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A RELATIONAL SYLLOGISTIC

Introduction

In [1] J. Perzanowski formulated, among others, an ontology expressed in the re-

lational language. He presented some interesting connections which hold between

these relations. In the present paper we focus on further analysis of these relations.

Let us consider a binary relation E. We recall the following Perzanowski’s

definitions:

“x is a part of y”: x P y↔
∧

z

(

z E x→ z E y
)

(P)

“x is covered by y”: x C y↔
∧

z

(

y E z→ x E z
)

(C)

“x houses y”: x H y↔
∧

z

(

z E x→ y E z
)

(H)

“x dominates y”: x D y↔
∧

z

(

y E z→ z E x
)

(D)

“x is located in y”: x L y↔
∧

z

(

z P x→ z E y
)

(L)

“x is allocated in y”: x A y↔
∧

z

(

yC z→ x E z
)

(A)

To any formula of the following form:
∧

x

∧

y

∧

z

(

x X y ∧ y Y z→ x Z z
)
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where X, Y, Z ∈ {E, P,C,H,D, L, A}1, there corresponds a syllogism of the first

figure2:

y Y z

x X y

x Z z

and there is ono-to-one correspondence between tautologies of this form and valid

syllogisms of the first figure, where validity is understood as explained below.

Definition 1. A syllogism

y Y z

x X y

x Z z

where X, Y, Z ∈ {E, P,C,H,D, L, A}, is valid iff for any set U, any 2-ary relation E

on U and any x, y, z ∈ U the following condition holds: if 〈x, y〉 ∈ X, 〈y, z〉 ∈ Y ,

then 〈x, z〉 ∈ Z, where X, Y and Z are equal to the relation E or are respective

relations defined by the conditions (P), (C), (H), (D), (L), (A).

Equivalently, the above defined syllogisms can be treated as inclusions of the

form:

X ◦ Y ⊆ Z

holding for respective relations.

One can easily see that there is 73 = 343 syllogisms of the first figure. We will

indicate all valid syllogisms.

1. Valid syllogisms

By first-order logic we see that for any initial relation E, the relations P and C are

preorders i.e. are reflexive and transitive3:

x P x(†)

x P y ∧ y P z→ x P z(1)

x C x(‡)

x C y ∧ y C z→ x C z(2)

1Formally speaking, we should differentiate between relations, corresponding constants of the first

order language and logical constants of the language of syllogistic. The context will disambiguate

the meaning of a given symbol.
2Similarly, by considering converses of these relations we can obtain syllogisms of other figures.
3We will omit general quantifiers.
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We omit proofs of some other theorems which have been also proved in [1]:

x A y ∧ y C z→ x A z(3)

x C y ∧ y A z→ x A z(4)

x A y ∧ y C z→ x E z(5)

x C y ∧ y A z→ x E z(6)

x P y ∧ y L z→ x L z(7)

x P y ∧ y L z→ x E z(8)

x L y ∧ y P z→ x L z(9)

x L y ∧ y P z→ x E z(10)

x E y ∧ y P z→ x E z(11)

x C y ∧ y E z→ x E z(12)

We let ourselves include proofs of theorems which were not presented in [1]:

(13) x A y ∧ y P z→ x E z

Proof. Let’s fix some set U4. Assume that for x, y, z ∈ U, it holds that x A y∧ y P z.

We show that x E z. By (‡) we have that yC y, by the definition (A) we obtain that
∧

w(y C w → x E w), thus in particular we have y C y → x E y, i.e. x E y. By the

definition of the relation P we have
∧

w(w E y→ w E z) and once again if w equals

x we receive x E y→ x E z. Thus, since x E y, we have also x E z.

(14) x C y ∧ y L z→ x E z

Proof. Let’s assume that for x, y, z ∈ U, it holds that x C y ∧ y L z. We prove that

xEz. By the definition (L), we receive that
∧

w(wPy→ wEz), in particular we have

yP y→ yE z, thus, by (†) we obtain yE z. By the definition (C) via the assumption

x C y we have that
∧

w(yE w→ x E w) and thus we receive yE z→ x E z, and since

y E z, so also x E z.

(15) x P y ∧ y H z→ x H z

Proof. Let’s assume that for x, y, z ∈ U, it holds that x P y ∧ y H z. We prove that

x H z. To show this let’s take any u ∈ U, and assume that u E x. We prove that z E u.

By the definition (P) we have
∧

w(w E x → w E y) and in particular we conclude

that u E x→ u E y, i.e. u E y. By the definition (H) we receive
∧

w(w E y→ z E w)

and we have u E y→ z E u, but since u E y, we also have z E u.

4In the remaining proofs such assumption will be taken for granted.
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(16) x D y ∧ y C z→ x D z

Proof. Let’s assume that for some x, y, z ∈ U, it holds that x D y ∧ yC z. We prove

that x D z. Let’s take any u ∈ U and assume that z E u. We prove that u E x. By the

definition (C) we have
∧

w(z E w → y E w) in particular we have z E u → y E u,

thus y E u. By the definition (D) we obtain
∧

w(y E w → w E x), and therefore we

have y E u→ u E x, however, since y E u, thus also u E x.

2. Refuted syllogisms

From the list of all possible syllogisms of the first figure one have to reject quite a

lot of them. We will indicate E being a counterexample for a possible validity of a

given syllogism.

Remark 1. For the relation E ⊆ U2, where U = {a} and E = ∅ it holds that:

X ◦ Y * Z, where X, Y ∈ {P,C,D,H}, while Z ∈ {E, L, A}.

Remark 2. For the relation E ⊆ U2, where U = {a, b} and E = {〈a, a〉} it holds that:

E ◦ Y * Z, where Y ∈ {P,C,H,D}, while Z ∈ {A, L},

X ◦ E * Z, where X ∈ {P,C,H,D}, while Z ∈ {A, L},

C ◦ P * Z, where Z ∈ {P,C,H,D},

P ◦C * Z, where Z ∈ {P,C,H,D},

P ◦ D * Z, where Z ∈ {P,C,H,D},

D ◦ P * Z, where Z ∈ {P,C,H,D},

C ◦ H * Z, where Z ∈ {P,C,H,D},

H ◦C * Z, where Z ∈ {P,C,H,D},

C ◦C * Z, where Z ∈ {P,H},

C ◦ D * Z, where Z ∈ {P,H},

D ◦C * Z, where Z ∈ {P,H},

P ◦ P * Z, where Z ∈ {C,D},

P ◦ E * E,

E ◦C * E,

H ◦ E * E.

Remark 3. For the relation E ⊆ U2, where U = {a, b} and E = {〈a, b〉, 〈b, a〉} it

holds that:

E ◦ Y * Z, where Y, Z ∈ {P,C,H,D},

X ◦ E * Z, where X, Z ∈ {P,C,H,D},

E ◦ A * Z, where Z ∈ {A, L, E},

P ◦ A * Z, where Z ∈ {P,H},

A ◦ Y * Z, where Y ∈ {P,C,H}, while Z ∈ {P,C,H},
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X ◦ A * Z, where X ∈ {C,H}, while Z ∈ {P,H},

C ◦ A * C,

A ◦ E * Z, where Z ∈ {A, L, E},

L ◦ H * H.

Remark 4. For the relation E ⊆ U2, where U = {a, b} and E = {〈a, a〉, 〈a, b〉} it

holds that:

P ◦ A * Z, where Z ∈ {C,D, A, L, E},

H ◦ A * Z, where Z ∈ {C,D, A, L, E},

A ◦ P * Z, where Z ∈ {D, L},

C ◦ A * Z, where Z ∈ {D, L},

A ◦C * Z, where Z ∈ {D, L},

A ◦ H * Z, where Z ∈ {D, L},

C ◦C * D,

P ◦ P * H.

Remark 5. For the relation E ⊆ U2, where U = {a, b} and E = {〈a, a〉, 〈a, b〉, 〈b, b〉}

it holds that:

H ◦ L * Z, where Z ∈ {P,C,D,H, E, L, A},

L ◦ H * Z, where Z ∈ {P,C,D, E, L, A},

H ◦ P * Z, where Z ∈ {P,C,H,D},

P ◦ H * Z, where Z ∈ {P,C,D},

C ◦ D * Z, where Z ∈ {C,D},

D ◦C * C,

A ◦ H * Z, where Z ∈ {A, E}.

Remark 6. For the relation E ⊆ U2, where U = {a, b} and E = {〈a, a〉, 〈b, a〉, 〈b, b〉}

it holds that:

L ◦ D * Z, where Z ∈ {P,C,H,D, L, A, E},

E ◦ H * E,

D ◦ E * E,

E ◦ D * E.

Remark 7. For the relation E ⊆ U2, where U = {a, b, c} and E = {〈a, b〉, 〈b, c〉〈c, a〉}

it holds that:

X ◦ Y * Z, where X, Y ∈ {H,D}, while Z ∈ {P,C,H,D},

X ◦ A * Z, where X ∈ {D, L, A}, while Z ∈ {E, P,C,H,D, L, A},

A ◦ Y * Z, where Y ∈ {D, L}, while Z ∈ {E, P,C,H,D, L, A},

E ◦ E * Z, where Z ∈ {L, A},

E ◦ L * Z, where Z ∈ {E, P,C,H,D, L, A},

L ◦ E * Z, where Z ∈ {E, P,C,H,D, L, A},

L ◦ L * Z, where Z ∈ {E, P,C,H,D, L, A}.



144 Marek Nasieniewski

Remark 8. For the relation E ⊆ U2, where U = {a, b, c} and E = {〈a, a〉, 〈b, a〉,

〈b, b〉, 〈c, b〉, 〈c, c〉} it holds that:

P ◦ L * A,

X ◦ P * A, where X ∈ {L, A}.

E ◦ Y * Z, where Y ∈ {E, A} while Z ∈ {P,C,H,D}.

A ◦ E * Z, where Z ∈ {P,C,H,D}.

C ◦ L * Z, where Z ∈ {P,C,H,D, L, A}.

D ◦ L * Z, where Z ∈ {P,C,H,D, L, A, E}.

E ◦ E * E,

L ◦C * Z, where Z ∈ {E, P,C,H,D, L, A}.

Remark 9. For the relation E ⊆ U2, where U = {a, b, c, d} and E = {〈a, a〉, 〈a, b〉,

〈b, b〉, 〈b, c〉, 〈c, c〉, 〈c, d〉, 〈d, d〉} it holds that:

P ◦ L * Z, where Z ∈ {P,C,H,D},

L ◦ P * Z, where Z ∈ {P,C,H,D}.

3. Generalized syllogisms

Definition 2. By a generalized syllogism we mean a pair 〈〈X1, . . . , Xn〉, X〉, where

n ≥ 2, X1, . . . , Xn, X ∈ {E, P,C,H,D, L, A}.

The syllogisms falling under the above definition can be treated as sequents.

Farther in the paper we will use a notion of a proof for the sequent calculus.

We consider the following version of a cut rule:

(Cut)
〈〈X1, . . . , Xi, . . . , Xn〉, X〉, 〈〈Y1, . . . , Ym〉, Xi〉

〈〈X1, . . . , Xi−1, Y1, . . . , Ym, Xi+1, . . . , Xn〉, X〉.

Definition 3. We say that a generalized syllogism 〈〈X1, . . . , Xn〉, Xn〉 is provable iff

there is a proof of 〈〈X1, . . . , Xn〉, Xn〉 in the sense of sequent calculus, where the

axioms are

1. 〈〈P, P〉, P〉

2. 〈〈C,C〉,C〉

3. 〈〈A, P〉, E〉

4. 〈〈C, L〉, E〉

5. 〈〈P,H〉,H〉

6. 〈〈D,C〉,D〉

7. 〈〈A,C〉, A〉

8. 〈〈C, A〉, A〉
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9. 〈〈A,C〉, E〉

10. 〈〈C, A〉, E〉

11. 〈〈P, L〉, L〉

12. 〈〈P, L〉, E〉

13. 〈〈L, P〉, L〉

14. 〈〈L, P〉, E〉

15. 〈〈E, P〉, E〉

16. 〈〈C, E〉, E〉

and (Cut) is the only rule of inference.

Definition 4. A generalized syllogism 〈〈X1, . . . , Xn〉, X〉 is valid iff for any set U,

any 2-ary relation E on U and any elements x0, x1, . . . , xn ∈ U it holds that: if

〈x0, x1〉 ∈ X1, 〈x1, x2〉 ∈ X2, . . . , 〈xn−1, xn〉 ∈ Xn, then 〈x0, xn〉 ∈ X, where X1,

X2, . . . , Xn are equal to the relation E or are respective relations defined by the

conditions (P), (C), (H), (D), (L), (A).

By previous observations we have

Lemma. Axioms 1–16 are valid.

Since the cut rule saves validity of syllogisms we have:

Theorem. For any generalized syllogism S, if S is provable, then S is valid.
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