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Abstract. In this talk we will survey some significant results, methods and trends
in mathematical modeling, in an attempt to define some of the questions to be
explored in this workshop. We are particularly concerned with the formal descrip-
tion of biological systems. The examples, however, will be primarily drawn from
the mathematical literature. A large and counterproductive gap remains between
mathematics and the other sciences. Certainly one goal of this workshop is to
narrow that gap.

1. The Scope of the Workshop

The official purpose of this workshop is

to delineate the fundamental questions relevant to the study of the
formal description, analysis, and modeling of developing systems, to
critically examine approaches to these questions, to identify those ap-
proaches which seem to be most significant and fruitful, and to propose
plausible methods and approaches to those questions that remain out-
standing.

My assigned task is to parse that: to expand upon this charge by discussing some of
the topics and problems that we will be addressing over the next few days.

The unofficial purpose of the workshop is to gather scientists from different fields
- and different countries - for an exchange of ideas and expertise. Our success in this
area will be measured not only in the improved perspective that we will each bring
individually to our research, but also in the scientific cooperation and collaborations
that will hopefully result.

The topic which brings us together is the formal description of developing systems.
We should begin by determining what we mean by a developing system. A proper
definition of the term might prove difficult, because its boundaries are diffuse. Our
situation may be likened to an ancient kingdom: we know some areas that it definitely
contains, and others that it definitely does not, but there is no carefully demarcated
border. The following subject areas fall within the realm of developing systems. The
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references given are either to talks at this workshop (most of which are included in
this volume), or to survey papers, or to recent work of particular interest.

• Population growth (Kapitza).
• Epidemiology (Hethcote [6]).
• Embryonic development (Melekhova, Stollberg).
• Biological growth (Coen, Nakielski, Zagórska-Marek).
• Evolution (Cohen, Skulachev, McNamara et. al. [10]).
• Ecology (Laws, Neuhauser [11]).
• Cosmology and geology (Esmer).
• Neurology and psychology (Bracha, Rand).
• Theory of learning and intelligence (Cucker and Smale [1], Grossberg [4]).
• Neural networks and artificial intelligence.
• Social institutions (Arion, Neves, Sergeev, Trofimova).

Surely this list is not complete, and there is considerable overlap between fields. An
argument could be made for including proteomics and genomics (Karp [7]), which is
certainly an important tool for the study of developing biological systems.

By a formal description we customarily mean a mathematical model or, more
generally, a mathematical analysis. The mathematical tools which may be used in
the description themselves constitute a developing system. Our toolbox includes the
following items.

• Discrete dynamical systems and iterative models (Nation).
• Ordinary and partial differential equations (Wilkens).
• More general dynamical systems (Aubin, Brandts, Kopell [8], Sulis).
• Thermodynamics (Sergeev, Lieb and Yngvason [9]).
• Chaos and catastrophe theory (Rand).
• Statistical analysis.
• Fuzzy systems (Yager and Zadeh [13]).
• Ordered systems and closure operators (Ganter and Wille [3]).
• Simulation (Levkovich-Maslyuk, Prusinkiewicz).
• Genetic algorithms (Head).

This toolbox, like The Magic Pudding, is continually replenishing itself, adapting to
its required applications.

At this point, an interesting question raises its head. How much of the above
material can one person know? How much do you know? How about your colleague?
Clearly, teamwork in science is increasingly necessary and beneficial. Promoting
scientific cooperation, both international and interdisciplinary, is a major goal of this
workshop.
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2. The Use and Abuse of Models

The object of the modeling process is to find a mathematical structure, whose logic
we understand, that mirrors the workings of a complex biological, chemical, physical
or social process. A good model should be both

• descriptive or explanatory, that is, its behavior should reflect qualitatively the
process in question, increasing our understanding of it, and

• predictive, in the sense that it can be supported or denied by experiment.

A model may, or may not, include a simulation of the process.
Each of us has seen useful, and not-so-useful, models. A colleage once facetiously

described the modeling process as follows.

(1) Measure n parameters.
(2) Find a family of curves with n parameters that look roughly like your data.
(3) Fit the data.
(4) Declare that you now understand what is going on.

In fact, each of these steps occurs in modeling, but without an overall rationale
nothing much will be accomplished.

Let us give some more useful guidelines for modeling. This list was distilled from
conversations with Brian Fellmeth and Jes Stollberg of the Pacific Biomedical Re-
search Center. (See also Fellmeth [2]).

• Let the data directly suggest model construction.
• Adopt provisional schemes to suggest experiments to test the scheme.
• Reject or revise models that fail the test.
• Don’t overcommit to models that seem to work. In particular, be wary of

carrying the model beyond the limits of its applicability.

One would hope that these caveats were unnecessary with this august crowd, but it
never hurts to reiterate the basics.

3. A Simple Example

Let us digress to consider a familiar class of models. Furthermore, let us look
at the example as a mathematician would, which is probably a different standpoint
than that of say a biologist. Again, some of the ideas in this section originated in
discussions with Brian Fellmeth.

Suppose we have a fixed quantity of a substance or substances which can exist in n
different states or phases. The system has a given initial distribution of states, and is
then allowed to approach equilibrium. There is a standard way to describe the evo-
lution of this system under suitably general conditions (e.g., constant temperature).
Let the vector s(t) = 〈s1(t), . . . , sn(t)〉 denote the amount of material in each state
at time t, and for i 6= j let kij denote the relative rate at which elements in state i
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transform to state j. The evolution of this system is described by the initial value
problem

ds

dt
= Ms

s(0) = s0

where

Mij =

{
kji if i 6= j

−∑
` 6=i ki` if i = j.

From physical considerations, we want each kij ≥ 0 for i 6= j, and we have built
in the conservation of mass in the diagonal elements, by making the column sums
zero. Moreover, because the Gibbs free energy satisfies Gi − Gj ∝ log kij − log kji,
our system satisfies the following condition.

(∗) For any cyclic permutation (i1i2 . . . im) on {1, . . . , n}, we have
ki1i2ki2i3 . . . kim−1imkimi1 = ki1imkimim−1 . . . ki3i2ki2i1 .

This condition says that the product of the rate constants around loops is the same
in both directions, e.g., k12k23k31 = k13k32k21.

The solution to our system is of course given by s(t) = eMts0. However, this elegant
form of the solution is not very instructive. The following version, most of which is
standard, gives a better description of the solution.

Theorem 1. If M is as above, then the following hold.

(1) M is singular, so that zero is an eigenvalue.
(2) Every eigenvalue of M is real and nonpositive, i.e., λi ≤ 0.
(3) The solution of ds

dt
= Ms is of the form

s(t) = v1 +

n∑
j=2

e−κjtvj

where λj = −κj for 2 ≤ j ≤ n are the eigenvalues of M, and the vj’s are the
corresponding eigenvectors, with v1 corresponding to the eigenvalue 0.

Hidden in this solution is the fact that the scaling of the eigenvectors vj depends
on the initial vector s0. On the other hand, it is transparent that the solution tends
to v1, which will represent equilibrium, and that it does so without oscillation (by
part 2).

Proof. The matrix M is singular because its column sums are zero.
To see that the eigenvalues are real, we define the symmetric matrix B by

Bij =

{√
mijmji if i 6= j

mii if i = j.
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Using a theorem of H. Sachs [12] and the condition (∗), one can show that M and B
have the same characteristic polynomial. Hence M has real eigenvalues.

The Gerschgoren Circle Theorem states that each eigenvalue λ of the matrix M
satisfies |λ − mii| ≤

∑
j 6=i |mji| for some index i. For our matrix this translates to

−2(
∑

j 6=i kij) ≤ λ ≤ 0.
The remaining claims of the theorem are standard. �
Typically, all we can measure experimentally is one component of the solution, say

the first:

s1(t) = v11 +

n∑
j=2

e−κjtvj1.

From this we want to determine

(1) What is n?
(2) What are the time constants κj?

The current methods for doing so, using Laplace or Fourier transforms, are not very
robust or satisfactory (see, e.g., [2]). They do allow you to obtain at least a lower
bound for n, the number of states, which is an important component of any model.

On the other hand, for complex systems we might want to allow an infinite number
of discrete states, or a continuous state-space. Moreover, it is not clear that the
condition (∗) applies to developing systems. For that condition corresponds to a
form of conservation of energy, which need not apply locally in developing systems.
The same comment could be made regarding the conservation of mass.

The form of the most direct continuous analogue of this situation is straightforward.
Given a non-negative function m(x, y) on some domain, the corresponding equation
would be

∂s(x, t)

∂t
=

∫
m(x, z)s(z, t) dz − s(x, t)

∫
m(u, x) du

where s(x, 0) is given. It is again easy to write down a formal solution to this
equation, but what is required is an analysis of its behavior. This is an example of
an old problem where basic, and potentially useful, work remains to be done.

What has been described is a class of models, based on rather minimal assumptions,
which can be used in a variety of situations. Some modifications may be appropriate
for developing systems. Nonetheless, I would claim that there is some virtue in this
“top-down” approach, as opposed to inventing separate models for each particular
application. Or, put more plainly, general mathematical systems may have wide
applicability.

4. A Plug for Ordered Structures

Another example of this type is the application of thermodynamical principles to
different situations. Professor Sergeev is speaking in this tradition, and the survey



6 J. B. NATION

article by Lieb and Yngvasson [9] gives a nice exposition of the formal development
of entropy and the second law of thermodynamics. However, the theory outlined in
[9] includes a strong, and to me rather strange, assumption. The theory is based on
a quasi-order (a reflexive, transitive relation) on a space of states. The relation that
state X precedes state Y means that it is possible for the system to go from state
X to state Y . The assumption called the Comparison Hypothesis is made: All pairs
of states are comparable, i.e., either X precedes Y or Y precedes X (or both). In
other words, the quasi-order induces a total order on the equivalence classes of states
under precedence.

The total order assumed in this Comparison Hypothesis seems somewhat artificial
and archaic. Nature may contain partial orders, which need not be linear orders.
Note the successful use of lattice theory in data structures (as in Ganter and Wille’s
Formal Concept Analysis [3]) and social choice theory (see Johnson and Dean [5] for
a recent update and references).

There seem to be two orders of business.

(1) Assumptions of linear order should be questioned, and where appropriate,
replaced.

(2) A dynamic theory of ordered sets or lattices may be necessary to describe
evolving and developing systems.

Just as we have learned the limitations of using only linear dynamics, so we must
learn the limitations of linear order.

5. Mathematics and Science: C. P. Snow Revisited

Finally, let us consider the interaction of two largely distinct and non-overlapping
cultures: mathematics and science.

The mathematics establishment is conservative in nature.

• Graduate education in mathematics focuses heavily on 19th and early 20th
century mathematics. Much of this material is irrelevant to a career in modern
mathematics, whether pure or applied.

• Research support is comparatively minimal, especially in pure mathematics.
Research results remain a major factor in academic promotion and tenure,
and it is usually a factor in personal and professional satisfaction. However,
most mathematicians make their living teaching undergraduate mathematics.

• Most mathematicians work in specialized areas, with very little incentive to
diversify or consider applications. There is merit in an individual pursuing a
long-term, very specific, research program. But when an entire mathematics
department becomes isolated, then it is time to re-establish communication
with the rest of the world.

• Publication standards are very different. Mathematics papers must be precise
and correct. You must say exactly what you mean, be precise and define every
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term. Papers with major errors, undefined terms or no proofs are not allowed
in principle. (This can lead to frustration when mathematicians try to read
papers from other fields.)

• This is reflected in publication policy. Mathematicians often wait six months
to a year for referee reports; publication takes at least another additional
year. On the other hand, a good mathematics paper may remain relevant for
decades.

Moreover, it is safe to assume that most mathematicians have only minimal training
in the sciences.

Of course, there is an active research community in biomathematics, biostatistics,
biophysics and bioinformatics. This community is well-represented here. Similarly,
there are active groups in mathematical social sciences and economics. Unfortunately,
these fields remain isolated from the mainstream of mathematics. This will not be
changed by retraining older mathematicians: we need to train a new generation. This
process must include attracting some of our best students to applied mathematics
at a relatively early age. The new Mathematical Biosciences Institute funded by
the National Science Foundation at Ohio State University is a big step in the right
direction.

We have left a large factor out of this discussion: computers and computer science.
The effect of increased computing power and availability for both mathematics and
science is evident. However, historically, computer science has developed largely
independently of mathematics and science. In many universities, computer science
represents a distinct and isolated department, to the detriment of all concerned.
This should not be allowed to happen with biomathematics and modeling, or to
mathematics for the social sciences.

The fault is not all with mathematics. Scientists from various disciplines need to
learn the mathematical language. The mathematical training of scientists, outside
of chemistry and physics, is often minimal. Most scientists learn mathematics up to
about the year 1700 plus a little statistics. That won’t cut it. Future generations of
scientists must have a better, and more thorough, mathematical education.

The interaction between mathematics and science is a developing relationship. It
would be interesting to try to model the developing relation between mathematics
and the other sciences. Our task here is simpler, merely to promote that relationship.
I wish you all a stimulating and successful workshop.
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