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Abstract: 

Jones and Love contend that the Bayesian approach should integrate process constraints with abstract 

computational analysis. We agree, but argue that the fundamentalist/enlightened dichotomy is a false 

one: enlightened research is deeply intertwined with – and to a large extent is impossible without – the 

basic, fundamental work upon which it is based.  

 

 

Main text: 

 

Should Bayesian researchers focus on “enlightened” modelling that seriously considers 

the interplay between rational and mechanistic accounts of cognition, rather than a 

“fundamentalist” approach that restricts itself to rational accounts only? Like many 

scientists we see great promise in the “enlightened” research program. We argue, 

however, that enlightened Bayesianism is deeply reliant on research into Bayesian 

fundamentals, and the fundamentals cannot be abandoned without greatly affecting more 

enlightened work. Without solid fundamental work to extend, enlightened research will 

be far more difficult. 

 

To illustrate this, consider the paper by Sanborn, Griffiths and Navarro (2010), which 

Jones and Love consider to be “enlightened” as it seeks to adapt an ideal Bayesian model 

to incorporate insights about psychological process. To achieve this, however, it relies 



heavily upon work that itself would not have counted as “enlightened”. The comparison 

between Gibbs sampling and particle filtering as rival process models grew from 

"unenlightened" research that used these algorithms purely as methodological tools. As 

such, without this “fundamentalist” work the enlightened paper simply would not have 

been written.  

 

Enlightened research can depend on fundamentals in other ways. Rather than adapt an 

existing Bayesian model to incorporate process constraints, Navarro & Perfors (in press) 

used both Bayesian fundamentals  (an abstract hypothesis space) and process 

fundamentals (capacity limitations on working memory) as the foundations of an 

analysis of human hypothesis testing. Identifying a conditionally optimal learning 

strategy given the process constraint turned out to reproduce the “positive test strategy” 

that people typically employ (Wason 1960), but only under certain assumptions about 

what kinds of hypotheses are allowed to form the abstract hypothesis space. This 

analysis, which extended existing work (Klayman & Ha 1987; Oaksford & Chater 1994) 

and led us to new insights about what kinds of hypotheses human learners “should” 

entertain, could not have been done without “fundamentalist” research into both the 

statistical and mechanistic basis of human learning.  

 

Not only do "enlightened" papers depend on fundamental ones, we suggest that they are 

a natural outgrowth of those papers. Consider the early work on Bayesian concept 

learning, which contained a tension between the "weak sampling" assumption of Shepard 

(1987) and the "strong sampling" assumption of Tenenbaum and Griffiths (2001). When 

strong sampling was introduced, it would presumably have counted as 

“fundamentalism”, since the 2001 paper contains very little by way of empirical data or 



consideration of the sampling structure of natural environments. Nevertheless, it served 

as a foundation for later papers that discussed exactly those issues. For instance, Xu and 

Tenenbaum (2007) looked at how human learning is shaped by explicit changes to the 

sampling model. This in turn led Navarro, Dry and Lee (under review) to propose a more 

general class of sampling models, and to pit them all against one another in an empirical 

test (it turned out that there are quite strong individual differences in what people use as 

their "default" sampling assumption). The change over time is instructive: what we 

observe is a gradual shift from simpler “fundamentalist” papers that develop the theory 

in a reduced form, towards a richer framework that begins to capture the subtleties of the 

psychology in play.  

 

Even Jones and Love’s own chosen examples show the same pattern. Consider the 

Kemp, Perfors & Tenenbaum (2007) article, which Jones and Love cite as a prime 

example of “fundamentalist” Bayesianism, since it introduces no new data and covers 

similar ground to previous connectionist models (Colunga & Smith, 2005). Viewing the 

paper in isolation, we might agree that the value added is minor. But the framework it 

introduced has been a valuable tool for subsequent research. An extension of the model 

has been used to investigate how adults learn to perform abstract “second order” 

generalizations (Perfors & Tenenbaum, 2009) and to address long-debated issues in verb 

learning (Perfors et al., 2010). A related model has even been used to investigate 

process-level constraints; Perfors (submitted) uses it to investigate whether or not 

memory limitations can produce a “less is more” effect in language acquisition. It is 

from the basic, fundamental research performed by Kemp et al. (2007) that these richer, 

more enlightened projects grew. 

 



Viewed more broadly, the principle of “enlightenment growing from fundamentals” is 

applicable beyond Bayesian modeling; our last example is therefore an inversion.  We 

suggest that Jones and Love understate the importance of computational considerations 

in good process modeling. For instance, one of their key examples comes from 

Sakamoto, Jones, and Love (2008) who consider mechanistic models of category 

learning. That paper might be characterized as a “fundamentalist” work in process 

modeling, insofar as it gives no consideration to the computational level issues that 

pertain to their choice of learning problem. As consequence of this “process 

fundamentalism”, the “rational” model that paper employs is in not actually a rational 

model. It is highly mis-specified for the problem of learning time-inhomogeneous 

categories. In recent work (Navarro & Perfors 2009) we discuss this concern and 

introduce extensions to the experimental framework aimed at highlighting the 

computational considerations involved; at present we are working on model 

development to build on this. However, the goal in our work is not to deny the 

importance of process, but to learn which aspects of human behaviour are attributable to 

computational level issues and which aspects reflect process limitations. In this case, that 

goal is met by building on fundamental work on the process level (i.e., Sakamoto et al's 

2008 paper) and adding computational considerations. In general, the attaining the goal 

of “enlightened” research is only possible if fundamentals on both levels are taken 

seriously – if researchers deny neither psychological mechanism nor ideal computation.  

 

Like Jones and Love, we believe that it is the interaction between the twin 

considerations of computation and process that leads us to learn about the mind. 

However, this should not lead us to abandon work that focuses on only one of these two 

components. Enlightened research is constructed from the building blocks that 



fundamental work provides. 
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