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Abstract The paper considers a commonly used axiomatization of the classical
propositional logic and studies how different axiom schemata in this system con-
tribute to proof complexity of the logic. The existence of a polynomial bound on
proof complexity of every statement provable in this logic is a well-known open
question.

The axiomatization consists of three schemata. We show that any statement
provable using unrestricted number of axioms from the first of the three schemata
and polynomially-bounded in size set of axioms from the other schemata, has a
polynomially-bounded proof complexity. In addition, it is also established, that
any statement, provable using unrestricted number of axioms from the remain-
ing two schemata and polynomially-bounded in size set of axioms from the first
scheme, also has a polynomially-bounded proof complexity.

1 Introduction

The question whether the minimal proof size, as a function of the theorem size,
has a polynomial bound, goes back to Gödel (7). The existence of such polyno-
mial bound for the propositional logic would imply equality of the computational
complexity classes NP and co-NP.

Most existing results in this area fall into one of the following two categories:
lower exponential bounds for some deductively weak versions of propositional
calculus and upper polynomial bounds for certain classes of propositional tau-
tologies. In the first group are Haken (8) exponential lower bound for the resolu-
tion proof system, the exponential lower bound for bounded depth propositional
proofs, independently obtained by Pitassi, Beame, and Impagliazzo (10) and by
Krajı́ček, Pudlák, and Woods (9), as well as the results of Pudlák (11) and Bonet,
Pitassi, and Raz (1) on lower bounds for the cutting planes proof system. The
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same group also contains Buss and Pudlák (3) lower bound for the intuitionistic
propositional calculus, which is conditional upon a conjuncture about class NP.
The second group is less densely populated. It includes Buss (2) polynomial upper
bound on the proof size of the pigeonhole principle in propositional calculus and
Cook, Coullard, and Turán (5) polynomial upper bound on proof size of the same
propositional pigeonhole principle in the cutting planes proof system.

This paper also falls into the second category, but unlike previous works, it
focuses on a particular axiomatization of the classical propositional logic and in-
vestigates how different schemata of this axiomatization contribute to proof com-
plexity. The axiomatization of the propositional logic that we study goes back
to Frege (6), except that he deals with the substitution rule instead of axiom
schemata. Frege’s original axioms for propositional logic, written in modern no-
tations, are:

a → (b → a), (1)

(a → (b → c))→ ((a → b)→ (a → c)), (2)

¬¬a → a. (3)

In addition, Frege considers axiom (a→ b)→ (¬b→¬a), but it could be derived
from axioms (1), (2), and (3) if ¬φ is defined as φ →⊥. As a result, Church (4),
along with many others, uses axioms (1), (2), and (3) as the axiomatization of the
propositional logic. Frege calls formula (3) Duplex negatio affirmat, and does not
give any names to the other axioms. Church calls axioms (1), (2), and (3) the law
of affirmation of consequent, the self-distributive law of (material) implication,
and the law of double negation correspondingly. In this paper, we also will treat
negation ¬φ as an abbreviation for φ → ⊥ and we will use shorter names for
schemata defined by formulas (1), (2), and (3) – weakening schema, distributivity
schema, and double negation schema, accordingly.

We establish upper polynomial bounds on the size of minimal proofs in two
fragments of propositional logic. The first fragment, called distributivity logic, is
the set of all sequences Γ ` φ such that propositional formula φ is derivable from
the finite set of hypothesis Γ using Modus Ponens inference rule and instances of
distributivity schema only. Note that in the absence of the weakening schema the
deduction theorem is not valid, so sequent Γ ` φ is not, generally speaking, equiv-
alent to implication ∧∧Γ → φ . In Theorem 5, we give an upper bound on the size
of minimal proof of sequent Γ ` φ in the distributivity logic. The bound is a poly-
nomial function of the combined size of Γ and φ . This upper bound is established
by proving a variation of the subformula property for distributivity logic. Namely,
we show that if formula φ is provable from set Γ in the distributivity logic, then
there is a derivation of φ from Γ which is only using formulas ψ1 → (ψ2 → ψ3),
where ψ1, ψ2, and ψ3 are subformulas of Γ ∪{φ}.

Note that this result could be interpreted as a statement about proof complexity
in the (full) propositional logic. Namely, any proof in propositional logic of for-
mula φ could be considered as a proof of sequent Γ ` φ in the distributivity logic,
where set Γ consists of all instances of weakening and double negation schemata
used in the proof. Thus, if a formula φ is provable in the propositional logic, then
the size of a minimal proof of formula φ has an upper bound, that is a polynomial
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function of size of formula φ and the total size of all instances of weakening and
double negation schemata required to derive φ .

The second fragment of the propositional logic, that we consider, is weaken-
ing and double negation logic. It is defined as the set of all sequences Γ ` φ such
that propositional formula φ is derivable from the finite set of hypothesis Γ using
Modus Ponens inference rules and instances of weakening and double negation
schemata only. If set Γ is consistent in the weakening and double negation logic,
then we can give a polynomial upper bound on the size of the minimal proof of
Γ ` φ (Theorem 7). Thus, we can say that if a formula φ is provable in (full) propo-
sitional logic, then the size of a minimal proof of formula φ has an upper bound,
which is a polynomial function of size of φ and the total size of all instances of
distributivity schema required to derive φ . The upper bound for the weakening
and double negation logic is also established using an appropriate version of the
subformula property.

Although the question remains open whether there are propositional proofs
that can not be reduced to simpler proofs that will have polynomial bound on their
size, the results, presented in this paper, show that such proofs would have to use
a mix of distributivity axioms on one hand and weakening and double negation
axioms on the other. In fact, total sizes of required axioms from each of these two
groups would have to have no polynomial upper bounds.

2 Syntax

2.1 Formula

By a propositional formula we mean a well-formed expression built from the
propositional variables, the constant ⊥, and the binary connective →. By v we
mean subformula relation on formulas. This relation defines partial order without
a least element on the set of all formulas. For technical reasons, we add the least
element to this partial order. It will be called the empty formula and denoted by
symbol ε . Thus, formula ε is a subformula of any other formula. Note that ε is the
only “non-standard” formula added to the syntax. For instance, expression ε → ε

is not considered to be a valid formula. The Greek letters, other than ε , will be
used to denote only nonempty formulas.

We say that formula x is a proper subformula of formula y, denoted by x @ y,
if x v y and x 6= y. For an arbitrary set of formulas Y , we write x v Y if x v y for
at least one y ∈ Y . Similarly, we write x @ Y if x @ y for at least one y ∈ Y .

Definition 1 The size |x| of a propositional formula x is the number of connectives
→ in formula x.

2.2 Proof

Definition 2 A proof of formula φ from a finite set of propositional formulas Γ

is a finite sequence of non-empty formulas φ1, . . . ,φk such that φk = φ and each
formula in the sequence is either an element of set Γ , or is an axiom, or is obtained
by an inference rule from one or several formulas with lower indices.
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We write Γ `π φ if π is a proof of formula φ from set Γ .
By tree proof we mean a proof in which every formula, except for the last

one, is used as an argument in exactly one inference rule application. Tree proofs
also can be viewed as tree graphs, in which each node has an associated formula.
A formula associated with a leaf node, is either an element of Γ or an axiom.
The formula associated with a non-leaf node is obtained by inferences rules from
formulas associated with children nodes.

Definition 3 The size |π| of a proof π = φ1, . . . ,φk is |φ1|+ · · ·+ |φk|.

3 Distributivity Logic

The axioms of distributivity logic, Ld , are instances of distributivity schema: (φ →
(ψ → χ)) → ((φ → ψ) → (φ → χ)), the inference rule of this logic is Modus
Ponens (MP).

Theorem 1 The following two distributivity inference rules:

φ → (ψ → χ)
(φ → ψ)→ (φ → χ)

(D1)
φ → ψ, φ → (ψ → χ)

φ → χ
(D2)

are derivable in the distributivity logic.

Proof Rule (D1) is a combination of distributivity axiom and a single instance of
the Modus Ponens rule. The rule (D2) is a combination of (D1) and Modus Ponens
rules.

For the rest of the paper, the system Ld is augmented to include (D1) and (D2)
as primitive rules of inference. This can be done without loss of generality by
Theorem 1 and since addition of these rules can decrease minimal proof length
and size by only a constant factor.

Lemma 1 For any propositional formulas φ , ψ , χ , and σ , if
χ → φ , χ → ψ

χ → σ

is a (D2) inference, then
φ , ψ

σ
is an (MP) inference. �

3.1 Projections

Definition 4 For any propositional formula x, we define hypothesis h(x) and con-
clusion c(x) of formula x as follows:

1. h(y → z) = y, and c(y → z) = z, for any propositional formulas y and z.
2. h(x) = ε , and c(x) = x if formula x is the empty formula ε , the constant ⊥, or

a propositional variable.

Lemma 2 If x is a propositional formula, then h(x) v x and c(x) v x. If x is a
nonempty formula, then h(x) @ x and ε @ c(x). �



Upper bounds on complexity of Frege proofs 5

If formula φ has form φ1 → (φ2 → φ3), then formulas φ1, φ2, φ3 will be called
the first, the second, and the third projections of formula φ . In general, the three
projections are defined as follows:

Definition 5 For an arbitrary formula x, let pr1(x) = h(x), pr2(x) = h(c(x)), and
pr3(x) = c(c(x)).

Lemma 3 If φ is a nonempty propositional formula, then pr1(φ) @ φ , pr2(φ) @
φ , and ε @ pr3(φ)v φ .

Proof By Lemma 2, pr1(φ) = h(h(φ)) v h(φ) @ φ . In addition, by the same
lemma, pr2(φ) = h(c(φ)) @ c(φ) v φ and ε @ c(c(φ)) = pr3(φ) = c(c(φ)) v
c(φ)v φ .

Definition 6 For any proof π , by Pr1(φ) we mean the set of the hypotheses of all
formulas in proof π . That is: Pr1(π) = {h(φ) | φ ∈ π}.

Definition 7 For any set of propositional formulas Φ ,

C(Φ) = {φ1 → φ3 | φ1 → (φ2 → φ3) ∈ Φ}.

Theorem 2 If Γ `π φ , then pr3(φ)v Γ ∪C(Pr1(π)).

Proof Induction on the size of the derivation. If φ ∈Γ , then, by Lemma 3, we have
pr3(φ)v φ ∈ Γ . Hence, pr3(φ)v Γ . If formula φ is a distributivity axiom (φ1 →
(φ2 → φ3)) → ((φ1 → φ2) → (φ1 → φ3)), then pr3(φ) = φ1 → φ3 ∈ C(Pr1(π)),
because φ1 → (φ2 → φ3) = pr1(φ) ∈ Pr1(π).

Assume that φ is obtained by Modus Ponens from formulas ψ and ψ → φ .
By Lemma 2, pr3(φ) = c(c(φ)) = c(c(c(ψ → φ))) = c(pr3(ψ → φ))v pr3(ψ →
φ). Thus, by the Induction Hypothesis, pr3(φ) v pr3(ψ → φ) v Γ ∪C(Pr1(π)).
Therefore, pr3(φ)v Γ ∪C(Pr1(π)).

Let formula φ = (φ1 → φ2) → (φ1 → φ3) be obtained by rule (D1) from
formula φ1 → (φ2 → φ3). Thus, by the Induction Hypothesis, pr3(φ) = φ3 =
pr3(φ1 → (φ2 → φ3)) v Γ ∪C(Pr1(π)). Finally, suppose that φ = φ1 → φ3 is
derived from φ1 → φ2 and φ1 → (φ2 → φ3) using rule (D2). Then, by Lemma 2,
pr3(φ) = c(c(φ1 → φ3)) = c(φ3) v φ3. Therefore, by the Induction Hypothesis,
pr3(φ)v φ3 = pr3(φ1 → (φ2 → φ3))v Γ ∪C(Pr1(π)).

Lemma 4 If φ @ C(Φ), then φ @ Φ .

Proof Assume that φ @ C(Φ). Thus, φ @ φ1 → φ3 for some φ1 → (φ2 → φ3) ∈Φ .
Hence, φ v φ1 or φ v φ3. Therefore, φ @ Φ .

Theorem 3 If Γ `π φ and φ is not an axiom, then pr2(φ) @ Γ ∪Pr1(π).

Proof Suppose φ ∈ Γ . Thus, by Lemma 3, pr2(φ) @ φ ∈ Γ . Hence, pr2(φ) @ Γ .
Assume that φ is obtained by Modus Ponens from formulas ψ and ψ → φ .

By Lemma 2, pr2(φ) = h(c(φ)) @ c(φ) = c(c(ψ → φ)) = pr3(ψ → φ). By Theo-
rem 2, pr3(ψ → φ)vΓ ∪C(Pr1(π)). Hence, pr2(φ) @ Γ ∪C(Pr1(π)). Therefore,
by Lemma 4, pr2(φ) @ Γ ∪Pr1(π).

Let formula φ = (φ1 → φ2) → (φ1 → φ3) be obtained by rule (D1) from for-
mula φ1 → (φ2 → φ3). Thus, pr2(φ) = φ1 @ φ1 → φ2 = pr1(φ) ∈ Pr1(π).
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Finally, suppose that formula φ = φ1 → φ3 is derived from formula φ1 → φ2
and formula φ1 → (φ2 → φ3) using rule (D2). By Lemma 2, pr2(φ) = h(c(φ)) =
h(c(φ1 → φ3)) = h(φ3) @ φ3 = pr3(φ1 → (φ2 → φ3)). By Theorem 2, pr3(φ1 →
(φ2 → φ3))vΓ ∪C(Pr1(π)). Thus, pr2(φ) @ Γ ∪C(Pr1(π)). Hence, by Lemma 4,
pr2(φ) @ Γ ∪Pr1(π).

3.2 Proof tree rank

Let Γ be a set of propositional formulas and φ be a propositional formula provable
from Γ . We will define rank of any proof tree that derives formula φ from set Γ .
Later, we will prove a theorem by induction on the proof tree rank.

Definition 8 Consider an arbitrary proof of φ from Γ . A formula ψ in this proof
is called excessive if pr1(ψ) 6v Γ ∪{φ}. An excessive formula is called extreme
if its first projection has the maximal size among first projections of all excessive
formulas in the proof.

Definition 9 The rank of a proof tree is a pair of natural numbers 〈s,n〉, where s
is the size of the first projection of extreme formulas in the proof tree and n is the
number of the extreme formulas in the proof tree. If the proof tree has no excessive
formulas, then its rank is 〈0,0〉.

We will assume the lexicographical order on the proof tree ranks. The set of all
ranks is linearly ordered by this relation.

3.3 α-reductions and canonical proofs

Definition 10 An α1-reduction is a transformation of a proof tree, that replaces an
instance of Modus Ponens rule, whose second argument is a distributivity axiom:

T

φ → (ψ → χ)
, (φ → (ψ → χ))→ ((φ → ψ)→ (φ → χ))

(φ → ψ)→ (φ → χ)
(MP),

with a single instance of (D1) rule:

T

φ → (ψ → χ)
(φ → ψ)→ (φ → χ)

(D1).

Definition 11 An α2-reduction is a transformation of a proof tree, that replaces
an instance of Modus Ponens rule, whose second argument is obtained by (D1)
rule:

T1

φ → ψ

T2

φ → (ψ → χ)
(φ → ψ)→ (φ → χ)

(D1)

φ → χ
(MP),
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with a single instance of (D2) rule:

T1

φ → ψ

T2

φ → (ψ → χ)
φ → χ

(D2).

By an α-reduction we mean an α1- or an α2-reduction.

Lemma 5 An α-reduction does not increase the rank of a proof tree.

Proof Both α-reductions do not add any new formulas to the proof tree.

Definition 12 A proof tree is in an α-canonical form if it does not contain in-
stances of Modus Ponens rule that can be eliminated using an α-reduction.

Lemma 6 Any proof tree can be transformed to an α-canonical form by a finite
number of α-reductions.

Proof Each α-reduction reduces the number of nodes in the proof tree. Thus, they
can not be applied more times than the number of nodes in the original proof tree.

3.4 D2-trees

Definition 13 A node of a proof tree is called irregular if it is obtained by Modus
Ponens inference rule.

Definition 14 For any irregular node n of a proof tree, we define left D2-tree and
right D2-tree grounded at node n as the minimal sets of nodes that satisfy the
following conditions:

1. The left D2-tree contains the node representing the first argument of the Modus
Ponens rule used to derive n and the right D2-tree contains the node represent-
ing the second argument of the same rule.

2. If one of the D2-trees contains a node derived by (D2) rule, then the same
D2-tree contains two nodes representing the arguments of this rule.

Lemma 7 All formulas in any D2-tree have the same first projection.

Proof The conclusion and both arguments of any instance of (D2) rule have the
same first projection.

Definition 15 A D2-tree in a proof tree is called extreme if at least one formula in
this D2-tree is extreme.

Lemma 8 Any formula in an extreme D2-tree is an extreme formula.

Proof See Lemma 7.

Lemma 9 Any extreme D2-tree is a right D2-tree.
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Proof We will show that the first projection of formulas in the left D2-tree of any
node is smaller than the first projection of formulas in the right D2-tree of the same
node. Indeed, let irregular node be obtained by (MP) rule from nodes labeled with
formulas φ and φ → ψ . By Lemma 7, all formulas in the left D2-tree have first
projection pr1(φ) and all formulas in the right D2-tree have first projection φ . We
are left to notice that, by Lemma 3, pr1(φ) @ φ . Therefore, |pr1(φ)|< |φ |.

Lemma 10 If the formula, associated with a node n0 of a proof tree, is extreme,
then node n0 belongs to a D2-tree.

Proof Consider the path n0,n1,n2, . . . in the proof tree that starts at node n0 and
leads towards the root of the proof tree. Let ψ1,ψ2, . . . be formulas associated with
these nodes. Assume that nk is the first node along this path that is not an argument
of an instance of the (D2) rule. Note that propositional formulas ψ0,ψ1, . . . ,ψk
have the same first projection. Since node nk is not an argument of an (D2) rule
instance, one of the following cases takes place:
Case 1: Node nk is the root of the proof tree. Thus, ψk = φ . Hence, pr1(ψ0) =
pr1(ψk)v φ . Therefore, formula ψ0 is not excessive. Contradiction.
Case 2: Node nk is an argument of an instance of (D1) rule. Hence, ψk = a →
(b→ c) and ψk+1 = (a→ b)→ (a→ c) for some propositional formulas a, b, and
c. Thus,

|pr1(ψk+1)|= |a → b|> |a|= |pr1(ψk)|= |pr1(ψ0)|.

Since ψ0 is an extreme formula, the above inequality implies that formula ψk+1
can not be excessive. Thus, pr1(ψk+1)v Γ ∪{φ}. Hence

pr1(ψ0) = pr1(ψk) = a @ a → b = pr1(ψk+1)v Γ ∪{φ}.

Therefore, formula ψ0 is not excessive either. Contradiction.
Case 3: Node nk is an argument of an instance of (MP) rule. Therefore, node n0
belongs to a D2-tree grounded at node nk+1.

Lemma 11 If the proof tree is in an α-canonical form, then any of its extreme
D2-trees contains more than one node.

Proof Let n be an irregular node of the proof tree π derived from nodes labeled
with formulas χ and χ → ψ . Assume that one of D2-trees, grounded at node n, is
extreme. By Lemma 9, this must be the right D2-tree. We will show that it contains
more than one node.

If χ → ψ ∈ Γ , then pr1(χ → ψ) = χ v Γ . Thus, χ → ψ is not an excessive
formula. Therefore, by Lemma 8, the right D2-tree at node n is not extreme. If
χ → ψ is a distributivity axiom or is obtained by (D1) rule, then either an α1−
or an α2− reduction could be applied at node n. Hence, the proof tree is not in an
α-canonical form.

Assume that formula χ → ψ is derived by another instance of Modus Ponens
rule from formulas σ and σ → (χ → ψ). Note that σ → (χ → ψ) could not be
an axiom, because the tree is in an α-canonical form. Thus, by Theorem 3, χ =
pr2(σ → (χ → ψ)) @ Γ ∪Pr1(π). Note that χ 6v Γ , because χ → ψ is excessive.
Hence, χ @ Pr1(π). Thus, χ @ pr1(τ) for some formula τ in the proof π . Yet, we
know that χ → ψ is an extreme formula. Thus, formula τ is not excessive. Hence
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T0

χ

T1

χ → ψ1
. . .

Tn

χ → ψn

. . . . . . . . . . . . . . . . . .
. . . (D2)-inferences . . .

. . . . . . . . .

χ → φ
(D2)

φ
(MP)

Fig. 1 Before β -reduction

pr1(τ) v Γ ∪{φ}. Then, pr1(χ → ψ) = χ @ pr1(τ) v Γ ∪{φ}. Consequently,
formula χ → ψ is not excessive either. Contradiction.

Therefore, formula χ →ψ must be derived by (D2) rule, which means that the
right D2-tree grounded at node n contains more than one node.

Definition 16 Let T1 and T2 be two right D2-trees grounded at nodes n1 and n2
correspondingly. We say that T1 ≺ T2 if node n1 lays on the path that connects n2
with the root of the proof tree.

Lemma 12 Relation ≺ induces a partial order on the set of all extreme D2-trees
of any proof tree.

Proof By Lemma 9, only right D2-trees can be extreme. But any two different
right D2-trees can not be grounded at the same node.

Definition 17 An extreme D2-tree is called critical if it is a maximal, with respect
to partial order ≺, D2-tree among all extreme D2-trees in the proof tree.

3.5 β -reduction

Suppose (see Figure 1) that formula φ at an irregular node n of a proof tree is
obtained by applying Modus Ponens to formulas χ and χ → ψ . Let T0 be the
derivation of formula χ , formulas χ → ψ1, . . . ,χ → ψn be associated with the
leaves of the right D2-tree grounded at node n, and T1, . . . ,Tn be the derivations
of these formulas. Note that by Lemma 7, the first projection of any formula in
this right D2-tree is χ .

By β -reduction at node n (see Figure 2) we mean the transformation of the
proof that removes hypothesis χ from all formulas in the D2-tree, replacing each
inference of the (D2) rule in the D2-tree by an instance of a Modus Ponens rule,
and moves application of the Modus Ponens with the first argument χ from node
n to all leaves of the former D2-tree. The node n is removed from the proof tree.
This reduction could be applied at any, not necessary root, irregular node n of a
proof tree.

Lemma 13 The result of any β -reduction is a valid proof tree.

Proof See Lemma 1.

Lemma 14 If the right D2-tree grounded at node n is critical, then β -reduction
at node n decreases the rank of the proof tree.
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T0

χ

T1

χ → ψ1

ψ1
(MP) . . .

T0

χ

Tn

χ → ψn

ψn
(MP)

. . . . . . . . . . . . . . . . . .
. . . (MP)-inferences . . .

. . . . . . . . .

φ
(MP)

Fig. 2 After β -reduction

Proof First of all, note that although β -reduction removes some formulas with the
first projection χ , at least one of them is left in the proof tree.

Second, although β -reduction can introduce a new formula ψ into the proof
tree, such formula can not be extreme. Indeed, this formula will have to be ob-
tained by removing hypothesis χ from formula χ → ψ in the D2-tree. If χ → ψ

is an axiom, then χ = φ1 → (φ2 → φ3) and ψ = (φ1 → φ2) → (φ1 → φ3) for
some propositional formulas φ1, φ2, and φ3. Hence, |pr1(ψ)|= |φ1 → φ2|< |φ1 →
(φ2 → φ3)| = |χ| = |pr1(χ → ψ)|. Thus, formula ψ can not be extreme because
χ →ψ is a larger excessive formula. If χ →ψ is not an axiom, then, by Lemma 3,
pr1(ψ) = pr2(χ → ψ) @ Γ ∪Pr1(π). Thus, formula ψ is not excessive.

Third, although β -reduction can increase number of occurrences of the same
formula in the proof tree, it does not increase number of occurrences of extreme
formulas. Indeed, the only formulas whose number of occurrences is increased are
those that are in proof subtree T0. But this subtree can not include any extreme
formulas because the right D2-tree at node n is critical.

Finally, by Lemma 11, the eliminated D2-tree had more than one node. Thus,
it had at least one node which is not a leaf of the D2-tree. This node is modified.
Hence, the total number of extreme formulas in the proof tree is decreased.

3.6 Upper Bounds

Theorem 4 If Γ `π φ , then there is a proof π̂ such that Γ `π̂ φ and pr1(ψ) v
{φ}∪Γ for any ψ ∈ π̂ .

Proof Induction on the rank of proof tree π . If rank is 〈0,0〉 then the proof has no
extreme formulas. Hence, it has no excessive formulas. Thus, pr1(ψ) v {φ}∪Γ

for any any formula ψ in proof π .
Assume that the rank of proof tree π is not 〈0,0〉. By Lemma 6, the proof tree

can be transformed into a canonical proof π ′ without increase of the rank. If proof
tree π ′ has no excessive formulas, then pr1(ψ) v {φ}∪Γ for any formula ψ in
proof π ′. If proof tree π ′ does have some excessive formulas, then it has at least one
extreme formula. By Lemma 10, this formula is a part of an extreme D2-tree. Thus,
the proof tree contains at least one extreme D2-tree. Consider a critical extreme
D2-tree. Let it be grounded at node n. By Lemma 9, this critical tree is a right D2-
tree grounded at node n. Apply β -reduction at node n. By Lemma 14, the resulting
proof tree has smaller rank. Therefore, by the Induction Hypothesis, it can be
transformed into proof π̂ of formula φ from set Γ , such that pr1(ψ) v {φ}∪Γ

for any ψ ∈ π̂ .
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Theorem 5 If Γ ` φ , then there is a proof π such that Γ `π φ , length(π) ∈
O((|Γ |+ |φ |)3), and |π| ∈ O((|Γ |+ |φ |)4).

Proof Let π be the proof of φ form Γ such that pr1(ψ)v {φ}∪Γ for any ψ ∈ π .
This proof exists by Theorem 4. We will assume that repeating occurrences of the
same formula are eliminated from proof π . Each formula in the proof could be
completely described by specifying its first, second, and third projection. The first
and the second projections could be empty formulas.

By the choice of proof π , first projections are limited to subformulas of Γ ∪
{φ}. Thus, the number of such projections and the size of each of them belong to
O(|Γ |+ |φ |).

By Theorem 3, each second projection is either a subformula of a formula from
Γ ∪Pr1(π) or the second projection of an axiom. In other words, each second
projection is a subformula of a formula from set

Γ ∪Pr1(π)∪{φ1 → φ2 | φ1 → (φ2 → φ3) ∈ Pr1(π)}.

By the choice of π , the number of such subformulas and the individual size of
each of them belong to O(|Γ |+ |φ |). Finally, by Theorem 2 and the choice of π ,
the number of the third projections and the individual size of each of them are also
in O(|Γ |+ |φ |).

Thus, the total number of formulas in the proof π is O((|Γ |+ |φ |)3) and the
size of each formula in π is O(|Γ |+ |φ |). Therefore, |π| ∈ O((|Γ |+ |φ |)4).

Corollary 1 If formula φ is provable in the classical propositional logic using
only instances W1, . . . ,Wn of weakening schema and only instances N1, . . . ,Nk of
double negation schema, then there is a proof π in the classical propositional logic
of φ such that

length(π) ∈ O((
n

∑
i=1

|Wi|+
k

∑
i=1

|Ni|+ |φ |)3)

and

|π| ∈ O((
n

∑
i=1

|Wi|+
k

∑
i=1

|Ni|+ |φ |)4).

4 Weakening and Double Negation Logic

4.1 Axioms

The axioms of the logic of weakening, Lw, are instances of weakening schema φ →
(ψ → φ). The inference rule of Lw is Modus Ponens. The following weakening
rule

φ

ψ → φ
(W )

is derivable in Lw. We will treat it as a primitive rule of the system. Addition of
this rule can decrease the minimal proof size and length only by a constant factor.
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The logic of weakening and double negation, Lwn, in addition to weakening
axiom and Modus Ponens inference rule, also includes the double negation schema
((φ →⊥)→⊥)→ φ . The weakening rule (W ) and following double negation rule

(φ →⊥)→⊥
φ

(N)

are derivable in Lwn. We will treat them both as primitive rules of the system. Ad-
dition of these rules can decrease the minimal proof size and length only by a con-
stant factor. We say that a finite set of propositional formulas Γ is Lwn-consistent
if sequent Γ ` φ is not derivable in this logic.

In this section, unless stated otherwise, by proof we will mean a proof in either
logic Lw or logic Lwn.

4.2 γ-reductions

Definition 18 A γ1-reduction is a transformation of a proof tree, that replaces an
instance of Modus Ponens rule, whose second argument is a weakening axiom:

T

φ
, φ → (ψ → φ)

ψ → φ
(MP),

with a single instance of (W ) rule:

T

φ

ψ → φ
(W ).

Definition 19 A γ2-reduction is a transformation of a proof tree, that replaces
an instance of Modus Ponens rule, whose second argument is a double negation
axiom:

T

(φ →⊥)→⊥
, ((φ →⊥)→⊥)→ φ

φ
(MP),

with a single instance of (N) rule:

T

(φ →⊥)→⊥
φ

(N).

Definition 20 A γ3-reduction is a transformation of a proof tree, that eliminates
an instance of Modus Ponens rule, whose second argument is obtained by (W )
rule:

T1

ψ

T2

φ

ψ → φ
(W )

φ
(MP),
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by replacing it with the argument of the (W ) rule:

T2

φ
.

By a γ-reduction we mean a γ1-, a γ2-, or a γ3-reduction.

Definition 21 A proof tree is in γ-canonical form if it does not contain instances
of Modus Ponens rule that can be eliminated using a γ-reduction.

Lemma 15 Any proof tree can be transformed to a γ-canonical form by a finite
number of γ-reductions.

Proof Each γ-reduction reduces the number of nodes in the proof tree. Thus, they
can not be applied more times than the number of nodes in the original proof tree.

4.3 Pivot Point

Definition 22 The right-most path in a proof tree is the sequence of formulas
φ1, . . . ,φn, associated with the nodes of the path of the proof tree that starts at the
right-most leaf and goes down to the root of the tree.

Thus, if the proof tree is a proof of formula φ from set Γ , then φ1 is either an
element of Γ or an axiom, each φi, for i > 0, is obtained from φi−1 by an inference
rule, and φn = φ .

Lemma 16 Let φ1, . . . ,φn be the right-most path in a γ-canonical proof. If formula
φi, for 0 < i < n, is derived by (W ) rule, then formula φi+1 can not be derived by
Modus Ponens.

Proof Assume that φi+1 is obtained by an instance of Modus Ponens rule whose
second argument is φi and formula φi, in turn, is obtained by (W ) inference rule.
It means that γ3-reduction can be applied at the node labeled with formula φi+1.
Thus, the proof is not in a γ-canonical form. Contradiction.

Lemma 17 Let Γ be a Lwn-consistent set of formulas and φ1, . . . ,φn be the right-
most path in a proof tree from Γ . If formula φi, for 0 < i < n, is derived by (W )
rule, then formula φi+1 can not be derived by (N) rule.

Proof Assume that formula φi+1 is derived by (N) rule. Thus, formula φi is equal
to (φi+1 →⊥) →⊥. If formula φi is derived by rule (W ), then it will have to be
derived from ⊥. Therefore, set Γ is not Lwn-consistent.

Definition 23 The pivot point of the right-most path φ1, . . . ,φn in a proof tree is
an index 0≤ p≤ n such that for 0 < i≤ p, formula φi is derived by Modus Ponens
or (N) inference rule and for p < i ≤ n, formula φi is derived by (W ) inference
rule.

Lemma 18 (a) The right-most path in a γ-canonical proof in Lw has a pivot point.
(b) If set Γ is Lwn-consistent, then the right-most path in any γ-canonical proof in
Lwn has a pivot point.
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Proof See Lemma 16 and Lemma 17.

Lemma 19 If p is a pivot point of a right-most path φ1, . . . ,φn, then

φ1 A φ2 A · · ·A φp−1 A φp @ φp+1 @ · · ·@ φn.

Proof If φi+1 is obtained from φi by Modus Ponens or rule (N), then φi A φi+1. If
φi+1 is obtained from φi by rule (W ), then φi @ φi+1.

Lemma 20 Let φ1, . . . ,φn be the right-most path in a γ-canonical proof tree of
formula φn from set of formulas Γ . If this right-most chain contains a pivot point,
then φi v Γ ∪{φn} for any 0 ≤ i < n.

Proof If φ1 ∈Γ or n = 1, then the statement of the lemma follows from Lemma 19.
Assume that φ1 is an axiom and n ≥ 2.
Case 1: Formula φ2 is derived from axiom φ1 using Modus Ponens rule. Thus,
either γ1-reduction (if φ1 is a weakening axiom) or γ2-reduction (if φ1 is a double
negation axiom) could be applied at the node of the proof tree labeled with formula
φ2. Thus, the proof tree is not γ-canonical.
Case 2: Formula φ2 is derived from axiom φ1 using (N) inference rule. Thus,
formula φ1 is equal to ((φ2 →⊥)→⊥. Note that such formula could be obtained
neither from weakening schema nor from double negation schema. Hence, φ1 is
not an axiom. Contradiction.
Case 3: Formula φ2 is derived from axiom φ1 using (W ) inference rule. Hence,
pivot point of the right-most path is 1. Therefore, by Lemma 19, φi @ φn, for any
1 ≤ i < n.

Lemma 21 For any set ∆ of propositional formulas, any finite subset Γ ⊆ ∆ , and
any formula φ v ∆ , let π be a γ-canonical proof tree of formula φ from set Γ ,
such that either

1. π is a proof tree in weakening logic Lw, or
2. π is a proof tree in logic Lwn and set Γ is Lwn-consistent.

Then every formula in proof tree π is a subformula of set ∆ .

Proof Induction on the size of the derivation π . Note that by the assumption,
φ v ∆ . If φ is the only formula in the proof tree then the required is established.

Suppose that formula φ is derived using one of the inference rules. Note that,
by Lemma 18, the right-most path in the proof tree has a pivot point. Thus, by
Lemma 20, any formula on the right-most path is a subformula of Γ ∪{φ}. Hence,
any formula on the right-most path is a subformula of set ∆ .
Case 1: Formula φ is derived by either inference rule (W ) or inference rule (N)
from formula ψ . Since formula ψ belongs to the right-most path in the proof tree,
we have ψ v ∆ . Thus, by the induction hypothesis, every formula in the derivation
of ψ is a subformula of set ∆ . Therefore, every formula in π is a subformula of
set ∆ .
Case 2: Formula φ is derived by Modus Ponens from formulas ψ and ψ → φ .
Since formula ψ → φ belongs to the right-most path in the proof tree, ψ → φ v ∆ .
Hence, ψ v ∆ . By the induction hypothesis, every formula in the derivations of ψ

and ψ → φ is a subformula of set ∆ . Therefore, every formula in π is a subformula
of set ∆ .
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Theorem 6 If Γ ` φ in Lw, then there is a proof π of φ from Γ in Lw such that
length(π) ∈ O(|Γ |+ |φ |) and |π| ∈ O((|Γ |+ |φ |)2).

Proof Assume that Γ ` φ . By Lemma 15, there is a γ-canonical proof tree of φ

from Γ . By Lemma 21, each formula in this proof tree is a subformula of ∆ =
Γ ∪{φ}. By eliminating all repeating occurrences of formulas in the tree proof,
the proof can be converted to a proof π of length no more than the number of
subformulas in Γ ∪{φ}. In other words, length(π) ∈ O(|Γ |+ |φ |). Since every
formula in the proof π is a subformula of Γ ∪{φ}, the total size of the proof π is
O((|Γ |+ |φ |)2).

Theorem 7 If Γ ` φ in Lwn and set Γ is Lwn-consistent, then there is a proof π of
φ from Γ in Lwn such that length(π) ∈ O(|Γ |+ |φ |) and |π| ∈ O((|Γ |+ |φ |)2).

Proof Identical to the proof of Theorem 6.

Corollary 2 If formula φ is provable in the classical propositional logic using
only instances D1, . . . ,Dn of distributivity schema, then there is a proof π in the
classical propositional logic of φ such that length(π) ∈ O(∑n

i=1 |Di|+ |φ |) and
|π| ∈ O((∑n

i=1 |Di|+ |φ |)2).

Proof Consistency of the propositional logic implies that set {D1, . . . ,Dn} is Lwn-
consistent.

5 Conclusions

We have established upper polynomial bounds on the proof complexity of two
fragments of the classical propositional logic, defined by limiting the use of cer-
tain axiom schemata. Both results are obtained by finding valid versions of the
subformula property for these fragments.

These results could be viewed as a step towards establishing a hypothetical
polynomial upper bound on proof complexity in the full propositional logic. The
next logical step in this direction is finding upper polynomial bounds for richer
fragments of the logic using a variation of subformula property or some other
technique.
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