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EQUALITY

J. B. NATION

Abstract. If S is a semilattice with operators, then there is an impli-
cational theory Q such that the congruence lattice Con(S) is isomorphic
to the lattice of all implicational theories containing Q.

The author and Kira Adaricheva have shown that lattices of quasi-equational
theories are isomorphic to congruence lattices of semilattices with operators
[1]. That is, given a quasi-equational theory Q, there is a semilattice with
operators S such that the lattice QuTh(Q) of quasi-equational theories con-
taining Q is isomorphic to Con(S). There is a partial converse: if the semi-
lattice has a largest element 1, and under strong restrictions on the monoid
of operators, then Con(S,+, 0,F) can be represented as a lattice of quasi-
equational theories. Any formulation of a converse will necessarily involve
some restrictions, as there are semilattices with operators whose congruence
lattice cannot be represented as a lattice of quasi-equational theories. In
particular, one must deal with the element corresponding to the relative
variety x ≈ y, which has no apparent analogue in congruence lattices of
semilattices with operators.

In this note, it is shown that if S is a semilattice with operators, then
Con(S,+, 0,F) is isomorphic to a lattice of implicational theories in a lan-
guage that may not contain equality. The proof is a modification of the
previous argument, Adaricheva and Nation [1], but not an entirely straight-
forward one. En route, we also investigate atomic theories, the analogue of
equational theories for a language without equality.

For classical logic without equality, see Church [4] or Monk [12]. More re-
cent work includes Blok and Pigozzi [2], Christie et. al. [3], Czelakowski [5],
and Elgueta [6]. The standard reference for quasivarieties is Viktor Gor-
bunov’s book [7].

The rules for deduction in implicational theories are given explicitly in
section 3. Our main result, Corollary 8, of course depends on these. It
does not depend on the model theory used to interpret how it applies to
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structures, and indeed there are options in this regard. So there are two
versions of this paper. The longer one includes a suitably weak model theory
to interpret the results, while the shorter one proceeds more directly to the
main theorem. This is the short version; both are available on the author’s
website: www.math.hawaii.edu/∼jb.

The author would like to thank the University of Hawaii algebra and logic
seminar for constructive comments and suggestions.

1. Atomic theories

1.1. Language. Let us work in a language L that has a set of variables
X, constants, function symbols, relation symbols, and punctuation, but no
primitive equality relation. Constants are regarded as nullary functions, but
assume that L has no nullary relations.

1.2. Structure. An L-structure is A = 〈A,FA,RA〉 with the following
interpretation. The carrier set A is nonempty. For each k-ary function
symbol f , there is a function fA : Ak → A. For each k-ary relation symbol
R, there is a relation RA ⊆ Ak. Relations of A are allowed to be empty.
A much more general interpretation is used in the long version, but this
traditional view suffices for our purposes.

1.3. Congruence. A congruence θ on A is a set of relations Rθ such that
Rθ ⊇ RA for each relation symbol R. Since there is no special relation ≈
satisfying particular properties, that’s it. Reflexivity, transitivity and com-
patibility are all implications, so structures with equality properly belong in
Section 3. (However, the congruence lattices of semilattices with operators
in the main results are congruences in the traditional sense.)

The structure 〈A,FA,Rθ〉 is denoted A/θ.

1.4. Atomic theories. As usual, form the absolutely free structure F =
FL(X). No relations hold on F, but we can form R(F), the set of all potential
relation instances on F. The elements of F are called terms, and members
of R(F) are atomic formulas.

Note that F is an algebra in the usual sense, and any map σ : X → F
can be extended to a homomorphism in the usual way. We refer to these
endomorphisms as substitutions, and use Sbn(F) to denote the monoid of
all substitutions.

A subset Σ ⊆ R(F) is an atomic theory if whenever R(t) ∈ Σ and σ ∈
Sbn(F), then R(σt) ∈ Σ. That is, atomic theories are just sets of relations
on F that are closed under substitution.

By general principles, the lattice of all atomic theories of L forms an
algebraic lattice ATh(L).
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2. Lattices of atomic theories

2.1. Fully invariant congruences and lattices of atomic theories.
A fully invariant congruence is a set of relations closed under substitution
endomorphisms. These again form an algebraic lattice Ficon F.

The collection of all atomic theories extending a given theory Σ is also
an algebraic lattice, denoted by ATh(Σ). Without a primitive equality, the
only means of deduction for atomic formulas is substitution. Evidently, the
following holds.

Theorem 1. For an atomic theory Σ, the lattice ATh(Σ) is isomorphic to
Ficon FΣ(X) with X countably infinite.

The structure of the lattices At(Σ) is the topic of the fourth part of this
series [8], with T. Holmes, D. Kitsuwa and S. Tamagawa. In particular,
these lattices are completely distributive and coatomic.

3. Implicational theories

Formally, an implication is an ordered pair 〈F,Q〉 with F a finite set of
atomic formulas and Q an atomic formula. Thus each P ∈ F and Q are of
the form A(t) with A a relational symbol and t ∈ Fn. To reflect the intended
interpretation, we write an implication 〈F,Q〉 with F = {P0, . . . , Pm} as ei-
ther F =⇒ Q or &Pi =⇒ Q. The antecedent is allowed to be empty:
∅ =⇒ P is equivalent to P . The formal definition insures that the conjunc-
tion in the antecedent is idempotent, commutative and associative.

A collection T of implications is an implicational theory if

(i) F =⇒ P is in T whenever P ∈ F ;
(ii) when F =⇒ Q is in T and F ⊆ G, then G =⇒ Q is in T ;
(iii) whenever F =⇒ Q is in T for all Q ∈ G, and G =⇒ R is in T , then

F =⇒ R is in T ;
(iv) T is closed under substitutions: if Φ ∈ T and σ : X → F, then

σΦ ∈ T .

Note that condition (iii), transitivity, implies modus ponens:

(v) if Pi ∈ T for all i and &Pi =⇒ Q is in T , then Q ∈ T .

The free T -structure on X is FL(X) with the purely atomic relations of
T , denoted FT (X). Thus A(t) holds in FT (X) if and only if A(t) is in T .

4. Relative congruences

Let T be an implicational theory. A congruence θ on A is a T -congruence
if A/θ ∈ Mod T , that is, A with the relations θ satisfies all the formulas
of T . So a congruence θ, regarded as a set of relations, is a T -congruence
if, whenever &Pi =⇒ Q is in T and Pi(αx) ∈ θ for some substitution
α : X → A and all i, then Q(αx) ∈ θ. Again, the set of all T -congruences
on A forms an algebraic lattice ConT (A), as the closure operator conT is
finitary in nature.
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For any set M of atomic formulas, let conT (M) denote the T -congruence
generated byM , i.e., the smallest T -congruence containingM . Thus conT (M)
contains M and all its T -consequences.

Consider the substitution endomorphisms of the free algebra FT (X), that
is, the homomorphisms ε generated by maps ε0 : X → F. These maps form
a monoid, denoted Sbn(F). (Since the relational part of an endomorphism
is not determined by the substitution for the variables, F may have other
endomorphisms.)

The substitution endomorphisms of F act naturally on the compact con-
gruences of ConT (F). For ε ∈ Sbn F, define

ε̂(conT (R(s))) = conT (R(εs))

ε̂(
∨
j

ϕj) =
∨
j

ε̂ϕj .

Lemma 2 below checks the crucial technical detail that ε̂ is well defined, and
hence join preserving, because ψ ≤

∨
j ϕj implies ε̂ψ ≤

∨
j ε̂ϕj for principal

congruences ψ and ϕj in ConT (F). Also note that ε̂ is zero preserving: the
least T -congruence ∆T of F contains exactly those relations A(t) such that
A(t) is in T , and ε̂(∆T ) = ∆T because T is closed under substitution. Let

Ê = {ε̂ : ε ∈ Sbn F}.
The next lemma reflects the interpretation that conT (M) consists of M

and all its T -consequences.

Lemma 2. If T is an implicational theory, then conT (Q) ≤
∨
i conT (Pi)

holds in ConT (F) if and only if &iPi =⇒ Q is in T .

5. Lattices of implicational theories

Form the lattice ITh(T ) of all implicational theories extending T , an
algebraic lattice.

Theorem 3. For an implicational theory T ,

ITh(T ) ∼= Con S

where S = 〈U,∨, 0, Ê〉 with U the semilattice of T -congruences that are
compact in ConT(F), E = Sbn(F), and F = FT (X) with |X| = ℵ0.

At one point, we use a technical variant, with the same proof.

Theorem 4. Let T be an implicational theory, and let n ≥ 1 be an integer.
The lattice of all implicational theories that

(1) contain T , and
(2) are determined relative to T by implications in at most n variables

is isomorphic to Con Sn, where Sn = 〈U,∨, 0, Ê〉 with U the semilattice of
T -congruences that are compact in ConT(F), E = Sbn(F), and F = FT (n).
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For the proof of this theorem, and for its application, it is natural to
use two structures closely related to the congruence lattice instead [1]. For
an algebra A with a join semilattice reduct, let Don A be the lattice of
all reflexive, transitive, compatible relations R such that ≥⊆ R, i.e., x ≥ y
implies xR y. Let Eon A be the lattice of all reflexive, transitive, compatible
relations R such that

(1) R ⊆≤, i.e., xR y implies x ≤ y, and
(2) if x ≤ y ≤ z and xR z, then xR y .

Lemma 5. If A = 〈A,∨, 0,F〉 is a semilattice with operators, then Con A ∼=
Don A ∼= Eon A.

The proof of the lemma is fairly straightforward, and can be found in
Part I of [1].

Proof. Define the map κ : ITh(T )→ Don S by (θ, ψ) ∈ κ(K) if and only if
there are P0, . . . , Pm, Q0, . . . , Qn such that

• for each j, the implication &Pi =⇒ Qj is in K,
• θ =

∨
i conT(Pi) in ConT(F), and

• ψ =
∨
j conT(Qj) in ConT(F).

In the other direction, define τ : Don S → ITh(T ) such that &Pi =⇒ Q is
in τ(R) if and only if (

∨
conT(Pi), conT(Q)) is in R.

The proof of the theorem is mostly routine checking, modulo Lemma 2.
First, we check that κ(K) ∈ Don S. Reflexivity follows from property (i)

of K.
The transitivity of κ(K) requires some care. Suppose θ κ(K)ψ κ(K)ϕ,

where

θ =
∨
i

conT (Pi)

ψ =
∨
j

conT (Qj) =
∨
k

conT (Rk)

ϕ =
∨
`

conT (S`)

with the corresponding implications being in K. Now &Qj =⇒ Rk is in T
for all k by Lemma 2, and T ⊆ K. Thus &Pi =⇒ Rk is in K for all k by
(iii). Apply (iii) once more to obtain &Pi =⇒ S` in K for all `, whence
θ κ(K)ϕ.

The compatibility of κ(K) with join, θ κ(K)ψ implies θ ∨ ϕκ(K)ψ ∨ ϕ,
follows from conditions (i) and (ii). Compatibility with substitutions is
condition (iv).

That θ ≥ ψ implies θ κ(K)ψ follows from Lemma 2 and T ⊆ K.
We conclude that κ(K) ∈ Don S. It is also clear that κ is order preserving.
Next, given R ∈ Don S, check that τ(R) is an implicational theory.

Properties (i) and (ii) follow from ≥⊆ R and the transitivity of R. For
property (iii), note that if (

∨
i conT (Pi), conT (Qj)) ∈ R for all j, then
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(
∨
i conT (Pi),

∨
j conT (Qj)) ∈ R since R is compatible with respect to joins.

If in addition (
∨
j conT (Qj), conT (S)) ∈ R, then (

∨
i conT (Pi), conT (S)) ∈ R

by the transitivity of R. Finally, closure under substitution, (iv), is imme-
diate from the definition of ε̂.

Moreover, τ(R) ⊇ T by Lemma 2, and τ is order preserving.
Finally, using Lemma 2 again, we note that κτ(R) = R and τκ(K) = K

for all appropriate R and K. �

Recall that there is a natural equa-interior operator on lattices of quasi-
equational theories. Given a quasi-equational theory Q and a theory T in
QuTh(Q), define η(T) to be the implicational theory generated by Q and all
the equations valid in T. This interior operator has the following properties
[7].

(I1) η(x) ≤ x
(I2) x ≥ y implies η(x) ≥ η(y)
(I3) η2(x) = η(x)
(I4) η(1) = 1
(I5) η(x) = u for all x ∈ X implies η(

∨
X) = u

(I6) η(x) ∨ (y ∧ z) = (η(x) ∨ y) ∧ (η(x) ∨ z)
(I7) The image η(L) is the complete join subsemilattice of L generated

by η(L) ∩ Lc.
(I8) There is a compact element w ∈ L such that η(w) = w and the

interval [w, 1] is isomorphic to the congruence lattice of a semilattice.
Thus the interval [w, 1] is coatomistic.

In view of (I5), let τ(x) =
∨
{z : η(z) = η(x)}. A ninth property was added

in [1].

(I9) For any index set I, if η(x) ≤ c and
∧
τ(zi) ≤ τ(c), then η(η(x) ∨∧

i∈I τ(x ∧ zi)) ≤ c.
There is also a natural interior operator defined on the congruence lattice

of any semilattice with operators, where η(θ) is the congruence generated by
the 0-class of θ. This operator satisfies properties (I1)–(I7) and (I9). How-
ever, it need not satisfy (I8), which for lattices of quasi-equational theories
refers to the relative variety determined by x ≈ y.

These ideas fit into our current setting thusly. Let ATh∗(T ) denote the
lattice of implicational theories generated by T and a set of purely atomic
formulas. Note that ATh∗(T ) is a complete join subsemilattice of ITh(T ).

In the representation of Theorem 3, relatively atomic theories of T corre-

spond to congruences η(I) with I an Ê-closed ideal of S. Thus ATH∗(T ) is
isomorphic to the lattice η(Con S) for the natural interior operator, which

in turn is isomorphic to the lattice of Ê-closed ideals of S. In particular,
ITh(T ) has a natural interior operator satisfying properties (I1)–(I7) and
(I9), and all the consequences of that apply (see [1]).

Under the circumstances, the special role of property (I8) for implicational
theories in languages with equality invites further analysis.
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6. Restoring equality

At this point, we pause to note that T could contain implications say-
ing that a binary relation ≈ is an equivalence relation and, moreover, a
congruence in the usual sense. That is, T could contain the laws

(1) x ≈ x
(2) x ≈ y =⇒ y ≈ x
(3) x ≈ y & y ≈ z =⇒ x ≈ z
(4) x ≈ y =⇒ f(x, z) ≈ f(y, z) for all functions f ,
(5) x ≈ y =⇒ (R(x, z)⇐⇒ R(y, z)) for all predicates R.

This relation can then be regarded as equality. In this case, T -congruences
correspond to regular congruences, EqTh(T ) ∼= ATh∗(T ) and QuTh(T ) ∼=
ITh(T ).

Björn Kjos-Hanssen points out that while there may be no such relation,
there is at most one, in view of (5).

7. Representation

Now we provide a converse to Theorem 3.

Theorem 6. Let B be an implicational theory in a language L with the
following restrictions and laws.

(1) L has only unary predicate symbols.
(2) L has only unary function symbols.
(3) L has one constant symbol e.
(4) B contains the laws P (f(e)) for every predicate P and every formal

composition f of functions of L.

Then every implication holding in a theory extending the theory of B is
equivalent (modulo the laws of B) to a set of implications in only one vari-
able. Hence the lattice of theories of B is isomorphic to Con(S) where

S = 〈T,∨, 0, Ê〉 with T the semilattice of compact congruences of ConB(F),
E = Sbn(F), and F = FB(1).

Proof. The atomic formulas of L are of the form A(h(u)), where A is a
predicate, h is a formal composition of functions, possibly empty, and u is a
variable or e. In an implication &Pi =⇒ Q, the conclusion involves at most
one variable. A law that is equivalent, modulo the laws of B, is obtained by
replacing every other variable occurring in the antecedent by e. �

Theorem 7. Let S be a join semilattice with 0, and let M be a monoid of
operators acting on S. Then there is an implicational theory C such that

Con(S,+, 0,M) is isomorphic to Con(T,∨, 0, Ê) with T the semilattice of
compact congruences of ConC(F), E = Sbn(F), and F = FC(1).

Proof. Our language will include unary predicates A for each nonzero ele-
ment a of S, unary operations f for each f ∈M, and a constant e.
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Again, L-terms are of the form A(h(u)), where A is a predicate, h is a
formal composition of functions, and u is a variable or e. Denote the single
variable by x.

The construction begins by assigning a set of predicates to each nonzero
element of S. For each a ∈ S and formal composition h = f1 · · · fk, assign
the predicate A(h(x)) to h?(a), where h? denotes h evaluated in Mopp, that
is, h? = fk · · · f1. In this way each element of S may be assigned multiple
predicates, but they will all be of the form B(g(x)) for different predicates
B and sequences g. For s ∈ S, let P(s) denote the set of predicates assigned
to s. Thus P(s) = {A(h(x)) : h?(a) = s}.

Define C to be the quasivariety determined by these laws.

(1) P (f(e)) for every predicate P and every formal composition f of
functions of L.

(2) A(i(x))⇐⇒ A(x) for every A, where i is the identity element of M.
(3) A(h(x))⇐⇒ A(h?(x)) for every formal composition.
(4) β =⇒ α whenever a ≤ b, α ∈ P(a), β ∈ P(b).
(5) &βj =⇒ α whenever a ≤

∑
bj , α ∈ P(a), βj ∈ P(bj) for each j.

The laws (1) ensure that Theorem 6 applies, so that we may work with
FC(1). Note that the laws (4) are redundant as a special case of (5).

The universe of F = FC(1) is all terms h(u) with h a sequence of oper-
ations, and u either x or e. The operations correspond to elements of M,
and there is a unary predicate for each nonzero element of S. Note that
A(t) holds in the free structure only for t = e or t = h(e). The substitution
endomorphisms of F are determined by the image of x. For a term t, let εt
denote the endomorphism with x 7→ t.

Since C satisfies &βj =⇒ α whenever a ≤
∑
bj , α ∈ P(a), and each βj ∈

P(bj), we see that every C-congruence of F is the set of predicates assigned
to some ideal of S, along with A(h(e)) for every A and h. Conversely,
every ideal determines such a C-congruence, and principal ideals determine
compact congruences. In fact, the congruence corresponding to ↓s is conC(α)
for any α ∈ P(s). Thus the semilattice of compact C-congruences of FC(1)
is isomorphic to S, as desired.

As a matter of notation, let Θs denote the congruence that has all the
relations

⋃
{P(t) : t ≤ s}, plus the base relations of the form B(g(e)) given

by (1). Denote the set of base relations by B. Thus Θs = {A(h(x)) : h?(a) ≤
s} ∪ B.

It remains to show that the action of Ê on T, the semilattice of compact
C-congruences of FC(1), mimics the action of Mopp on S. The relevant facts
are these.

• ε̂h(e)(Θs) ⊆ B for any h, whence B is the zero congruence. So this
operator does not affect the congruences of T.
• ε̂h(x)(Θs) = Θh?(s) for any sequence h and element s.
• If f and g are sequences, then ε̂f(x) = ε̂g(x) if and only if Θf?(s) =

Θg?(s) for all s, if and only if f? = g?.
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• ε̂f(x)ε̂g(x) = ε̂(gf)(x).

The crucial calculation is the second one. Note that

ε̂h(x)(Θs) = conC{εh(x)A(f(x)) : f?(a) ≤ s} ∪ B
= conC{A(f(h(x))) : f?(a) ≤ s} ∪ B.

Now f?(a) ≤ s implies (fh)?(a) = h?f?(a) ≤ h?(s), so ε̂h(x)(Θs) ⊆ Θh?(s).
But the left-hand side includes εh(x)S(x) = S(h(x)), and that’s a generator
for Θh?(s), whence equality holds.

This completes the proof of the theorem. �

Combining these results (which now avoid problems that occurred in the
presence of equality in Part II of [1]), we obtain the desired result.

Corollary 8. Let S be a join semilattice with 0, and let M be a monoid of
operators acting on S. Then there is an implicational theory C such that the
lattice of implicational theories of C is isomorphic to Con(S,+, 0,M).

8. Overview

It is useful to step back and consider the situation from a distance. There
are (at least) four plausible settings.

(IA) Algebras, language with equality.
(IB) Pure relational structures, language with equality.
(II) Structures with functions and relations, language with equality.

(III) Structures with functions and relations, language without equality.

Likewise, there are three types of theories.

(1) Atomic theories ATh(T ).
(2) Implicational theories ITh(T ).
(3) Relative atomic theories ATh∗(T ).

That makes twelve combinations, not all equally interesting.
The traditional setting for equational theories is algebras (IA). There

we have the results of McKenzie [11], Newrly [13], Nurakunov [14] leading
to Lampe’s zipper condition [9, 10] and its generalizations. Are there any
versions of this that apply in other settings?

The historic setting for quasi-equational theories is general structures (II),
though pure relational structures (IB) played a role. The results of [1] are
the apparent analogues here, and in this note we see how this generalizes
to the setting (III). The ultimate goal is still to deal with case (II), and to
discern what is special about the quasi-equational theory of algebras (IA).

Atomic theories of structures with equality (II) can be viewed as relative
atomic theories of structures without equality (III). This seems an odd view-
point, but perhaps it explains some of the complexity of lattices of equational
theories.
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