho, L. T. Grinberg, J. M. Farfel, R. E. L. Ferretti, R. E. P. 
Leite, W. J. Filho, R. Lent, and S. Herculano-Houzel. “Equal Numbers of Neuronal and 
Nonneuronal Cells Make the Human Brain an Isometrically Scaled-up Primate Brain.” 
Journal of Comparative Neurology 513, no. 5 (2009): 532–41. 

Barragan-Jason, G., M. Cauchoix, and E. Barbeau. “The Neural Speed of Familiar Face 
Recognition.” Neuropsychologia 75 (2015): 390–401. 

Belkin, M., D. J. Hsu, and P. Mitra. “Overfitting or Perfect Fitting? Risk Bounds for 
Classification and Regression Rules that Interpolate.” Advances in Neural Information 
Processing Systems 31 (2018). 

Bruce, V., and A. Young. “Understanding Face Recognition.” British Journal of 
Psychology 77, no. 3 (1986): 305–27. 

Buckner, C. “Black Boxes or Unflattering Mirrors? Comparative Bias in the Science of 
Machine Behaviour.” British Journal for the Philosophy of Science, forthcoming.

Burton, A. M., S. Wilson, M. Cowan, and V. Bruce. “Face Recognition in Poor-Quality 
Video: Evidence from Security Surveillance.” Psychological Science 10, no. 3 (1999): 
243–48. 

Chen, D., X. Cao, F. Wen, and J. Sun. “Blessing of Dimensionality: High-Dimensional 
Feature and Its Efficient Compression for Face Verification.” Paper presented at the 
Proceedings of the IEEE conference on computer vision and pattern recognition, 2013.

Chiroro, P., and T. Valentine. “An Investigation of the Contact Hypothesis of the Own-
Race Bias in Face Recognition.” The Quarterly Journal of Experimental Psychology 48, 
no. 4 (1995): 879–94. 

Comesaña, J. “Unsafe Knowledge.” Synthese 146 (2005): 395–404. 

Dehaene, S., and L. Cohen. “Cultural Recycling of Cortical Maps.” Neuron 56, no. 2 
(2007): 384–98.

Douven, I., and P. Gärdenfors. “What Are Natural Concepts? A Design Perspective.” 
Mind and Language 35, no. 3 (2020): 313–34. 



PROCEEDINGS AND ADDRESSES OF THE APA, VOLUME 97

212

Dreyfus, G. B. Recognizing Reality: Dharmakirti’s Philosophy and Its Tibetan 
Interpretations. Albany: Suny Press, 1997.

Gauthier, I., and T. J. Palmeri. “Visual Neurons: Categorization-based Selectivity.” 
Current Biology 12, no. 8 (2002): R282–R284. 

Goodfellow, I. J., J. Shlens, and C. Szegedy. “Explaining and Harnessing Adversarial 
Examples.” arXiv preprint arXiv:1412.6572 (2014).

Greco, D. “Safety, Explanation, Iteration.” Philosophical Issues 26, no. 1 (2016): 187–208.

Grundmann, T. “Saving Safety from Counterexamples.” Synthese 197, no. 12 (2020): 
5161–85. 

Hasson, U., S. A. Nastase, and A. Goldstein. “Direct Fit to Nature: An Evolutionary 
Perspective on Biological and Artificial Neural Networks.” Neuron 105, no. 3 (2020): 
416–34. 

Hirvelä, J., and N. Paterson. “Need Knowing and Acting Be SSS-Safe?” Thought: A 
Journal of Philosophy 10, no. 2 (2021): 127–34. 

Horschler, D. J., L. R. Santos, and E. L. MacLean. “Do Non-human Primates Really 
Represent Others’ Ignorance? A Test of the Awareness Rlations Hypothesis.” Cognition 
190 (2019): 72–80. 

Huang, G. B., M. Mattar, T. Berg, and E. Learned-Miller. “Labeled Faces in the Wild: 
A Database for Studying Face Recognition in Unconstrained Environments.” Paper 
presented at the Workshop on faces in’Real-Life’Images: Detection, Alignment, and 
Recognition, 2008.

Ilyas, A., S. Santurkar, D. Tsipras, L. Engstrom, B. Tran, and A. Madry. “Adversarial 
Examples Are Not Bugs, They Are Features.” Advances in Neural Information Processing 
Systems 32 (2019). 

Jenkins, R., A. Dowsett, and A. Burton. “How Many Faces Do People Know?” 
Proceedings of the Royal Society B 285, no. 1888 (2018): 20181319. 

Jenkins, R., D. White, X. Van Montfort, and A. M. Burton. “Variability in Photos of the 
Same Face.” Cognition 121, no. 3 (2011): 313–23.

Kaminski, J., J. Call, and M. Tomasello. “Chimpanzees Know What Others Know, But 
Not What They Believe.” Cognition 109, no. 2 (2008): 224–34. 

Kelp, C. “Knowledge and Safety.” Journal of Philosophical Research 34 (2009): 21–31. 

Krizhevsky, A., I. Sutskever, and G. E. Hinton. “Imagenet Classification with Deep 
Convolutional Neural Networks.” Advances in Neural Information Processing Systems 
25 (2012): 1097–1105. 

Kukačka, J., V. Golkov, and D. Cremers. “Regularization for Deep Learning: A Taxonomy.” 
arXiv preprint arXiv:1710.10686 (2017).

Lackey, J. “What Luck Is Not.” Australasian Journal of Philosophy 86, no. 2 (2008): 
255–67. 

Lent, R., F. A. Azevedo, C. H. Andrade-Moraes, and A. V. Pinto. “How Many Neurons 
Do You Have? Some Dogmas of Quantitative Neuroscience Under Revision.” European 
Journal of Neuroscience 35, no. 1 (2012): 1–9. 

Lewis, M. B., and R. A. Johnston. “A Unified Account of the Effects of Caricaturing 
Faces.” Visual Cognition 6, no. 1 (1999): 1–41. 

Liu, R. R., S. L. Corrow, R. Pancaroglu, B. Duchaine, and J. J. Barton. “The Processing of 
Voice Identity in Developmental Prosopagnosia.” Cortex 71 (2015): 390–97. 



213

SOSA PRIZE LECTURE – CENTRAL DIVISION

Loog, M., T. Viering, A. Mey, J. H. Krijthe, and D. M. Tax. “A Brief Prehistory of Double 
Descent.” Proceedings of the National Academy of Sciences 117, no. 20 (2020): 
10625–26.

Lucas, T., and M. Henneberg. “Are Human Faces Unique? A Metric Approach to 
Finding Single Individuals without Duplicates in Large Samples.” Forensic Science 
International 257 (2015): 514.e1–514.e6.

Ma, S., R. Bassily, and M. Belkin. “The Power of Interpolation: Understanding the 
Effectiveness of SGD in Modern Over-Parametrized Learning.” Paper presented at the 
International Conference on Machine Learning, 2018.

Machery, E., S. Stich, D. Rose, A. Chatterjee, K. Karasawa, N. Struchiner, S. Sirker, N. 
Usui, and T. Hashimoto. “Gettier Across Cultures.” Nous (2015).

Malpass, R. S., and J. Kravitz. “Recognition for Faces of Own and Other Race.” Journal 
of Personality and Social Psychology 13, no. 4 (1969): 330. 

Megreya, A. M., and A. M. Burton. “Matching Faces to Photographs: Poor Performance 
in Eyewitness Memory (without the Memory).” Journal of Experimental Psychology: 
Applied 14, no. 4 (2008): 364. 

Nagel, J., V. San Juan, and R. Mar. “Lay Denial of Knowledge for Justified True Beliefs.” 
Cognition 129, no. 3 (2013): 652–61. 

Nasr, S., C. E. Echavarria, and R. B. Tootell. “Thinking Outside the Box: Rectilinear 
Shapes Selectively Activate Scene-Selective Cortex.” Journal of Neuroscience 34, no. 
20 (2014): 6721–35. 

Neta, R., and G. Rohrbaugh. “Luminosity and the Safety of Knowledge.” Pacific 
Philosophical Quarterly 85, no. 4 (2004): 396–406. 

O’Toole, A. J., C. D. Castillo, C. J. Parde, M. Q. Hill, and R. Chellappa. “Face Space 
Representations in Deep Convolutional Neural Networks.” Trends in Cognitive 
Sciences 22, no. 9 (2018): 794–809. 

Plato. Meno. Translated by B. Jowett. New York: Liberal Arts Press, 1949.

———. The Theaetetus of Plato. Translated by M. J. Levett. Indianapolis: Hackett, 1990.

Pritchard, D. Epistemic Luck. Oxford: Oxford University Press, 2005.

Quartz, S. R., and T. J. Sejnowski. “The Neural Basis of Cognitive Development: A 
Constructivist Manifesto.” Behavioral and Brain Sciences 20, no. 4 (1997): 537–56. 

Rhodes, M. G., and J. S. Anastasi. “The Own-Age Bias in Face Recognition: A Meta-
Analytic and Theoretical Review.” Psychological Bulletin 138, no. 1 (2012): 146. 

Rocks, J. W., and P. Mehta. “Memorizing without Overfitting: Bias, Variance, and 
Interpolation in Overparameterized Models.” Physical Review Research 4, no. 1 (2022): 
013201.

Schroff, F., D. Kalenichenko, and J. Philbin. “Facenet: A Unified Embedding for 
Face Recognition and Clustering.” Paper presented at the Proceedings of the IEEE 
conference on computer vision and pattern recognition, 2015.

Sosa, E. “The Analysis of ’Knowledge that p’.” Analysis, 25, no. 1 (1964): 1–8. 

———. “How Must Knowledge Be Modally Related to What Is Known?” Philosophical 
Topics 26, no. 1/2 (1999): 373–84. 

———. A Virtue Epistemology: Apt Belief and Reflective Knowledge, volume I. Oxford: 
Oxford University Press, 2007.



PROCEEDINGS AND ADDRESSES OF THE APA, VOLUME 97

214

———. Reflective Knowledge: Apt Belief and Reflective Knowledge, volume II. Oxford: 
Oxford University Press, 2009.

———. Judgment and Agency. New York: Oxford University Press, 2015.

———. Epistemic Explanations: A Theory of Telic Normativity, and What It Explains. 
Oxford: Oxford University Press, 2021.

Sporer, S. L. “Recognizing Faces of Other Ethnic Groups: An Integration of Theories.” 
Psychology, Public Policy, and Law 7, no. 1 (2001): 36. 

Srihasam, K., J. B. Mandeville, I. A. Morocz, K. J. Sullivan, and M. S. Livingstone. 
“Behavioral and Anatomical Consequences of Early Versus Late Symbol Training in 
Macaques.” Neuron 73, no. 3 (2012): 608–19. 

Srihasam, K., J. L. Vincent, and M. S. Livingstone. “Novel Domain Formation Reveals 
Proto-Architecture in Inferotemporal Cortex.” Nature Neuroscience 17, no. 12 (2014): 
1776–83. 

Taigman, Y., M. Yang, M. A. Ranzato, and L. Wolf. “Deepface: Closing the Gap to 
Human-Level Performance in Face Verification.” Paper presented at the Proceedings 
of the IEEE conference on computer vision and pattern recognition, 2014.

Tanaka, J. W. “The Entry Point of Face Recognition: Evidence for Face Expertise.” 
Journal of Experimental Psychology: General 130, no. 3 (2001): 534. 

Tomasello, M. Becoming Human: A Theory of Ontogeny. Cambridge: Belknap Press, 
2019.

Tsao, D. Y., W. A. Freiwald, R. B. Tootell, and M. S. Livingstone. “A Cortical Region 
Consisting Entirely of Face-Selective Cells.” Science 311, no. 5761 (2006): 670–74. 

Valentine, T. “A Unified Account of the Effects of Distinctiveness, Inversion, and Race 
in Face Recognition.” The Quarterly Journal of Experimental Psychology 43, no. 2 
(1991): 161–204. 

Wang, M., W. Deng, J. Hu, X. Tao, and Y. Huang. “Racial Faces in the Wild: Reducing 
Racial Bias by Information Maximization Adaptation Network.” Paper presented at the 
Proceedings of the ieee/cvf international conference on computer vision, 2019.

Westra, E., and J. Nagel. “Mindreading in Conversation.” Cognition 210 (2021): 1–15. 

White, D., R. I. Kemp, R. Jenkins, M. Matheson, and A. M. Burton. “Passport Officers’ 
Errors in Face Matching.” PloS One 9, no. 8 (2014): e103510. 

Wiese, H., J. Komes, and S. R. Schweinberger. “Ageing Faces in Ageing Minds: 
A Review on the Own-Age Bias in Face Recognition.” Visual Cognition 21, no. 9-10 
(2013): 1337–63. 

Williamson, T. Knowledge and Its Limits. New York: Oxford University Press, 2000.

Young, A. W., and A. M. Burton. “Are We Face Experts?” Trends in Cognitive Sciences 
22, no. 2 (2018): 100–10.

Zhang, C., S. Bengio, M. Hardt, B. Recht, and O. Vinyals. “Understanding Deep 
Learning (Still) Requires Rethinking Generalization.” Communications of the ACM 64, 
no. 3 (2021): 107–15. 

Zhao, H. “Knowledge Without Safety.” Synthese 197, no. 8 (2020): 3261–78. 

Zhou, Z., and C. Firestone. “Humans Can Decipher Adversarial Images.” Nature 
Communications 10, no. 1 (2019): 1334.


