Supplement 1 to "'Adding Up' Reasons": Proof of Theorem 2

Shyam Nair

August 4, 2021

1 Introduction

Recall the basic set up of our discussion quoted from the main text:
We assume that propositions are elements of an algebra based on a partition $U=\left\{A_{1}, A_{2}, \ldots, A_{n}\right\}$ where the A_{i} 's are the cells of the partition and $n \geq 3$. So a proposition is a (possibly empty) set of cells of the partition. We adopt some shorthand for designating particular propositions: $\top=U, \perp=\emptyset$. If P, Q are propositions, we will use the following notation when it is convenient: $\neg P=$ $\top-P, P \vee Q=P \cup Q, P \wedge Q=P \cap Q$. We will frequently omit the braces around propositions that are singletons so we will write $\left\{A_{i}\right\}$ as A_{i}. Finally we say P entails Q exactly if $P \subseteq Q$.

Against this background, our aim is to prove:
Theorem 2. For any regular probability function, Pr, there is a reasons weighing function, \mathbf{r}_{b}, such that (i) for any proposition $P, \operatorname{Pr}(P)=f_{\mathbf{r}_{b}}(P)$ and (ii) for any propositions H, E, either

$$
\log _{b}\left(\frac{\operatorname{Pr}(E \mid H)}{\operatorname{Pr}(E \mid \neg H)}\right)=\mathbf{r}_{b}(H, E)
$$

or $\log _{b}\left(\frac{\operatorname{Pr}(E \mid H)}{\operatorname{Pr}(E \mid \neg H)}\right)$ and $\mathbf{r}_{b}(H, E)$ are both undefined.
We will for the remainder of our discussion suppress our assumption that Pr is a regular probability function (in the sense that if $P \neq \perp, \operatorname{Pr}(P) \neq 0$). Recall that:

$$
l_{b}(H, E)=\log _{b}\left(\frac{\operatorname{Pr}(E \mid H)}{\operatorname{Pr}(E \mid \neg H)}\right)
$$

It is easiest to start by proving (ii) of Theorem 2. We will then consider (i) of Theorem 2.
$2 l_{b}=\mathbf{r}_{b}$
To prove this, it suffices to that $l_{b}(H, E)$ satisfies the axioms in Definition 1:
Definition 1. A function from pairs of propositions from the algebra based on U to the interval $(-\infty, \infty), \mathbf{r}_{b}$, is a reasons weighing function exactly if it satisfies the following axioms:

Base Propriety: $b>1$
Undefined Reasons: if (H, E) is extreme, $\mathbf{r}_{b}(H, E)$ is undefined
No Reason: if (H, E) is vacuous,

$$
\mathbf{r}_{b}(H, E)=\log (1)=0
$$

Complimentary Reasons: if (H, E) is not extreme,

$$
\mathbf{r}_{b}(\neg H, E)=-\mathbf{r}_{b}(H, E)
$$

Entailed Reason: if (H, E) is not trivial and H entails E,

$$
\mathbf{r}_{b}(H, E)>\log _{b}(1)=0
$$

Negatively Correlated Reasons: if (P, Q) is a non-trivial determiner,

$$
\mathbf{r}_{b}(\neg P \wedge \neg Q, \neg P)=\log _{b}\left(\frac{b^{\mathbf{r}_{b}(\neg P \wedge \neg Q, \neg Q)}}{b^{\mathbf{r}_{b}(\neg P \wedge \neg Q, \neg Q)}-1}\right)
$$

Positively Correlated Reasons: if $(P, Q),(Q, R)$, and (P, R) are nontrivial determiners,

$$
\mathbf{r}_{b}(\neg P \wedge \neg R, \neg R)=\log _{b}\left(\left(b^{\mathbf{r}_{b}(\neg Q \wedge \neg R, \neg R)}-1\right)\left(b^{\mathbf{r}_{b}(\neg P \wedge \neg Q, \neg Q)}-1\right)+1\right)
$$

Aggregative Reasons: if (P, Q) is a non-trivial determiner,

$$
\mathbf{r}_{b}(\neg P \wedge \neg Q, \neg Q)=\log _{b}\left(\left(\sum_{Q_{i} \in Q} b^{\mathbf{r}_{b}\left(\neg P \wedge \neg Q_{i}, \neg Q_{i}\right)}-1\right)+1\right)
$$

Factored Reasons: if (H, E) is not trivial, H does not entail E, and $\neg H$ does not entail E, then for any D, D^{\prime} such that (H, D) and $\left(\neg H, D^{\prime}\right)$ are non-trivial determiners,

$$
\mathbf{r}_{b}(H, E)=\log _{b}\left(\frac{\left(b^{\mathbf{r}_{b}(\neg D \wedge \neg(H \wedge E), \neg(H \wedge E))}-1\right)\left(b^{\mathbf{r}_{b}(\neg H \wedge \neg D, \neg D)}-1\right)}{\left(b^{\mathbf{r}_{b}\left(\neg D^{\prime} \wedge \neg(\neg H \wedge E), \neg(\neg H \wedge E)\right)}-1\right)\left(b^{\mathbf{r}_{b}\left(H \wedge \neg D^{\prime}, \neg D^{\prime}\right)}-1\right)}\right)
$$

Thought it is often left implicit in discussions of this matter, we stipulate that l_{b} is defined so that that $b>1$. Thus, it is immediate that:

Proposition 2.1 (l_{b} satisfies Base Propriety). $b>1$
The remaining axioms make use of some terminology for classifying pairs of propositions. The terminology is this:
(H, E) is extreme exactly if E entails H or E entails $\neg H$.
(H, E) is vacuous exactly if (H, E) is not extreme and $E=\top$.
(H, E) is trivial exactly if (H, E) is extreme or vacuous.
(P, Q) is a non-trivial determiner exactly if $P \neq \perp, Q \neq \perp, P \vee Q \neq$ \top, and $P \wedge Q=\perp$

Based on these definitions, in the main text there is a proof of the following fact:

Notational Variants: If (H, E) is not trivial and H entails E, then there is exactly one (P, Q) such that (P, Q) is a non-trivial determiner and $H=\neg P \wedge \neg Q$ and $E=\neg Q$. And if (P, Q) is a non-trivial determiner, then $(\neg P \wedge \neg Q, \neg Q)$ is not trivial and $\neg P \wedge \neg Q$ entails $\neg Q$.

With this in mind, we now show l_{b} satisfies each of the axioms that are of interest to us.

2.1 Well-Known Features of l_{b}

Undefined Reasons-Entailed Reason are well known features of l_{b}. But for completeness, I shall provide proofs of them here.

Proposition 2.2 (l_{b} satisfies Undefined Reasons). if (H, E) is extreme, $l_{b}(H, E)$ is undefined

Proof of Proposition 2.2. Consider (H, E) that are extreme in the sense that E entails H or E entails $\neg H$. Suppose E entails H. . In this setting,

$$
0=\operatorname{Pr}(E \wedge \neg H)=\frac{\operatorname{Pr}(E \wedge \neg H)}{\operatorname{Pr}(\neg H)}=\operatorname{Pr}(E \mid \neg H)
$$

so $l_{b}(H, E)$ is undefined because the term inside the $l o g$ involves division by 0 . Suppose instead E entails $\neg H$. In this setting,

$$
0=\operatorname{Pr}(E \wedge H)=\frac{\operatorname{Pr}(E \wedge H)}{\operatorname{Pr}(H)}=\operatorname{Pr}(E \mid H)=\frac{\operatorname{Pr}(E \mid H)}{\operatorname{Pr}(E \mid \neg H)}
$$

so $l_{b}(H, E)$ is undefined because $\log (0)$ is undefined.
Proposition 2.3 (l_{b} satisfies No Reason). If (H, E) is vacuous,

$$
l_{b}(H, E)=\log (1)=0
$$

Proof of Proposition 2.3. Consider (H, E) that are vacuous in the sense that $E=\top$ and $H \neq \top, \perp .^{1} \quad$ So $\operatorname{Pr}(H) \neq 0, \operatorname{Pr}(\neg H) \neq 0, E \wedge H=H$, and $E \wedge \neg H=\neg H$. Thus:

$$
\operatorname{Pr}(E \mid H)=\frac{\operatorname{Pr}(E \wedge H)}{\operatorname{Pr}(H)}=\frac{\operatorname{Pr}(H)}{\operatorname{Pr}(H)}=1
$$

and

$$
\operatorname{Pr}(E \mid \neg H)=\frac{\operatorname{Pr}(E \wedge \neg H)}{\operatorname{Pr}(\neg H)}=\frac{\operatorname{Pr}(\neg H)}{\operatorname{Pr}(\neg H)}=1
$$

Therefore as desired:

$$
l_{b}(H, E)=\log _{b}\left(\frac{1}{1}\right)=\log _{b}(1)=0
$$

Proposition 2.4 (l_{b} satisfies Complimentary Reasons). If (H, E) is not extreme,

$$
l_{b}(\neg H, E)=-l_{b}(H, E)
$$

Proof of Proposition 2.4. Consider (H, E) that are not extreme. It follows $(\neg H, E)$ is also not extreme. ${ }^{2}$ It is a fact about \log 's that $\log \left(\frac{a}{b}\right)=-\log \left(\frac{b}{a}\right)$ when these terms are defined. And the terms are undefined only if the denominator of the faction inside the \log is 0 or the numerator of the fraction inside the \log is 0 . So

$$
l_{b}(\neg H, E)=-l_{b}(H, E)
$$

if $\operatorname{Pr}(E \mid H)$ is non-zero and $\operatorname{Pr}(E \mid \neg H)$ is non-zero. Since (H, E) and $(\neg H, E)$ are not extreme $\operatorname{Pr}(E \wedge H), \operatorname{Pr}(H), \operatorname{Pr}(E \wedge \neg H)$, and $\operatorname{Pr}(\neg H)$ are all non-zero. So $\operatorname{Pr}(E \mid H)$ and $\operatorname{Pr}(E \mid \neg H)$ are non-zero.

Proposition 2.5 (l_{b} satisfies Entailed Reason). if (H, E) is not trivial and H entails E,

$$
l_{b}(H, E)>\log _{b}(1)=0
$$

Proof of Proposition 2.5. Consider (H, E) that are not trivial (so E does not entail H, E does not entail $\neg H$, and $E \neq \top$) and such that H entails E. In this case, $\operatorname{Pr}(E \wedge H)=\operatorname{Pr}(H)$ so $\operatorname{Pr}(E \mid H)=1$. On the other hand, $\neg H$ does not entail E^{3} so $\operatorname{Pr}(\neg H \wedge E)<\operatorname{Pr}(\neg H)$. Thus, $\operatorname{Pr}(E \mid \neg H)<1$. So $\frac{\operatorname{Pr}(E \mid H)}{\operatorname{Pr}(E \mid \neg H)}>1 .{ }^{4}$ Thus $l_{b}(H, E)>0$

We can now turn to some less well-known properties of l_{b}.

[^0]
2.2 Less Well-Known Features of l_{b}

In proving that l_{b} satisfies these axioms. We will often rely on the following lemma whose proof can be found in the main text.

Lemma 1.4.1: For any (P, Q) that is a non-trivial determiner,

$$
l_{b}(\neg P \wedge \neg Q, \neg Q)=\log _{b}\left(\frac{\operatorname{Pr}(\neg Q \mid \neg P \wedge \neg Q)}{\operatorname{Pr}(\neg Q \mid \neg(\neg P \wedge \neg Q))}\right)=\log _{b}\left(\frac{\operatorname{Pr}(Q)}{\operatorname{Pr}(P)}+1\right)
$$

We now consider each axiom in order.
Proposition 2.6 (l_{b} satisfies Negatively Correlated Reasons). if (P, Q) is a non-trivial determiner,

$$
l_{b}(\neg P \wedge \neg Q, \neg P)=\log _{b}\left(\frac{b^{l_{b}(\neg P \wedge \neg Q, \neg Q)}}{b^{l_{b}(\neg P \wedge \neg Q, \neg Q)}-1}\right)
$$

Proof of Proposition 2.6. Consider (P, Q) that are non-trivial determiners. Since $b^{\log _{b}(x)}=x$, Lemma 1.4.1 tell us:

$$
b^{l_{b}(\neg P \wedge \neg Q, \neg Q)}=\frac{\operatorname{Pr}(Q)}{\operatorname{Pr}(P)}+1
$$

So

$$
\frac{b^{l_{b}(\neg P \wedge \neg Q, \neg Q)}}{b^{l_{b}(\neg P \wedge \neg Q, \neg Q)}-1}=\frac{\frac{\operatorname{Pr}(Q)}{\operatorname{Pr}(P)}+1}{\frac{\operatorname{Pr}(Q)}{\operatorname{Pr}(P)}}=\frac{\operatorname{Pr}(Q) \operatorname{Pr}(P)}{\operatorname{Pr}(P) \operatorname{Pr}(Q)}+\frac{\operatorname{Pr}(P)}{\operatorname{Pr}(Q)}=1+\frac{\operatorname{Pr}(P)}{\operatorname{Pr}(Q)}
$$

Thus:

$$
l_{b}\left(\frac{b^{l_{b}(\neg P \wedge \neg Q, \neg Q)}}{b^{l_{b}(\neg P \wedge \neg Q, \neg Q)}-1}\right)=l_{b}\left(1+\frac{\operatorname{Pr}(P)}{\operatorname{Pr}(Q)}\right)
$$

Finally we know from Lemma 1.4.1 that:

$$
l_{b}(\neg Q \wedge \neg P, \neg P)=l_{b}(\neg P \wedge \neg Q, \neg P)=\log _{b}\left(\frac{\operatorname{Pr}(P)}{\operatorname{Pr}(Q)}+1\right)
$$

Therefore as desired:

$$
l_{b}(\neg P \wedge \neg Q, \neg P)=l_{b}\left(\frac{b^{l_{b}(\neg P \wedge \neg Q, \neg Q)}}{b^{l_{b}(\neg P \wedge \neg Q, \neg Q)}-1}\right)
$$

Proposition 2.7 (l_{b} satisfies Positively Correlated Reasons). if $(P, Q),(Q, R)$, and (P, R) are non-trivial determiners,

$$
l_{b}(\neg P \wedge \neg R, \neg R)=\log _{b}\left(\left(b^{l_{b}(\neg Q \wedge \neg R, \neg R)}-1\right)\left(b^{l_{b}(\neg P \wedge \neg Q, \neg Q)}-1\right)+1\right)
$$

Proof of Proposition 2.7. Consider $(P, Q),(Q, R)$ and (P, R) that are non-trivial determiners. Lemma 1.4.1 tells us that:

$$
\begin{aligned}
& l_{b}(\neg P \wedge \neg Q, \neg Q)=\log _{b}\left(\frac{\operatorname{Pr}(Q)}{\operatorname{Pr}(P)}+1\right) \\
& l_{b}(\neg Q \wedge \neg R, \neg R)=\log _{b}\left(\frac{\operatorname{Pr}(R)}{\operatorname{Pr}(Q)}+1\right) \\
& l_{b}(\neg P \wedge \neg R, \neg R)=\log _{b}\left(\frac{\operatorname{Pr}(R)}{\operatorname{Pr}(P)}+1\right)
\end{aligned}
$$

We know that

$$
\begin{aligned}
& b^{l_{b}(\neg Q \wedge \neg R, \neg R)}-1=\frac{\operatorname{Pr}(R)}{\operatorname{Pr}(Q)} \\
& b^{l_{b}(\neg P \wedge \neg Q, \neg Q)}-1=\frac{\operatorname{Pr}(Q)}{\operatorname{Pr}(P)}
\end{aligned}
$$

Thus:

$$
\left(b^{l_{b}(\neg Q \wedge \neg R, \neg R)}-1\right)\left(b^{l_{b}(\neg P \wedge \neg Q, \neg Q)}-1\right)+1=\left(\frac{\operatorname{Pr}(R)}{\operatorname{Pr}(Q)}\right)\left(\frac{\operatorname{Pr}(Q)}{\operatorname{Pr}(P)}\right)+1=\frac{\operatorname{Pr}(R)}{\operatorname{Pr}(P)}+1
$$

Therefore as desired:
$l_{b}(\neg P \wedge \neg R, \neg R)=\log _{b}\left(\frac{\operatorname{Pr}(R)}{\operatorname{Pr}(P)}+1\right)=\log _{b}\left(\left(b^{l_{b}(\neg Q \wedge \neg R, \neg R)}-1\right)\left(b^{l_{b}(\neg P \wedge \neg Q, \neg Q)}-1\right)+1\right)$

Proposition 2.8 (l_{b} satisfies Aggregative Reasons). if (P, Q) is a non-trivial determiner,

$$
l_{b}(\neg P \wedge \neg Q, \neg Q)=\log _{b}\left(\left(\sum_{Q_{i} \in Q} b^{l_{b}\left(\neg P \wedge \neg Q_{i}, \neg Q_{i}\right)}-1\right)+1\right)
$$

Proof of Proposition 2.8. Consider (P, Q) that is a non-trivial determiner. For any $Q_{i} \in Q,\left(P, Q_{i}\right)$ is also a non-trivial determiner. ${ }^{5}$. Thus we know from Lemma 1.4.1:

$$
\begin{gathered}
l_{b}(\neg P \wedge \neg Q, \neg Q)=\log _{b}\left(\frac{\operatorname{Pr}(Q)}{\operatorname{Pr}(P)}+1\right) \\
l_{b}\left(\neg P \wedge \neg Q_{i}, \neg Q_{i}\right)=\log _{b}\left(\frac{\operatorname{Pr}\left(Q_{i}\right)}{\operatorname{Pr}(P)}+1\right)
\end{gathered}
$$

[^1]Since $Q=\left\{Q_{1}, Q_{2}, \cdots, Q_{n}\right\}, \operatorname{Pr}(Q)=\sum_{Q_{i} \in Q} \operatorname{Pr}\left(Q_{i}\right) .{ }^{6}$ Thus:

$$
\sum_{Q_{i} \in Q} b^{l_{b}\left(\neg P \wedge \neg Q_{i}, \neg Q_{i}\right)}-1=\frac{\operatorname{Pr}\left(Q_{1}\right)}{\operatorname{Pr}(P)}+\frac{\operatorname{Pr}\left(Q_{2}\right)}{\operatorname{Pr}(P)}+\cdots+\frac{\operatorname{Pr}\left(Q_{n}\right)}{\operatorname{Pr}(P)}=\frac{\operatorname{Pr}(Q)}{\operatorname{Pr}(P)}
$$

Thus as desired:
$\log _{b}\left(\left(\sum_{Q_{i} \in Q} b^{l_{b}\left(\neg P \wedge \neg Q_{i}, \neg Q_{i}\right)}-1\right)+1\right)=\log _{b}\left(\frac{\operatorname{Pr}(Q)}{\operatorname{Pr}(P)}+1\right)=l_{b}(\neg P \wedge \neg Q, \neg Q)$

Proposition 2.9 (l_{b} satisfies Factored Reasons). if (H, E) is not trivial, H does not entail E, and $\neg H$ does not entail E, then for any D, D^{\prime} such that (H, D) and $\left(\neg H, D^{\prime}\right)$ are non-trivial determiners,

$$
l_{b}(H, E)=\log _{b}\left(\frac{\left(b^{l_{b}(\neg D \wedge \neg(H \wedge E), \neg(H \wedge E))}-1\right)\left(b^{l_{b}(\neg H \wedge \neg D, \neg D)}-1\right)}{\left(b^{l_{b}\left(\neg D^{\prime} \wedge \neg(\neg H \wedge E), \neg(\neg H \wedge E)\right)}-1\right)\left(b^{l_{b}\left(H \wedge \neg D^{\prime}, \neg D^{\prime}\right)}-1\right)}\right)
$$

Proof. Consider (H, E) that is not trivial and such that H does not entail E and $\neg H$ does not entail E. And consider some D, D^{\prime} such that (H, D) and $\left(\neg H, D^{\prime}\right)$ are non-trivial determiners. Since (H, D) is a non-trivial determiner, it follows that $(D, H \wedge E)$ is a non-trivial determiner too. ${ }^{7}$ Similarly, since $\left(\neg H, D^{\prime}\right)$ is a non-trivial determiner, it follows that $\left(D^{\prime}, \neg H \wedge E\right)$ is a non-trivial determiner too. So Lemma 1.4.1 tell us:

$$
\begin{aligned}
l_{b}(\neg H \wedge \neg D, \neg D) & =\log _{b}\left(\frac{\operatorname{Pr}(D)}{\operatorname{Pr}(H)}+1\right) \\
l_{b}(\neg D \wedge \neg(H \wedge E), \neg(H \wedge E)) & =\log _{b}\left(\frac{\operatorname{Pr}(H \wedge E)}{\operatorname{Pr}(D)}+1\right) \\
l_{b}\left(\neg D^{\prime} \wedge \neg(\neg H \wedge E), \neg(\neg H \wedge E)\right) & =\log _{b}\left(\frac{\operatorname{Pr}(\neg H \wedge E)}{\operatorname{Pr}\left(D^{\prime}\right)}+1\right) \\
l_{b}\left(H \wedge \neg D^{\prime}, \neg D^{\prime}\right) & =\log _{b}\left(\frac{\operatorname{Pr}\left(D^{\prime}\right)}{\operatorname{Pr}(\neg H)}+1\right)
\end{aligned}
$$

So:

$$
\left(b^{l_{b}(\neg D \wedge \neg(H \wedge E), \neg(H \wedge E))}-1\right)\left(b^{l_{b}(\neg H \wedge \neg D, \neg D)}-1\right)=\frac{\operatorname{Pr}(D) \operatorname{Pr}(H \wedge E)}{\operatorname{Pr}(H) \operatorname{Pr}(D)}=\frac{\operatorname{Pr}(H \wedge E)}{\operatorname{Pr}(H)}=\operatorname{Pr}(E \mid H)
$$

And by analogous reasoning:

$$
\left(b^{l_{b}\left(\neg D^{\prime} \wedge \neg(\neg H \wedge E), \neg(\neg H \wedge E)\right)}-1\right)\left(b^{l_{b}\left(H \wedge \neg D^{\prime}, \neg D^{\prime}\right)}-1\right)=\operatorname{Pr}(E \mid \neg H)
$$

[^2]Thus as desired:

$$
\log _{b}\left(\frac{\left(b^{l_{b}(\neg D \wedge \neg(H \wedge E), \neg(H \wedge E))}-1\right)\left(b^{l_{b}(\neg H \wedge \neg D, \neg D)}-1\right)}{\left(b^{l_{b}\left(\neg D^{\prime} \wedge \neg(\neg H \wedge E), \neg(\neg H \wedge E)\right)}-1\right)\left(b^{l_{b}\left(H \wedge \neg D^{\prime}, \neg D^{\prime}\right)}-1\right)}\right)=\log _{b}\left(\frac{\operatorname{Pr}(E \mid H)}{\operatorname{Pr}(E \mid \neg H)}\right)=l_{b}(H, E)
$$

$3 \quad \operatorname{Pr}=f_{l_{b}}$

Since we have seen l_{b} and \mathbf{r}_{b} are equivalent, in order to show (i) of Theorem 2 it suffices to show that the function the probability function Pr that defines l_{b} is equivalent to $f_{l_{b}}$ as defined by Definition 2:

Definition 2. A function from propositions from the algebra based U to the interval $(-\infty, \infty), f_{\mathbf{r}_{b}}$, is the prior based on \mathbf{r}_{b} function exactly if it satisfies the following axioms:

Ratios of Cells: If $U=\left\{A_{1}, A_{2}, \cdots A_{n}\right\}$ then,

$$
\begin{aligned}
1 & =f_{\mathbf{r}_{b}}\left(A_{1}\right)+f_{\mathbf{r}_{b}}\left(A_{2}\right)+\cdots+f_{\mathbf{r}_{b}}\left(A_{n}\right) \\
f_{\mathbf{r}_{b}}\left(A_{2}\right) & =\left(b^{\mathbf{r}_{b}\left(\neg A_{1} \wedge \neg A_{2}, \neg A_{2}\right)}-1\right) f_{\mathbf{r}_{b}}\left(A_{1}\right) \\
f_{\mathbf{r}_{b}}\left(A_{3}\right) & =\left(b^{\mathbf{r}_{b}\left(\neg A_{1} \wedge \neg A_{3}, \neg A_{3}\right)}-1\right) f_{\mathbf{r}_{b}}\left(A_{1}\right) \\
& \vdots \\
f_{\mathbf{r}_{b}}\left(A_{n}\right) & =\left(b^{\mathbf{r}_{b}\left(\neg A_{1} \wedge \neg A_{n}, \neg A_{n}\right)}-1\right) f_{\mathbf{r}_{b}}\left(A_{1}\right)
\end{aligned}
$$

Sum of Cells: For any proposition P,

- if $P=\perp, f_{\mathbf{r}_{b}}(P)=0$
- if $P \neq \perp, f_{\mathbf{r}_{b}}(P)=\sum_{A_{i} \in P} f_{\mathbf{r}_{b}}\left(A_{i}\right)$

Proposition 2.10. If $l_{b}(H, E)=\log _{b}\left(\frac{\operatorname{Pr}(E \mid H)}{\operatorname{Pr}(E \mid \neg H)}\right)$, then for any proposition P, $\operatorname{Pr}(P)=f_{l_{b}}(P)$
Proof. For each A_{i} such that $i>1$, Ratios of Cells tell us:

$$
f_{l_{b}}\left(A_{i}\right)=\left(b^{l_{b}\left(\neg A_{1} \wedge \neg A_{i}, \neg A_{i}\right)}-1\right) f_{l_{b}}\left(A_{1}\right)
$$

Therefore, substituting this in the first equation, we have:
$1=f_{l_{b}}\left(A_{1}\right)+\left(b^{l_{b}\left(\neg A_{1} \wedge \neg A_{2}, \neg A_{2}\right)}-1\right) f_{l_{b}}\left(A_{1}\right)+\cdots+\left(b^{l_{b}\left(\neg A_{1} \wedge \neg A_{n}, \neg A_{n}\right)}-1\right) f_{l_{b}}\left(A_{1}\right)$
So:

$$
\begin{aligned}
1-f_{l_{b}}\left(A_{1}\right) & =\left(b^{l_{b}\left(\neg A_{1} \wedge \neg A_{2}, \neg A_{2}\right)}-1\right) f_{l_{b}}\left(A_{1}\right)+\cdots+\left(b^{l_{b}\left(\neg A_{1} \wedge \neg A_{n}, \neg A_{n}\right)}-1\right) f_{l_{b}}\left(A_{1}\right) \\
& =f_{l_{b}}\left(A_{1}\right)\left(\left(b^{l_{b}\left(\neg A_{1} \wedge \neg A_{2}, \neg A_{2}\right)}-1\right)+\cdots+\left(b^{l_{b}\left(\neg A_{1} \wedge \neg A_{n}, \neg A_{n}\right)}-1\right)\right) \\
\frac{1-f_{l_{b}}\left(A_{1}\right)}{f_{l_{b}}\left(A_{1}\right)} & =\left(b^{l_{b}\left(\neg A_{1} \wedge \neg A_{2}, \neg A_{2}\right)}-1\right)+\cdots+\left(b^{l_{b}\left(\neg A_{1} \wedge \neg A_{n}, \neg A_{n}\right)}-1\right)
\end{aligned}
$$

Since $\left(A_{1}, A_{i}\right)$ is a non-trivial determiner, Lemma 1.4.1 together with some reasoning tells us:

$$
b^{l_{b}\left(\neg A_{1} \wedge \neg A_{i}, \neg A_{i}\right)}-1=\frac{\operatorname{Pr}\left(A_{i}\right)}{\operatorname{Pr}\left(A_{1}\right)}
$$

So:

$$
\frac{1-f_{l_{b}}\left(A_{1}\right)}{f_{l_{b}}\left(A_{1}\right)}=\frac{\operatorname{Pr}\left(A_{2}\right)}{\operatorname{Pr}\left(A_{1}\right)}+\cdots+\frac{\operatorname{Pr}\left(A_{n}\right)}{\operatorname{Pr}\left(A_{1}\right)}
$$

We can now engage in some ordinary reasoning about probabilities:

$$
\begin{aligned}
\frac{\operatorname{Pr}\left(A_{2}\right)}{\operatorname{Pr}\left(A_{1}\right)}+\cdots+\frac{\operatorname{Pr}\left(A_{n}\right)}{\operatorname{Pr}\left(A_{1}\right)} & =\frac{\operatorname{Pr}\left(A_{2}\right)+\cdots+\operatorname{Pr}\left(A_{n}\right)}{\operatorname{Pr}\left(A_{1}\right)} \\
& =\frac{\operatorname{Pr}\left(\neg A_{1}\right)}{\operatorname{Pr}\left(A_{1}\right)} \\
& =\frac{1-\operatorname{Pr}\left(A_{1}\right)}{\operatorname{Pr}\left(A_{1}\right)}
\end{aligned}
$$

Thus:

$$
\frac{1-f_{l_{b}}\left(A_{1}\right)}{f_{l_{b}}\left(A_{1}\right)}=\frac{1-\operatorname{Pr}\left(A_{1}\right)}{\operatorname{Pr}\left(A_{1}\right)}
$$

So $f_{l_{b}}\left(A_{1}\right)=\operatorname{Pr}\left(A_{1}\right) .{ }^{8}$
For each A_{i} such that $i>1$, we already know:

$$
f_{l_{b}}\left(A_{i}\right)=\left(b^{l_{b}\left(\neg A_{1} \wedge \neg A_{i}, \neg A_{i}\right)}-1\right) f_{l_{b}}\left(A_{1}\right)
$$

Two substitutions gets us:

$$
f_{l_{b}}\left(A_{i}\right)=\left(\frac{\operatorname{Pr}\left(A_{i}\right)}{\operatorname{Pr}\left(A_{1}\right)}\right) \operatorname{Pr}\left(A_{1}\right)=\operatorname{Pr}\left(A_{i}\right)
$$

Thus, we have shown for each $A_{i} \in U f_{l_{b}}\left(A_{i}\right)=\operatorname{Pr}\left(A_{i}\right)$.
Sum of Cells tell us $f_{l_{b}}(\perp)=0$. Therefore $f_{l_{b}}(\perp)=0=\operatorname{Pr}(\perp)$.
Sum of Cells tells us that if $P \neq \perp, f_{l_{b}}(P)=\sum_{A_{i} \in P} f_{l_{b}}\left(A_{i}\right)$. Given our previous results and the finite additivity of Pr, we know $f_{l_{b}}(P)=\sum_{A_{i} \in P} f_{l_{b}}\left(A_{i}\right)=$ $\sum_{A_{i} \in P} \operatorname{Pr}\left(A_{i}\right)=\operatorname{Pr}(P)$.

[^3]
[^0]: ${ }^{1}$ If $H=\top$, then E entails H so (H, E) is extreme and hence not vacuous. If $H=\perp, E$ entails $\neg H$ so (H, E) is extreme and hence not vacuous.
 ${ }^{2}$ Since (H, E) is not extreme, E does not entail H and $\neg E$ does not entail H. Thus $\neg E$ does not entail H and $\neg \neg E$ does not entail H. So $(\neg H, E)$ is not extreme.
 ${ }^{3}$ The only super set of both H and $\neg H$ is \top but $E \neq \top$.
 $4 \frac{\operatorname{Pr}(E \mid H)}{\operatorname{Pr}(E \mid \neg H)}$ must also be defined because $\operatorname{Pr}(E \mid \neg H) \neq 0$. This is because $\operatorname{Pr}(E \wedge \neg H)$ and $\operatorname{Pr}(\neg H)$ are non-zero (because E does not entail H so $E \wedge \neg H \neq \perp$ and $\operatorname{Pr}(\neg H) \neq \perp)$).

[^1]: ${ }^{5}$ It is obvious that $Q_{i} \neq \perp$. It must be $P \vee Q_{i} \neq \top$ because $P \vee Q \neq \top$. And it must be that $P \wedge Q_{i}=\perp$ because $P \wedge Q=\perp$.

[^2]: ${ }^{6}$ The summation claim in the text follows from the finite additivity property of Pr.
 ${ }^{7}$ It follows from $H \vee D \neq \top$ that $D \vee(H \wedge E) \neq \top$. It follows from $H \wedge D=\perp$ that $D \wedge(H \wedge E)=\perp$. And it follows (H, E) being not trivial that $H \wedge E \neq \perp$. So $(D, H \wedge E)$ is a non-trivial determiner.

[^3]: ${ }^{8}$ We can fill in the details of this reasoning as follows:

 $$
 \frac{1-f_{l_{b}}\left(A_{1}\right)}{f_{l_{b}}\left(A_{1}\right)}=\frac{1-\operatorname{Pr}\left(A_{1}\right)}{\operatorname{Pr}\left(A_{1}\right)}
 $$

 $$
 \left(1-f_{l_{b}}\left(A_{1}\right)\right) \operatorname{Pr}\left(A_{1}\right)=\left(1-\operatorname{Pr}\left(A_{1}\right)\right) f_{l_{b}}\left(A_{1}\right)
 $$

 $$
 \operatorname{Pr}\left(A_{1}\right)-f_{l_{b}}\left(A_{1}\right) \operatorname{Pr}\left(A_{1}\right)=f_{l_{b}}\left(A_{1}\right)-\operatorname{Pr}\left(A_{1}\right) f_{l_{b}}\left(A_{1}\right)
 $$

 $$
 \operatorname{Pr}\left(A_{1}\right)=f_{l_{b}}\left(A_{1}\right)
 $$

