
LATTICES OF THEORIES IN LANGUAGES WITHOUT
EQUALITY

J. B. NATION

Abstract. If S is a semilattice with operators, then there is an impli-
cational theory Q such that the congruence lattice Con(S) is isomorphic
to the lattice of all implicational theories containing Q.

Imprudent will appear our voyage since none of us has been in the Green-
land ocean. - Bjarni Herjulfson

The author and Kira Adaricheva have shown that lattices of quasi-equational
theories are isomorphic to congruence lattices of semilattices with operators
[1]. That is, given a quasi-equational theory Q, there is a semilattice with
operators S such that the lattice QuTh(Q) of quasi-equational theories con-
taining Q is isomorphic to Con(S). There is a partial converse: if the semi-
lattice has a largest element 1, and under strong restrictions on the monoid
of operators, then Con(S,+, 0,F) can be represented as a lattice of quasi-
equational theories. Any formulation of a converse will necessarily involve
some restrictions, as there are semilattices with operators whose congruence
lattice cannot be represented as a lattice of quasi-equational theories. In
particular, one must deal with the element corresponding to the relative
variety x ≈ y, which has no apparent analogue in congruence lattices of
semilattices with operators.

In this note, it is shown that if S is a semilattice with operators, then
Con(S,+, 0,F) is isomorphic to a lattice of implicational theories in a lan-
guage that may not contain equality. The proof is a modification of the
previous argument [1], but not an entirely straightforward one. En route,
we also investigate atomic theories, the analogue of equational theories for
a language without equality.

For classical logic without equality, see Church [4] or Monk [12]. More
recent work includes Blok and Pigozzi [2], Czelakowski [5], and Elgueta [6].
The standard reference for quasivarieties is Viktor Gorbunov’s book [7].

The rules for deduction in implicational theories are given explicitly in
section 4. Our main result, Corollary 16, of course depends on these. It
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does not depend on the model theory used to interpret how it applies to
structures, and indeed there are options in this regard. So there are two
versions of this paper. The longer one includes a suitably weak model theory
to interpret the results, while the shorter one proceeds more directly to the
main theorem. This is the longer version; both are available on the author’s
website: www.math.hawaii.edu/∼jb.

The author would like to thank the University of Hawaii algebra and logic
seminar for constructive comments and suggestions.

1. Atomic theories

1.1. Language. Let us work in a language L that has a set of variables
X, constants, function symbols, relation symbols, and punctuation, but no
primitive equality relation. Constants are regarded as nullary functions, but
assume that L has no nullary relations.

Despite the setting of a language without equality, the logic used is con-
servative, with boolean truth values and functions.

1.2. Structure. An L-structure is A = 〈A,FA,RA〉 with the following
interpretation. The carrier set A is nonempty. For f a k-ary function
symbol, fA ⊆ Ak×A satisfies ∀a∃b f(a, b). As we can no longer distinguish
elements, b is not required to be unique, but there must be at least one
such element. We write f(a) as a shorthand for any element b such that
f(a, b). For each nullary function c, there exists at least one b ∈ A with
cA(b) holding. A k-ary relation of A is a subset RA ⊆ Ak. Relations of A
are allowed to be empty.

1.3. Substructure. Given an L-structure A, the subset S = 〈S,FS,RS〉 is
a substructure if S ⊆ A, for each function fS = fA|Sk+1 is defined on Sk

taking values in S, and for each relation RS = RA|Sk . We do not require
that s ∈ Sk and fA(s, b) implies b ∈ S, but only that fA(s, b) for some
b ∈ S. If there are no constants in the language, then S may be empty.

Explicitly,

• S ⊆ A,
• s ∈ Sk implies f(s, b) for some b ∈ S,
• for each function symbol, fS = fA|Sk+1 , and
• for each relation symbol, RS = RA|Sk .

Because substructures are only weakly closed, and we might have, for
example, h(s, t) and h(t, u) with s, u ∈ S but t /∈ S. This may be counter-
intuitive, but in fact the weak closure is all that need be required.

1.4. Direct products. These are done component-wise, and require no re-
interpretation.
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1.5. Honumorphism. We need to modify the notion of homomorphism
to something more appropriate for this setting. A subset h ⊆ A × B is a
honumorphism if

(1) for each a there exists b with h(a, b),
(2) for each function symbol,

fA(a1, . . . , ak, c)&h(a1, b1)& . . . &h(ak, bk)&h(c, d)

implies fB(b1, . . . , bk, d),
(3) for each relation symbol, RA(a1, . . . , ak)&h(a1, b1)& . . . &h(ak, bk)

implies RB(b1, . . . , bk),
(4) for each function symbol,

fB(b1, . . . , bk, d)&h(a1, b1)& . . . &h(ak, bk)&h(c, d)

implies there exists c′ such that h(c′, d) and fA(a1, . . . , ak, c
′).

Given h ∈ Honu(A,B), let h(A) = {b ∈ B : ∃a ∈ A h(a, b)}.
Lemma 1. If S ≤ A and h ∈ Honu(A,B), then h(S) ≤ B.

1.6. Kernel. The kernel of a honumorphism h is the set of relations

kerh =

{R(a1, . . . , ak) : R ∈ R and h(a1, b1)& . . . &h(ak, bk) =⇒ RB(b1, . . . , bk)}.

1.7. Examples. Part of the philosophy here is that if elements of a struc-
ture have different properties, then they are distinct, but in a language
without equality the converse is false. This is the idea behind the Leibniz
congruence, which however plays no direct role here; see, e.g., [2].

Given a structure A, we can form an expansion E of A thusly. For each
a ∈ A, let Xa be a nonempty set. Let E =

⋃
a∈AXa. Define the operations

and relations of E by

fE(x1, . . . , xk, y) iff x1 ∈ Xa1 & . . . xk ∈ Xak
& y ∈ Xb & fA(a1, . . . , ak, b),

RE(x1, . . . , xk) iff x1 ∈ Xa1 & . . . xk ∈ Xak
&RA(a1, . . . , ak).

Then the relation h given by h(a, x) iff x ∈ Xa is in Honu(A,E).
At the other extreme, we can perform the contraction Ǎ of A that iden-

tifies all indistinguishable elements. Define d ≡ d′ if

FA(a1, . . . , d, . . . , ak, b) iff FA(a1, . . . , d
′, . . . , ak, b)

FA(a1, . . . , ak, d) iff FA(a1, . . . , ak, d
′)

RA(a1, . . . , d, . . . , ak) iff RA(a1, . . . , d
′, . . . , ak).

Choose a system S of representatives of the ≡-classes. With the inherited
operations and relations, this becomes a substructure S ≤ A. Moreover,
the relation h defined by h(a, s) iff a ≡ s ∈ S is a honumorphism: h ∈
Honu(A,S).
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1.8. Icemorphism and isomorphism. There are two notions of equiva-
lence for structures.

Say that A is icemorphic to B, denoted A ' B, if there is a honumor-
phism h ∈ Honu(A,B) such that

(1) for each a ∈ A there exists b ∈ B with h(a, b),
(2) for each b ∈ B there exists a ∈ A with h(a, b),
(3) for each function symbol, if h(a1, b1)& . . . &h(ak, bk)&h(c, d), then

fA(a1, . . . , ak, c) iff fB(b1, . . . , bk, d),
(4) for each relation symbol, if h(a1, b1)& . . . &h(ak, bk), thenRA(a1, . . . , ak)

iff RB(b1, . . . , bk).
An icemorphism is a honumorphism, for the fourth condition for a honu-
morphism is included in the strengthened condition for function symbols.

Regular isomorphism, denoted A ∼= B, means that there exists a bijection
h : A → B such that

(1) for each function symbol, fA(a1, . . . , ak, c) iff fB(h(a1), . . . , h(ak), h(c)),
(2) for each relation symbol, RA(a1, . . . , ak) iff RB(h(a1), . . . , h(ak)).

The philosophy is that icemorphism is the natural equivalence in a language
without equality, where you cannot necessarily distinguish elements. But
in looking at models from outside the system, isomorphism remains the
appropriate equivalence.

These two notions are connected thusly.

Lemma 2. Let A and B be L-structures, with contractions Ǎ and B̌, re-
spectively. Then A ' B if and only if Ǎ ∼= B̌.

Looking ahead, since an expansion of A satisfies the same implications as
A, a standard result quoted below yields this.

Lemma 3. Let A be an L-structure and Â an expansion of A. Then Â is
isomorphic to a substructure of a reduced power of A.

Likewise, we have two notions of embedding:
• A v B if A is icemorphic to a substructure of B,
• A ≤ B if A is isomorphic to a substructure of B.

The two lemmate, however, explain why these distinction play no major role
in our analysis.

1.9. Atomic theories. As usual, form the absolutely free structure F =
FL(X). No relations hold on F, but we can form R(F), the set of all potential
relation instances on F. The elements of F are called terms, and members
of R(F) are atomic formulae.

Note that F is an algebra in the usual sense, and any map σ : X → F
can be extended to a homomorphism in the usual way. We refer to these
endomorphisms as substitutions, and use Sbn(F) to denote the monoid of
all substitutions.
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A subset Σ ⊆ R(F) is an atomic theory if whenever R(t) ∈ Σ and σ ∈
Sbn(F), then R(σt) ∈ Σ. That is, atomic theories are just sets of relations
on F that are closed under substitution.

By general principles, the lattice of all atomic theories of L forms an
algebraic lattice ATh(L).

2. Models and satisfaction for atomic theories

2.1. Satisfaction. An L-structure A is said to satisfy the atomic formula
R(t1(x), . . . , tk(x)) if for every a ∈ An, t1(a, b1)& . . . & tk(a, bk) implies
RA(b1, . . . , bk). Here the composition of terms is defined as the composition
of relations in A.

As always, satisfaction determines a Galois connection between L-structures
and atomic formulae. The respective closed sets are called atomic classes
and atomic theories.

Now let Σ be an atomic theory. The structure A is a model of Σ, or
A ∈ Mod Σ, if A satisfies Φ for every Φ ∈ Σ. In this case, we also say that
A satisfies Σ.

The free Σ-structure on X is FL(X) with the relations Σ, denoted FΣ(X).
The definition of a theory insures that FΣ(X) is in Mod Σ.

2.2. Closure. The usual closures go through.

Theorem 4. Let Σ be an atomic theory.
(1) FΣ(X) ∈ Mod Σ.
(2) If Ai ∈ Mod Σ for all i ∈ I, then

∏
i∈I Ai ∈ Mod Σ.

(3) If A ∈ Mod Σ and S ≤ A, then S ∈ Mod Σ.
(4) If A ∈ Mod Σ and h ∈ Honu(A,B), then h(A) ∈ Mod Σ.

2.3. Satisfaction and Honumorphisms. The standard results extend to
atomic classes and honumorphisms.

Theorem 5. Let Σ be an atomic theory. TFAE for a structure A.
(1) A ∈ Mod Σ.
(2) For every h ∈ Honu(FL(X),A), Σ ⊆ kerh.
(3) There exists h ∈ Honu(FΣ(Y ),A) for some Y with h(F) = A.

A key step in the proof is this claim. Let A ∈ Mod Σ. If h0 ⊆ X×A, then
h0 can be extended to a honumorphism h ∈ Honu(FL(X),A) with Σ ⊆ kerh.
This is done recursively: if

• the term t = f(s1, . . . , sk) identically,
• h(s1, a1), . . . , h(sk, ak) are given, and
• fA(a1, . . . , ak, b) holds, then (and only then) let h(t, b) hold.

Corollary 6. A class of L-structures is an atomic class if and only if it is
closed under honumorphisms, substructures and direct products.

This combines the theorem above with the observation that the free struc-
ture generated by a class K can be constructed as a substructure of a direct
product.
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2.4. Caveat. Consider the statement
(4) Every map h0 : FΣ(X) → A can be extended to a honumorphism.

When the operations are not necessarily functions, a honumorphism is not
determined by its action on a set of generators. Statement (4) is not equiv-
alent to the statements of the theorem.

In a language with one unary operation and one unary relation, consider
the atomic theory Σ generated by the formula R(f(x)), and the structure
A on {a, b, b′} with f(a, b), f(a, b′), f(b, b), f(b′, b) and R(b). Then A does
not satisfy R(f(x)), but the mapping property holds for maps from FΣ(X)
to A.

This example can be fixed by changing map in (4) to relation, but then a
slightly more complicated example shows that is not equivalent.

We have been intentionally vague about the set X. For while we generally
wantX to be countably infinite, there are times when a finite set is sufficient,
e.g., for languages with one unary predicate and one unary function. If we
insist that X be infinite, then (4) seems to be again equivalent, as we can put
all the elements involved in the range. Alternatively, we could talk about
extending partial honumorphisms. Both these options are far removed from
the original meaning of (4) for algebras. So perhaps this line should be
abandoned.

2.5. Kongruences and factors. With linguistic apologies, a kongruence
is a honumorphism kernel. Indeed, any extension of the relations of A
gives a kongruence (associated with the identity map). So the set of all
kongruences on A forms a boolean lattice, denoted as Kon A. This is not
very exciting: the more important notion will be a K-congruence, where K
is an implicational theory.

If ϕ is a kongruence, then A/ϕ denotes A with the relations ϕ. This
is consistent with the usual notation, though not how one normally thinks
of it. However, in the setting without equality, the kernel does not carry
enough information and there is no clear analogue of the first isomorphism
theorem. Indeed, distinct honumorphisms may have the same kernel! These
ideas remain useful, though.

Meanwhile, the second isomorphism theorem holds trivially.

3. Lattices of atomic theories

3.1. Fully invariant kongruences and lattices of atomic theories.
A fully invariant kongruence is a set of relations closed under substitution
endomorphisms. These again form an algebraic lattice Fikon F.

The collection of all atomic theories extending a given theory Σ is also
an algebraic lattice, denoted by ATh(Σ). Without a primitive equality, the
only means of deduction for atomic formulae is substitution. Evidently:

Theorem 7. For an atomic theory Σ, the lattice ATh(Σ) is isomorphic to
Fikon FΣ(X) with X countably infinite.
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The structure of the lattices At(Σ) is the topic of the fourth part of
this series citeHKNT, with T. Holmes, D. Kitsuwa and S. Tamagawa. In
particular, these lattices are completely distributive and coatomic.

4. Implicational theories

Formally, an implication is an ordered pair 〈F,Q〉 with F a finite set of
atomic formulae andQ an atomic formula. Thus each P ∈ F andQ are of the
form A(t) with A a relational symbol and t ∈ Fn. To reflect the intended
interpretation, we write an implication 〈F,Q〉 with F = {P0, . . . , Pm} as
either F =⇒ Q or &Pi =⇒ Q. The antecedent is allowed to be empty:
∅ =⇒ P is equivalent to P . The formal definition insures that conjunction
is idempotent, commutative and associative.

A collection T of implications is an implicational theory if
(i) F =⇒ P is in T whenever P ∈ F ,
(ii) if F =⇒ Q is in T , then F ∪ {R} =⇒ Q is in T for any R,
(iii) whenever F =⇒ Q is in T for all Q ∈ G, and G =⇒ R is in T , then

F =⇒ R is in T .
(iv) T is closed under substitutions: if Φ ∈ T and σ : X → F, then

σΦ ∈ T .
Note that condition (iii), transitivity, implies modus ponens:

(v) if Pi ∈ T for all i and &Pi =⇒ Q is in T , then Q ∈ T .
The free T -structure on X is FL(X) with the purely atomic relations of

T , denoted FT (X). Thus A(t) holds in FT (X) if and only if A(t) is in T .

5. Models and satisfaction for implicational theories

The structure A is a model for an implicational theory T if, for every
honumorphism h ∈ Honu(F,A) and every Φ ∈ T , if Pi ∈ kerh for all i then
Q ∈ kerh. Again we say that A satisfies T .

The definition of a theory insures that FT (X) ∈ Mod T . Moreover, it has
the mapping property: for any A ∈ Mod T , any map h0 : X → A can be
extended to a honumorphism.

A class Q of L-structures is an implicational class if Q = Mod(T ) for some
implicational theory T . As usual, satisfaction induces a Galois correspon-
dence between structures and implications, and hence a dual isomorphism
between implicational classes and implicational theories. Thus we can talk
about the implicational class generated by a class of structures, and so forth.

In this case, the standard results for quasivarieties and quasi-equational
classes carry over without change to languages without equality.

Lemma 8. If K is a class of structures, and the structure A satisfies every
implication F =⇒ Q satisfied by all members of K, then A is isomorphic
to a substructure of a reduced product of structures in K.

Theorem 9. A class Q of L-structures is an implicational class if and only
if it is closed under isomorphism, substructures and reduced products.
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Recall briefly the standard proof of the lemma. The extended diagram of
A is the collection of all atomic formulae ϕ(a) and negations ¬ϕ(a), with
a ∈ Ak, that hold in A. Assume that A satisfies all the implications satisfied
by K, and let F be a finite subset of the extended diagram of A. Then there
are a finite direct product P =

∏n
i=1 Ki of members of K, and a mapping h

of the elements appearing in F , that embeds F into P. Combining these, A
is isomorphic to a substructure of a reduced product indexed by the finite
subsets of the extended diagram of A. This proof works in any first-order
language.

6. Relative kongruences

Let T be an implicational theory. A kongruence θ on A is a T -kongruence
if A/θ ∈ Mod T , that is, A with the relations θ satisfies all the formulae
of T . So a kongruence θ, regarded as a set of relations, is a T -kongruence
if, whenever &Pi =⇒ Q is in T and Pi(αx) ∈ θ for some substitution
α : X → A and all i, then Q(αx) ∈ θ. Again, the set of all T -congruences
on A forms an algebraic lattice KonT (A), as the closure operator konT is
finitary in nature.

For any set M of atomic formulae, let konT (M) denote the T -kongruence
generated byM , i.e., the smallest T -kongruence containingM . Thus konT (M)
contains M and all its T -consequences.

Consider the substitution endomorphisms of the free algebra FT (X), that
is, the homomorphisms ε generated by maps ε0 : X → F. These maps form
a monoid, denoted Sbn(F). (Since the relational part of an endomorphism
is not determined by the substitution for the variables, F may have other
endomorphisms.)

The substitution endomorphisms of F act naturally on the compact kon-
gruences of KonT (F). For ε ∈ Sbn F, define

ε̂(konT (R(s))) = konT (R(εs))

ε̂(
∨

j

ϕj) =
∨

j

ε̂ϕj .

Lemma 10 below checks the crucial technical detail that ε̂ is well-defined, and
hence join-preserving, because ψ ≤ ∨

j ϕj implies ε̂ψ ≤ ∨
j ε̂ϕj for principal

kongruences ψ and ϕj in KonT (F). Also note that ε̂ is zero-preserving: the
least T -kongruence ∆T of F contains exactly those relations A(t) such that
A(t) is in T , and ε̂(∆T ) = ∆T because T is closed under substitution. Let
Ê = {ε̂ : ε ∈ Sbn F}.

The next lemma reflects the interpretation that konT (M) consists of M
and all its T -consequences.

Lemma 10. If T is an implicational theory, then konT (Q) ≤ ∨
i konT (Pi)

holds in KonT (F) if and only if &iPi =⇒ Q is in T .
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7. Lattices of implicational theories

Form the lattice ITh(T ) of all implicational theories extending T , an
algebraic lattice.

Theorem 11. For an implicational theory T ,

ITh(T ) ∼= Con S

where S = 〈U,∨, 0, Ê〉 with U the semilattice of T -kongruences that are
compact in KonT(F), E = Sbn(F), and F = FT (X) with |X| = ℵ0.

At one point, we use a technical variant, with the same proof.

Theorem 12. Let T be an implicational theory and n ≥ 1 an integer. The
lattice of all implicational theories that

(1) contain T , and
(2) are determined relative to T by implications in at most n variables

is isomorphic to Con Sn, where Sn = 〈U,∨, 0, Ê〉 with U the semilattice of
T -kongruences that are compact in KonT(F), E = Sbn(F), and F = FT (n).

For the proof of this theorem, and for its application, it is natural to
use two structures closely related to the congruence lattice instead [1]. For
an algebra A with a join semilattice reduct, let Don A be the lattice of
all reflexive, transitive, compatible relations R such that ≥⊆ R, i.e., x ≥ y
implies xR y. Let Eon A be the lattice of all reflexive, transitive, compatible
relations R such that

(1) R ⊆≤, i.e., xR y implies x ≤ y, and
(2) if x ≤ y ≤ z and xR z, then xR y .

Lemma 13. If A = 〈A,∨, 0,F〉 is a semilattice with operators, then Con A ∼=
Don A ∼= Eon A.

The proof of the lemma is fairly straightforward, and can be found in
Part I of [1].

Proof. Define the map κ : ITh(T ) → Don S by (θ, ψ) ∈ κ(K) if and only if
there are P0, . . . , Pm, Q0, . . . , Qn such that

• for each j, the implication &Pi =⇒ Qj is in K,
• θ =

∨
i konT(Pi) in KonT(F), and

• ψ =
∨

j konT(Qj) in KonT(F).

In the other direction, define τ : Don S → ITh(T ) such that &Pi =⇒ Q is
in τ(R) if and only if (

∨
konT(Pi), konT(Q)) is in R.

The proof of the theorem is mostly routine checking, modulo Lemma 10.
First, we check that κ(K) ∈ Don S. Reflexivity follows from property (i)

of K.
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The transitivity of κ(K) requires some care. Suppose θ κ(K)ψ κ(K)ϕ,
where

θ =
∨

i

konT (Pi)

ψ =
∨

j

konT (Qj) =
∨

k

konT (Rk)

ϕ =
∨

`

konT (S`)

with the corresponding implications being in K. Now &Qj =⇒ Rk is in T
for all k by Lemma 10, and T ⊆ K. Thus &Pi =⇒ Rk is in K for all k
by (iii). Apply (iii) once more to obtain &Pi =⇒ S` in K for all `, whence
θ κ(K)ϕ.

The compatibility of κ(K) with join, θ κ(K)ψ implies θ ∨ ϕκ(K)ψ ∨ ϕ,
follows from conditions (i) and (ii). Compatibility with substitutions is
condition (iv).

That θ ≥ ψ implies θ κ(K)ψ follows from Lemma 10 and T ⊆ K.
We conclude that κ(K) ∈ Don S. It is also clear that κ is order-preserving.
Next, given R ∈ Don S, check that τ(R) is an implicational theory.

Properties (i) and (ii) follow from ≥⊆ R and the transitivity of R. For
property (iii), note that if (

∨
i konT (Pi), konT (Qj)) ∈ R for all j, then

(
∨

i konT (Pi),
∨

j konT (Qj)) ∈ R since R is compatible with respect to joins.
If in addition (

∨
j konT (Qj), konT (S)) ∈ R, then (

∨
i konT (Pi), konT (S)) ∈ R

by the transitivity of R. Finally, closure under substitution, (iv), is imme-
diate from the definition of ε̂.

Moreover, τ(R) ⊇ T by Lemma 10, and τ is order-preserving.
Finally, using Lemma 10 again, we note that κτ(R) = R and τκ(K) = K

for all appropriate R and K. ¤
Recall that there is a natural equa-interior operator on lattices of quasi-

equational theories. Given a quasi-equational theory Q and a theory T in
QuTh(Q), define η(T) to be the implicational theory generated by Q and all
the equations valid in T. This interior operator has the following properties
[7].

(I1) η(x) ≤ x
(I2) x ≥ y implies η(x) ≥ η(y)
(I3) η2(x) = η(x)
(I4) η(1) = 1
(I5) η(x) = u for all x ∈ X implies η(

∨
X) = u

(I6) η(x) ∨ (y ∧ z) = (η(x) ∨ y) ∧ (η(x) ∨ z)
(I7) The image η(L) is the complete join subsemilattice of L generated

by η(L) ∩ Lc.
(I8) There is a compact element w ∈ L such that η(w) = w and the

interval [w, 1] is isomorphic to the congruence lattice of a semilattice.
Thus the interval [w, 1] is coatomistic.
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In view of (I5), let τ(x) =
∨{z : η(z) = η(x)}. A ninth property was added

in [1].
(I9) For any index set I, if η(x) ≤ c and

∧
τ(zi) ≤ τ(c), then η(η(x) ∨∧

i∈I τ(x ∧ zi)) ≤ c.
There is also a natural interior operator defined on the congruence lattice

of any semilattice with operators, where η(θ) is the congruence generated by
the 0-class of θ. This operator satisfies properties (I1)–(I7) and (I9). How-
ever, it need not satisfy (I8), which for lattices of quasi-equational theories
refers to the relative variety determined by x ≈ y.

These ideas fit into our current setting thusly. Let ATh∗(T ) denote the
lattice of implicational theories generated by T and a set of purely atomic
formulae. Note that ATh∗(T ) is a complete join subsemilattice of ITh(T ).

In the representation of Theorem 11, relatively atomic theories of T cor-
respond to congruences η(I) with I an Ê-closed ideal of S. Thus ATH∗(T ) is
isomorphic to the lattice η(Con S) for the natural interior operator, which
in turn is isomorphic to the lattice of Ê-closed ideals of S. In particular,
ITh(T ) has a natural interior operator satisfying properties (I1)–(I7) and
(I9), and all the consequences of that apply (see [1]).

Under the circumstances, the special role of property (I8) for implicational
theories in languages with equality invites further analysis.

8. Restoring equality

At this point, we pause to note that T could contain implications say-
ing that a binary relation ≈ is an equivalence relation and, moreover, a
congruence in the usual sense. That is, T could contain the laws

(1) x ≈ x
(2) x ≈ y =⇒ y ≈ x
(3) x ≈ y & y ≈ z =⇒ x ≈ z
(4) x ≈ y =⇒ f(x, z) ≈ f(y, z) for all functions f ,
(5) x ≈ y =⇒ (R(x, z) ⇐⇒ R(y, z)) for all predicates R.

This relation can then be regarded as equality. In this case, T -kongruences
correspond to regular congruences, EqTh(T ) ∼= ATh∗(T ) and QuTh(T ) ∼=
ITh(T ).

Björn Kjos-Hanssen points out that while there may be no such relation,
there is at most one, in view of (5).

9. Representation

Now we provide a converse to Theorem 11.

Theorem 14. Let B be an implicational theory in a language L with the
following restrictions and laws.

(1) L has only unary predicate symbols.
(2) L has only unary function symbols.
(3) L has one constant symbol e.
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(4) B contains the laws P (f(e)) for every predicate P and every formal
composition f of functions of L.

Then every implication holding in a theory extending the theory of B is
equivalent (modulo the laws of B) to a set of implications in only one vari-
able. Hence the lattice of theories of B is isomorphic to Con(S) where
S = 〈T,∨, 0, Ê〉 with T the semilattice of compact kongruences of KonB(F),
E = Sbn(F), and F = FB(1).

Proof. The atomic formulae of L are of the form A(h(u)), where A is a
predicate, h is a formal composition of functions, possibly empty, and u is a
variable or e. In an implication &Pi =⇒ Q, the conclusion involves at most
one variable. A law that is equivalent, modulo the laws of B, is obtained by
replacing every other variable occurring in the antecedent by e. ¤
Theorem 15. Let S be a join semilattice with 0, and let M be a monoid
of operators acting on S. Then there is an implicational theory C such that
Con(S,+, 0,M) is isomorphic to Con(T,∨, 0, Ê) with T the semilattice of
compact kongruences of KonC(F), E = Sbn(F), and F = FC(1).

Proof. Our language will include unary predicates A for each nonzero ele-
ment a of S, unary operations f for each f ∈ M, and a constant e.

Again, L-terms are of the form A(h(u)), where A is a predicate, h is a
formal composition of functions, and u is a variable or e. Denote the single
variable by x.

The construction begins by assigning a set of predicates to each nonzero
element of S. For each a ∈ S and formal composition h = f1 . . . fk, assign
the predicate A(h(x)) to h?(a), where h? denotes h evaluated in Mopp, that
is, h? = fk . . . f1. In this way each element of S may be assigned multiple
predicates, but they will all be of the form B(g(x)) for different predicates
B and sequences g. For s ∈ S, let P(s) denote the set of predicates assigned
to s. Thus P(s) = {A(h(x)) : h?(a) = s}.

Define C to be the quasivariety determined by these laws.
(1) P (f(e)) for every predicate P and every formal composition f of

functions of L.
(2) A(i(x)) ⇐⇒ A(x) for every A, where i is the identity element of M.
(3) A(h(x)) ⇐⇒ A(h?(x)) for every formal composition.
(4) β =⇒ α whenever a ≤ b, α ∈ P(a), β ∈ P(b).
(5) &βj =⇒ α whenever a ≤ ∑

bj , α ∈ P(a), βj ∈ P(bj) for each j.
The laws (1) ensure that Theorem 14 applies, so that we may work with
FC(1). Note that the laws (4) are redundant as a special case of (5).

The universe of F = FC(1) is all terms h(u) with h a sequence of oper-
ations, and u either x or e. The operations correspond to elements of M,
and there is a unary predicate for each nonzero element of S. Note that
A(t) holds in the free structure only for t = e or t = h(e). The substitution
endomorphisms of F are determined by the image of x. For a term t, let εt
denote the endomorphism with x 7→ t.
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Since C satisfies &βj =⇒ α whenever a ≤ ∑
bj , α ∈ P(a), and each

βj ∈ P(bj), we see that every C-kongruence of F is the set of predicates
assigned to some ideal of S, along with A(h(e)) for every A and h. Con-
versely, every ideal determines such a C-congruence, and principal ideals de-
termine compact congruences. In fact, the congruence corresponding to ↓s
is konC(α) for any α ∈ P(s). Thus the semilattice of compact C-congruences
of FC(1) is isomorphic to S, as desired.

As a matter of notation, let Θs denote the kongruence that has all the
relations

⋃{P(t) : t ≤ s}, plus the base relations of the form B(g(e)) given
by (1). Denote the set of base relations by B. Thus Θs = {A(h(x)) : h?(a) ≤
s} ∪ B.

It remains to show that the action of Ê on T, the semilattice of compact
C-kongruences of FC(1), mimics the action of Mopp on S. The relevant facts
are these.

• ε̂h(e)(Θs) ⊆ B for any h, whence B is the zero kongruence. So this
operator does not affect the congruences of T.

• ε̂h(x)(Θs) = Θh?(s) for any sequence h and element s.
• If f and g are sequences, then ε̂f(x) = ε̂g(x) if and only if Θf?(s) =

Θg?(s) for all s, if and only if f? = g?.
• ε̂f(x)ε̂g(x) = ε̂(gf)(x).

The crucial calculation is the second one. Note that

ε̂h(x)(Θs) = konC{εh(x)A(f(x)) : f?(a) ≤ s} ∪ B
= konC{A(f(h(x))) : f?(a) ≤ s} ∪ B.

Now f?(a) ≤ s implies (fh)?(a) = h?f?(a) ≤ h?(s), so ε̂h(x)(Θs) ⊆ Θh?(s).
But the LHS includes εh(x)S(x) = S(h(x)), and that’s a generator for Θh?(s),
whence equality holds.

This completes the proof of the theorem. ¤

Combining these results (which now avoid problems that occurred in the
presence of equality in Part II of [1]), we obtain the desired result.

Corollary 16. Let S be a join semilattice with 0, and let M be a monoid
of operators acting on S. Then there is an implicational theory C such that
the lattice of implicational theories of C is isomorphic to Con(S,+, 0,M).

10. Overview

It is useful to step back and consider the situation from a distance. There
are (at least) four plausible settings.

(IA) Algebras, language with equality.
(IB) Pure relational structures, language with equality.
(II) Structures with functions and relations, language with equality.

(III) Structures with functions and relations, language without equality.
Likewise, there are three types of theories.
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(1) Atomic theories ATh(T ).
(2) Implicational theories ITh(T ).
(3) Relative atomic theories ATh∗(T ).

That makes twelve combinations, not all equally interesting.
The traditional setting for equational theories is algebras (IA). There we

have the results of McKenzie [11], Newrly [13], Nurakunov [14] leading to
Lampe’s Zipper Condition [9, 10] and its generalizations. Are there any
versions of this that apply in other settings?

The historic setting for quasi-equational theories is general structures (II),
though pure relational structures (IB) played a role. The results of [1] are
the apparent analogues here, and in this note we see how this generalizes
to the setting (III). The ultimate goal is still to deal with case (II), and to
discern what is special about the quasi-equational theory of algebras (IA).

Atomic theories of structures with equality (II) can be viewed as relative
atomic theories of structures without equality (III). This seems an odd view-
point, but perhaps it explains some of the complexity of lattices of equational
theories.
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